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ABSTRACT Leakage current is an issue that often causes problems in transformerless grid-connected PV
inverters, such as electromagnetic interference, which is conducted or radiated and derates the quality of
power injected into the grid. It can also lead to electrical safety problems, impair the performance of other
equipment nearby, and thus make the generation system unavailable. Therefore, mitigation procedures for
the leakage current in transformerless grid-connected PV inverters are essential to ensure system efficiency
and safety. In this sense, a new single-phase grid-connected transformerless inverter topology was proposed
using modulation switching techniques to keep the leakage current at acceptable standard levels. With the
proposed topology, by monitoring the leakage current rms value, the inverter can be driven in a three- or
five-level pattern for the main switches, thereby keeping the leakage current at a satisfactory level. The
topology was implemented in a versatile hardware-in-loop Typhoon-HIL to emulate a digital twin of the
complete system, with the control loops and switching generation embedded in a family Texas Instruments
F28335 DSP. The results obtained for total harmonic distortion and energy conversion efficiency were then
compared with other consolidated topologies, and the leakage current was proved to be effectively modified
when the inverter is switched in three- or five-level modes.
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I. INTRODUCTION
In recent years, growing concern about energy demand
and the substantial environmental impact caused by using
fossil fuels to generate energy has led to the search for
renewable energy sources. The alignment of technology and
science advancements with sustainable development goals
- SDG [1_-] of the United Nations is a paramount motor to
the emerging research in several knowledge areas; cleaning,
efficient and effective power conversion is adherent to the
goals #7 - Affordable and Clean Energy, #9 - Industry,
Innovation and Infrastructure, and #11 - Sustainable Cities
and Communities, asides to indirect contributions to other
SDG. In this scenario, solar energy stands out due to its
clean and abundant nature, which can be competitive and
work in conjunction with hydro and thermal sources [1]], [2].
Due to these characteristics and the increasing development
of energy conversion systems, new solutions are constantly
being sought to overcome the challenges associated with
photovoltaic energy conversion, such as the variation in solar
irradiation and the need for high efficiency.

Various factors, such as the growth in the demand for
clean energy, the reduction in the cost of power electronics,
and advances in control technologies, drive the evolution of

'The UN SDGs, https://sdgs.un.org/goals

photovoltaic inverter topologies. However, new challenges
arise with the increasing injection of solar energy into the
electricity grid, such as the need to guarantee the stability
and compatibility of the system with other renewable energy
sources [3], [4]]. In this context, new inverter topologies must
offer greater flexibility, modularity, and intelligence, allow-
ing photovoltaic systems to be integrated into increasingly
complex and distributed electrical grids [3].

Previous work on photovoltaic inverter topologies presents
diverse approaches and levels of detail. Authors such as
[6] and [7] offer in-depth analyses of the main topologies,
comparing their performance in terms of efficiency, cost,
and waveform quality. [8] and [9], [[10] explore the latest
trends in modular and multilevel topologies, highlighting
their advantages for large photovoltaic systems. This variety
of perspectives enriches knowledge on the subject and helps
develop the most suitable topologies for each application.

The function of the inverter is to convert the direct
current generated by photovoltaic modules into an alternating
current suitable for use in electrical distribution networks.
In this context, transformerless inverters have become in-
creasingly common due to their advantages over systems
with transformers. In addition to cost and the physical
volume reduction, they allow for improved energy efficiency
and better conversion of the direct current generated by
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photovoltaic modules into alternating current for injection
into the electrical grid [[11]].

In this way, a new topology of the inverter connected to the
grid without a transformer that presents low leakage current
through the modulation switching strategy allows situations
where the parasitic capacitance reaches a value such that the
leakage current exceeds the normative limits to ensure the
continuity of power injection into the grid.

This paper is divided into six sections. The second section
briefly explains the transformerless inverter and its charac-
teristics, comparing it with the transformer-based inverter.
The third section describes the most common transformerless
inverter topologies in the literature, describing their principle
of operation. The fourth section proposes a new topology to
solve the problems addressed in the previous sections by
changing levels based on the value of the relevant leakage
current in the system. In section five, a comparison is made
between the proposed topology and the topologies in the
literature. Finally, the sixth section presents the conclusion
of the results obtained in the article.

