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ABSTRACT Switching losses have been shown to have a significant impact on the efficiency and thermal
management of power electronic systems, particularly in high-performance converters. Conventional
estimation techniques frequently rely on deterministic parameters, which are unable to account for the
inherent variability in semiconductor characteristics and gate-driving conditions. This limitation can result
in erroneous predictions and an underestimation of design margins. In order to address this issue, the present
paper proposes a probabilistic approach for estimating switching losses in MOSFETs, with applications
demonstrated for both Silicon carbide (SiC) and Silicon (Si) devices, using the Monte Carlo method. The
methodology involves treating key device and driver parameters, such as gate resistance, transconductance,
and threshold voltage, as statistical variables. This approach enables the capture of inherent uncertainties in
device behavior. The switching transients are characterized through Double Pulse Test (DPT) simulations
across a wide range of voltage and current levels. Monte Carlo simulations are extensively performed
to derive the statistical distribution of energy losses, ensuring realistic performance expectations under
variable conditions. The findings indicate that parameter variability can lead to substantial discrepancies
in switching loss predictions, underscoring the limitations of conventional deterministic methods. The
proposed methodology provides a more robust and reliable foundation for thermal design, loss prediction,
and reliability assessment in power converter applications, ultimately ensuring improved performance and
increased lifespan of power electronic systems.

KEYWORDS Monte Carlo Simulation, Silicon Carbide MOSFET, Statistical Analysis, Switching Losses,
Parameter Variability.

I. INTRODUCTION
Modern power electronics systems necessitate semiconduc-
tor devices capable of functioning at elevated voltages, tem-
peratures, and switching frequencies while sustaining high
conversion efficiency. These requirements are of particular
importance in the domains of automotive electrification, re-
newable energy integration, and industrial power conversion
systems [1], [2]. Silicon carbide power MOSFETs have
emerged as an innovative solution, overcoming the funda-
mental limitations of silicon-based power devices through
their superior material properties, including a wide bandgap
> 3 eV and high critical electric field strength 2-3 MV/cm
[3].

The performance advantages of SiC MOSFETs become
especially significant as power electronic systems evolve
toward higher switching frequencies, where conventional
silicon devices exhibit substantial switching losses. These
losses have consequences for the overall efficiency of the
system. In addition, they impose limitations on power den-
sity by necessitating the use of larger thermal management
solutions [4].

A significant challenge in system design resides in the
development of practical yet accurate methods for predict-
ing MOSFET switching losses through the utilization of
solely commercially available datasheet parameters. These
methodologies enable engineers to reliably estimate junction
temperatures and converter efficiency early in the design
phase, a critical consideration in applications such as elec-
tric vehicle drivetrains and grid-tied inverters, where op-
erational reliability is paramount. Despite these advances,
proper characterization of their switching behavior remains
essential for real-world applications [5]. In high-performance
converters, switching losses frequently dominate conduc-
tion losses, particularly as switching frequencies increase
to achieve higher power density [6], [7]. However, while
conduction losses are relatively straightforward to calculate,
switching losses are more challenging due to the lack of
detailed data in MOSFET datasheets, especially across all
operating conditions. These losses emerge from the overlap
of the drain-to-source voltage (vDS) and drain current (iD)
during switching transitions, and their accurate estimation
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requires precise characterization of the voltage and current
waveforms, including their rise and fall times.

Despite extensive research on power loss estimation, a
reliable method for accurately predicting switching losses
is still lacking in power electronics [8]–[11]. Variations in
key parameters, such as gate resistance, transconductance,
and threshold voltage, have a significant impact on switching
losses, yet they are often neglected in conventional estima-
tion models [12] [13].

Furthermore, most commercial datasheets do not provide
sufficient data to capture these variations across different
operating conditions, presenting a challenge for a more
general estimation. As such, there remains a gap in the
literature regarding the development of more accurate models
that account for these variations, particularly in the context
of real-world operating conditions.

Monte Carlo simulations have been extensively used to
model stochastic behavior in power electronics, particularly
in reliability assessments and loss estimations [14], [15].
Previous research has applied this technique to various
applications, such as photovoltaic inverters and wind turbine
power converters [16], [17]. These methods allow the in-
corporation of parameter uncertainty and process tolerances
into prediction models, improving the statistical reliability
of the simulation outcomes. However, existing studies often
lack a systematic treatment of how variations in key switch-
ing parameters influence loss predictions, especially under
dynamic thermal and electrical stress conditions.

This paper aims to address this gap by proposing a
probabilistic approach for estimating switching losses in Si
and SIC MOSFETs, incorporating the inherent variability in
device parameters. The proposed approach utilizes Monte
Carlo simulations to model the uncertainty in these parame-
ters, providing a more accurate and realistic prediction of
switching losses, which is crucial for optimizing thermal
management and improving overall system efficiency.

The structure of this paper is organized as follows: Sec-
tion II discusses the evaluation of hard-switching transients
and the impact of parametric variations. Section III provides
an overview of the Monte Carlo method. Section IV details
the implementation of the probabilistic estimation approach.
Section V presents experimental results and discussion.
Finally, Section VI concludes the paper.