Il. PROBLEMS OF TRANSFOMERLESS PV INVERTERS
Inverters transformer-based (galvanically isolated) have dis-
advantages over transformerless (non-isolated) inverters. One
of the main disadvantages is their weight. The transformers
used in these inverters are typically made of ferromagnetic
material, such as silicon steel, which makes them heavy
[12]]. Another important disadvantage of inverters with trans-
formers is related to the volume occupied by these com-
ponents [[13]]. Transformers tend to take up a considerable
amount of space due to the need for adequate insulation
and the arrangement of the coils. It limits design flexibility
in applications where space is a valuable resource. Finally,
efficiency is another notable disadvantage of inverters with
transformers [14]. By nature, transformers introduce losses
into the system due to hysteresis effects and eddy currents.
Although this, transformerless inverters have some disadvan-
tages, including parasitic capacitance that implies in common
mode voltage and leakage current, which will be explained
in this section, detailing their characteristics.

A. Parasitic capacitance

The photovoltaic module is structured as: an aluminum
frame, special glass, encapsulant, photovoltaic cells, encap-
sulant, and a back sheet. In a normative way, it is required
that the metallic structures are grounded [13]]. In this way, an
equivalent capacitive effect arises in the modules of the pho-
tovoltaic system, as shown in Fig. [I] where this equivalent
value depends on various factors, including humidity and
temperature to which the modules are subjected during their
operation [[15]. In unsophisticated transformerless topologies,
the relationship between the string (DC) and grid (grid)
potentials oscillate with large amplitude, providing a high
common mode voltage, which corroborates the emergence

of a leakage current circulating through the system between
photovoltaic modules and grid [[16].
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FIGURE 1. Parasitic capacitances in the photovoltaic module adapted
from [17].

B. Common mode voltage

The topology of the inverter and the modulation strat-
egy defines the relationship between the potentials of the
string (DC) and the grid (AC). The semiconductor switches’
switching can transmit the grid’s alternating potential to the
photovoltaic modules. In topologies without a transformer,
the potentials in the strings can reach values with large
oscillations. The non-constant common-mode voltage favors
the emergence of leakage current circulating through the sys-
tem, [|18[]. The common-mode and differential-mode voltages
in the inverter in Fig. 2] can be written according to the
equations [T] and [2] respectively.
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FIGURE 2. Parasitic capacitances and leakage current in the
grid-connected photovoltaic system without transformer (adapted
from [19], [20]).

C. Leakage current

The state of charge of the parasitic capacitances is altered
when there is a variation in the voltage applied to the
terminals of the photovoltaic module. Due to the parasitic
capacitance and the inverter’s common mode voltage, a
leakage current arises and flows through the system, as
seen in Fig[2] This effect can cause protection from trips,
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safety problems, efficiency degradation, additional harmonic
distortion, and electromagnetic interference problems. In
general, the variation in the amplitude of the voltage applied
to the terminals of the photovoltaic module is proportional
to the amplitude of the leakage current. In the case of trans-
formerless inverters, this current will circulate throughout the
system and be injected into the electricity grid, which causes
an increase in harmonic content [21], [22].

D. Leakage current regulations

The leading international standards that define operating
limits and leakage current criteria are VDE 0126-1-1 and
IEC 62109-2. Differential current is defined as the algebraic
sum of the leakage current values, which flows through the
parasitic capacitance, and the residual current, which flows
through the circuit’s conductors, expressed as a practical
value. Protection against excessive residual current is one
of the safety requirements for transformerless inverters, and
its primary purpose is to protect against electric shock [23]],
[24].

The VDE 0126-1-1 and IEC 62109-2 standards set limits
for residual current. If this exceeds 300 mA, the inverter
must be disconnected from the mains within 300 ms. In
addition, variations in leakage current over a given time
must follow the limits described in Tab. [T} Thus, when the
leakage current is high, the residual current monitoring is
compromised, causing the protections to be triggered in an
undesirable way.

TABLE 1. Leakage current variation limits, according to VDE 0126-1-1 [24]

iLeakage (MA) Time (ms)

30 300
60 150
100 40

The common mode voltage produced by the PV inverter
added to the equivalent parasitic capacitance of the modules
causes the emergence of a leakage current that circulates
between the DC and AC parts of the PV system, as shown
in Fig[l] [25]. This leakage current causes degradation of
the quality of the power injected into the electrical grid by
elevating the harmonic content of the current and EMI (elec-
tromagnetic interference). If this current value exceeds the
regulatory limits [24], [26], the PV inverter must disconnect
from the grid to ensure the safety of equipment and people.

Some adopted ways in the literature to overcome these
effects are clamping at the neutral point of the DC bus and
decoupling, which can occur either on the AC or DC side, as
demonstrated in [27]], [28], or directly connecting the ground
of the grid to the ground of PV ensemble [29]. This work
aims to mitigate the effect of leakage current by implement-
ing the modulation switching strategy. This approach disturbs
the parasitic capacitance to keep the leakage current within
normative limits. In this way, continuity of power injection
into the grid is guaranteed, ensuring proper system operation.

lll. FULL BRIDGE-DERIVED TOPOLOGIES

In this section, we introduce the three-level topologies,
specifically the Full-Bridge and its variations, HERIC, and
HB-ZVR. Additionally, we cover topologies operating with
five levels, such as NPC - five levels, T-type - five levels and
Floating Capacitors. The operational details of each topol-
ogy are described, and we delve into specific results con-
cerning common-mode voltage and leakage current. These
findings are explored to facilitate subsequent comparisons.

A. Full-Bridge

The full-bridge topology is shown in Fig[3] With the unipolar
PWM modulation scheme, the operation of switches Q1 and
Q2 are complementary at low frequency (60 Hz). Switches
Q3 and Q4 are operated at high frequency (20 kHz), which
allows for reaching an output voltage of three levels (+Vdc,
0, -Vdc), [30].

The three-level output voltage reduces the inverter’s out-
put filter without significant losses while maintaining high
efficiency. However, despite its high efficiency and simple
requirements for the output filter, this topology presents a
high leakage current, as the common mode voltage during
its operation varies at high frequency. Therefore, using
the transformerless full-bridge topology for grid-connected
photovoltaic applications is unsuitable, [31].
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FIGURE 3. Full-Bridge (FB) inverter topology

B. HERIC
The Highly Efficient and Reliable Inverter Concept (HERIC)
topology, initially proposed in 2003 by Sunways, combines
the advantages of modulation in three output voltage levels,
of unipolar PWM with the reduction of common mode
voltage and current of escape. This way, the inverter’s
efficiency is improved considerably without compromising
other system parameters, [31], [32].

The zero voltage state is reached using bidirectional
switches between the output terminals, / and 2 inversely
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as shown in Fig. @] offering a free-flow path to the grid. The
AC bypass switches prevent the exchange of reactive power
between the output filter inductors (L1 and L2) and the DC
link capacitor (Cdc), contributing to improved efficiency.
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FIGURE 4. HERIC inverter topology.

C. HB ZVR

The H-Bridge Zero-Voltage Switch Controlled Rectifier (HB-
ZVR) topology was initially presented in [31]]. Its main
feature is to connect the midpoint of the DC link to the
inverter only because the state period uses a diode rectifier
bridge and a switch, as shown in Fig[5]

The zero voltage state is achieved by turning S5 on
when S1 and S4 are turned off. Switching of S5 will be
complementary to S1 and S4, with a small dead time to
avoid a short circuit in the DC link capacitor (Cdc). Switch
S5 allows the main current to flow in both directions; in this
way, the inverter can supply reactive.
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FIGURE 5. HB-ZVR inverter topology adapted from |27].

[31] shows that the topology HB-ZVR has a slightly lower
efficiency compared to HERIC because the ’bidirectional

switch’ is switched at high frequency, while in the case of
the topology HERIC, the ’bidirectional switch’ is switched to
the mains operating frequency. With an efficiency of approx-
imately 94%, it is an alternative solution for transformerless
grid-connected single-phase photovoltaic systems.

D. NPC- five levels

The 5-level Neutral Point Clamped Inverter (VPC) multilevel
inverter configuration, presented in Fig. [f] employs five volt-
age levels to generate a sinusoidal output. This is achieved
through a setup from a parallel arrangement of the traditional
3-level NPC. Its primary advantage is providing an output
voltage with significantly reduced harmonic distortion. This
is extremely important in applications requiring a high power
quality standard, particularly in grid-connected renewable
energy systems [33].
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FIGURE 6. NPC five levels inverter topology.

Reducing the breakdown voltage of the semiconductor
devices to half of the DC bus voltage decreases switching
losses, which are less sensitive to the switching frequency
[34].

E. T-type- five levels

The 5-level T-type inverter is a multilevel alternative widely
used in single-phase photovoltaic systems. It uses eight
switches to generate five levels, like the full-bridge NPC,
as shown in Fig

However, the T-type inverter operates with fewer semicon-
ductor devices in the current path than the full-bridge NPC,
which results in low conduction losses. On the other hand,
only half of the T-type inverter’s semiconductors operate at
half the DC bus voltage [35]].

In addition, it requires at least two switch changes in the
transitions between voltage levels. Yet, the T-type inverter
is considered a promising option for applications in photo-
voltaic systems due to its high efficiency, low conduction
losses, and lower number of semiconductor devices com-
pared to other multilevel topologies [36]—[38].
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FIGURE 7. T-type five levels inverter topology.

F. Floating Capacitors - five levels
The 5-level floating capacitor (FC) inverter is a multilevel
option that has been used in photovoltaic systems, consisting
of two floating capacitors operating at half the DC bus
voltage, generating five voltage levels [39]]. As shown in Fig.
8]
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FIGURE 8. Floating Capacitors - five levels

The main benefit of this topology is that it reduces the
number of semiconductor devices in the current path, pro-
viding lower conduction and switching losses compared to
other multilevel topologies. However, a disadvantage of this
configuration is the need for two robust floating capacitors,
which can be a challenge in design and cost. Also, more
complex control is required to balance the voltages across
them [40].

IV. PROPOSED TOPOLOGY

The proposed topology of a grid-connected single-phase five-
level inverter consisting of eight switches is shown in Fig.
O The configuration switches switch from five levels to
three levels at the output. The operating principle in the
5-level structure consists of using switches S7 and S8 to
create an intermediate point between the input capacitors,

thus allowing the voltage +1/2Vj,., as presented in Tab.
In the 3-level configuration, the S7 and S8 switches are not
used, limiting the use of S5 and S6 - this pair of switches
is essential to the assure de level 0-mode, as shown in Tab.
[l To avoid interruption in the operation of the inverters, the
allowed values comply with the standards VDE 0126-1-1
and IEC 62109-2.

TABLE 2. Switching to 5 levels.

Mode |[S1 S2 S3 S4 S5 S6 S7 S§]| VDM VCM
Vdc [I0010000] Ve Vgcl4
+1/2Vdc [00010011] +1/2Vg, 3/4Vy.
0 [00001100] 0 Not constant
-1/2Vdc [00101011] —1/2Vge | —3/4Vye
-Vdc [01101000] —Vie —Vigcl4
TABLE 3. Switching to 3 levels.
Mode | [S1 S2 S3 S4 S5 S6 S7 S8] | VDM VCM
Vdc [I0010000] Ve Viael2
0 [00001100] 0 Not constant
-Vdc [01101000] —Vie —Vigel2

This configuration has the advantage of an agile change
of operation from 5 levels to 3 levels, accompanied by a
simplified control strategy for this transition, which will be
described in more detail in section This puts it in a
competitive position regarding operating modes compared
to other topologies already recognized in the literature.

V. RESULTS

Tests were carried out on Typhoon’s Hardware-in-the-Loop
(HIL) 604 platform to develop and test complex embedded
systems in real time. The controllers were implemented on
a Texas Instruments F28335 digital signal processor (DSP),
as shown in Fig[I0] The parameters used in the simulation
components are listed in the Tab/]

TABLE 4. Parameters used in the simulations.

Parameters Value

Input Voltage [Vy.] 400V
Grid Voltage [Vy] 220V
Switching Frequency [Fsw]  30kHz
Inductive Filter [Lq,L2] 3mH

Parasitic Capacitance [Cpy] 50nF-75nF
Ground Resistor [Rgy] 5Q
PV Power (kW] 2kW
Simulation Time-Step [u.S] 0.5 uS

Two control loops are used, an internal control loop and
an external control loop; one controls the current injected
into the electrical grid, and the other controls the DC link
voltage, respectively, so the voltage is constant. For cur-
rent control, a proportional resonant (P+RES) compensator
(Ci(s)) was used, which has the function of reproducing a
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FIGURE 9. Proposed new topology.

current synchronized with the grid voltage at the inverter
output to obtain a high power factor. Therefore, the current
loop must be fast enough to produce the current without
significant distortions. On the other hand, the voltage loop
that uses a PI compensator (C,(s)) aims to keep the DC bus
voltage of the inverter constant, adjusting when variations in
the irradiance of the photovoltaic array occur. Therefore, the
voltage loop must be slow enough to decouple the current
control loop dynamically. So, the outer loop controller must
be tuned at least a decade below the inner loop controller.

The diagram of the control strategy used for the proposed
inverter is illustrated in Fig. [TT]

The converter system was built in the Typhoon 604 virtual
environment, with the control implemented in a Texas Instru-
ments F28335 DSP. FiglT2] displays the control operation,
showing the synchronism between the injected current and
the grid voltage, achieving a very high power factor (left)
and the stability of the DC bus voltage (right).

The I-V and P-V curves, referring to the strings used in the
simulation, are in Fig[I3] The Perturb and Observe (P&O)
maximum power point tracking (MPPT) algorithm was used
in this simulation.

Fig. [T4] shows the effect of changing the number of
levels at the inverter output. The operation starts with five
levels and a parasitic capacitance of value 50nF’, consid-
ering that the panels are installed in a sunny and lightly

humid environment [41]. The leakage current is within the
acceptable limits, as shown in point A. Then, a disturbance
was introduced at point B, varying the values from 50nF
to 75nF'. This change in parasitic capacitance represents a
climatic transition from a sunny, lightly humid environment
to moderate rainfall. In heavy rain, these values can reach
167TnF [41]], [42], resulting in the leakage current values
above the allowed by the standards. The system recognizes
the current increase and starts processing the PWM to adjust
the operating values. After 200 ms, the inverter selects a new
PWM pattern, reducing the leakage current values that return
to below standard limits by changing the output voltage to
three levels, as shown in point C.

The advantage of three-level modulation is naturally the
minimization of leakage current. Compared to five-level
modulation, its disadvantage is the increase in current distor-
tion and the more significant stress on the filter and switches
(due to the higher current), as shown in Tab. [3]

TABLE 5. Results of injected current and THD for different levels.

Description 3 Levels | 5 Levels
THD Current injection (to 50* harmonic) | 3.07% 2.03%
THD Current injection on Grid 3.58% 2.73%
Current Injection on Grid (RMS) 9.73A 8.53A

6 Eletronica de Poténcia, Rio de Janeiro, v. 30, e202527, 2025.
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FIGURE 10. Typhoon HIL Setup Test.
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Inverter Filter

FIGURE 11. Control structure of the DC-AC converter.

Therefore, it is preferable to operate with five levels
whenever possible, changing to three levels in the event of
excessive leakage current. A management strategy monitors
the leakage current and chooses the best output voltage form.

To compare the topologies presented and prove a sound
performance of the proposed topology, an analysis of the
relevant quantities for the study of leakage current in pho-
tovoltaic systems connected to the transformerless grid was
carried out, presented in Tab.

The High leakage current negatively impacts the quality of
the energy injected into the grid by increasing the spectral
content of the current and compromising residual current
monitoring systems, which are critical for ensuring safety.
The simulation analysis revealed that each topology presents
distinct advantages and limitations.

The unipolar mode of the Full-Bridge topology, the fo-
cus of this study, achieves an efficiency above 90% and
reduced switching losses due to its lower semiconductor
requirements, delivering a three-level output. Despite these
advantages, this configuration exhibits a high leakage current
and a total harmonic distortion (THD) exceeding regulatory
limits, making its operation unfeasible without appropriate
mitigation techniques.

Derived topologies, such as HERIC and HB-ZVR, stand
out for their efficient decoupling of the DC and AC sides,
ensuring low leakage current and three-level output voltage.
In contrast, the NPC and T-type topologies, both operating
with five levels, offer satisfactory power quality with low
leakage current and are less complex compared to the
Floating Capacitor inverter, which demands a more robust
control strategy to regulate its voltage and maintain efficient
performance across its five levels of operation.

The proposed topology outperformed all others in the five-
level operation mode and demonstrated a seamless transi-
tion to three levels, maintaining response times within the
recommended limits. In the three-level mode, it exhibited
competitiveness by achieving low leakage current and THD,
while requiring a number of semiconductors comparable to
the HERIC and HB-ZVR topologies.

VI. CONCLUSION

This paper proposed a novel transformerless inverter topol-
ogy for PV power systems to minimize leakage currents and
improve the system’s reliability. Under normal conditions,
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FIGURE 13. I-V and P-V curves of the photovoltaic system with P&0O MPPT.

TABLE 6. Comparative results of closed-loop topology simulations.

Topology Switches | Diodes | Levels | Iem (mA RMS) | THD (%) | Efficiency (%)
Full-Bridge - Unipolar 4 0 3 2168 7.83% 94.16%
HERIC 6 0 3 19.79 3.54% 95.65%
HB-ZVR 5 5 3 20.01 3.72% 94.34%
NPC - 5 levels 8 4 5 69.38 2.89% 95.90%
T-TYPE - 5 levels 8 4 5 69.55 2.93% 95.95%
Floating Capacitors - 5 levels 8 0 5 80.45 2.96% 96.03%
Proposed topology - 3 levels 6 0 3 37.63 3.58% 95.60%
Proposed topology - 5 levels 8 0 5 97.04 2.73% 96.87 %
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FIGURE 14. Results of level variations in response to leakage current.

the inverter operates with a five-level modulation strategy,
ensuring high-quality performance. When leakage currents
exceed standard upper limits, the topology is adapted by
transitioning to a three-level configuration, utilizing a neutral
clamping point to mitigate the issue effectively. By adopting
six switches instead of eight, the design strikes a balance be-
tween reducing switching losses and maintaining efficiency.
This flexible approach improves system availability, ensures
compliance with standards, and provides a robust solution
for modern photovoltaic applications.

As analyzed in the article, the Full-Bridge topology lacks
an integrated leakage current mitigation mechanism, result-
ing in values exceeding normative limits for both leakage
current and THD of grid-injected currents. This limitation
demands advanced filtering techniques, significantly increas-
ing system complexity and project costs. In contrast, The
HERIC and HB-ZVR topologies incorporate mechanisms to
stabilize the common-mode voltage, effectively suppressing
leakage currents and improving the quality of the grid-
connected output current.

Regarding five-level topologies, the NPC - five levels
are introduced, offering the advantage of generating output
voltage with minimal harmonic distortion. The T-type - five
levels topology is also highlighted, recognized as a promising
choice for photovoltaic applications due to its superior effi-
ciency, reduced conduction losses, and fewer semiconductor
components than other multilevel configurations. Lastly, the
Floating Capacitors (Floating C) topology stands out for
minimizing the number of semiconductor devices in the cur-
rent path, effectively lowering both conduction and switching
losses compared to alternative multilevel topologies.

For future work, we plan to assess the conversion effi-
ciency of the proposed topology and conduct performance
comparisons with well-established topologies from the liter-
ature, utilizing simulations and validation on a test bench.
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