II. EVALUATION OF HARD-SWITCHING TRANSIENTS IN
POWER MOSFETS
A. Hard-switching Phenomena
To analyze hard-switching conditions, the double-pulse test
circuit illustrated in Figure 1 is widely recognized as the
standard method for characterizing the switching behavior
of MOSFETs and IGBTs. The gate–drain capacitance (Cgd),
gate–source capacitance (Cgs), and drain–source capacitance
(Cds) are considered, along with the gate driver output
voltage (Vdr), gate resistance (Rg) comprises both the internal
and external resistances connected in series, and the DC-
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FIGURE 1. Diagram of the double-pulse test circuit, a common
experimental setup for evaluating the switching losses of a MOSFET (M)
or DUT.

bus voltage (Vdd). Additionally, an auxiliary branch com-
posed of an inductor (Lb) in parallel with a diode (Ds)
is incorporated to facilitate both the analytical framework
and the measurement procedures. Figure 2 illustrates the
idealized switching process. This setup is widely adopted by
semiconductor manufacturers as it effectively reproduces the
operating conditions of conventional PWM hard-switching
converters under inductive load, which is typical in most
power electronic systems.

By examining both turn-on and turn-off transitions, this
test enables a comprehensive assessment of the transient
behavior of power devices under various operating condi-
tions. Moreover, it facilitates the evaluation of MOSFET
performance across different current levels and input volt-
ages while ensuring that the device’s junction temperature
remains relatively stable.

Based on the waveforms presented in Figure 2, it is
possible to derive the equations that describe the complete
switching process. These expressions are adapted from the
methodology proposed by Brown [18]. The switching be-
havior of the MOSFET can be segmented into six distinct
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FIGURE 2. Typical MOSFET switching waveforms. Adapted from [18].
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intervals, each corresponding to a different phase of the
transition. The expressions corresponding to time intervals
t1, t2, and t3 during the turn-on transient are provided in
(1), (2), and (3), respectively.

t1 = Rg · (Cgs + Cgd) · ln
(

vdr(on)

vdr(on) − Vth

)
(1)

where vdr(on) represents the high-level output voltage ap-
plied to the external gate resistance; Vth is defined as the
gate voltage at which the device starts to turn-on.

t2 = Rg · (Cgs + Cgd) · ln
(

vdr(on)

vdr(on) − vpl

)
(2)

According to Figure 2, t3 represents the voltage fall time
to the on-state level during turn-on (tfu), while the rise time
of the current (tri) is given by the duration between t1 and
t2.

In practice, the drain–source capacitance (Cds) of a given
MOSFET is influenced by at least two distinct factors. The
first is the drain–source voltage (vDS), which directly affects
the junction capacitance. As vDS increases, Cds decreases
significantly due to the widening of the depletion region, a
well-known nonlinear behavior extensively documented in
the literature for both Si and SiC devices [19]. Notably,
the majority of these studies have focused on operating
conditions characterized by a zero or negative gate–source
voltage (vgs), under which the MOSFET is ensured to remain
in the fully off-state.

Nevertheless, during the ON-state or the switching transi-
tions, Cds is also affected by the presence of the conductive
channel and the nonuniform electron distribution induced
by the gate–drain potential difference. This represents the
second influencing factor, which, to the best of the authors’
knowledge, has received limited attention in the literature for
both Si and SiC MOSFETs.

It is important to highlight that this effect is more pro-
nounced in SiC MOSFETs when compared to their Si coun-
terparts with similar power ratings. This is primarily due to
the higher gate-drive voltages and lower on-state resistance
of SiC devices, which, combined with their faster switching
capabilities, enhance the impact of this phenomenon on
transient simulation accuracy.

Given the aforementioned considerations regarding the
variation of Crss and its influence on the switching behavior,
a more accurate modeling approach becomes necessary. In
this context, the proposed method incorporates the voltage-
dependent nature of the reverse transfer capacitance (Crss),
as previously illustrated in Figure 3.

In light of these aspects and the associated variation of the
gate–source capacitance (Cgs) during switching events, an
enhanced modeling strategy is employed to improve the ac-
curacy of the transient characterization. This approach allows
for a better representation of the dynamic behavior of the
device, particularly under high-speed switching conditions.
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FIGURE 3. (a) Generic parasitic capacitance waveforms of a MOSFET and
(b) drain-to-source voltage variation during switching transitions.

The proposed implementation methodology consists of
determining the specific capacitances based on the drain-
to-source voltage corresponding to different subintervals of
the switching process. In this approach, a set of voltages
ranging from Vdd to Vds(on) is defined according to the
specific capacitance Crss. In Figure 3(b), each time segment
is associated with the voltage fall time ∆tfu(i). It is assumed
that these subintervals are sufficiently small, ensuring that
Crss remains approximately constant within each interval.
Consequently, the total voltage fall time tfu is obtained by
summing all subintervals ∆tfu(i).

To provide a clearer explanation of the method, the voltage
fall time is divided into n subintervals, requiring n + 1
discrete voltage levels vDS . The total transition time tfu
is then given by (3).

t3 = tfu =

n∑
i=1

Rg · Crss(i+1)

vDS(i+1) − vDS(i)

vdr(on) − vpl
. (3)

Similarly, the voltage rise time is obtained using (4):

t5 = tru =

n∑
i=1

Rg · Crss(i+1)

vDS(i+1) − vDS(i)

vpl − vdr(off)
. (4)

where i = 1, 2, 3, . . . , n.
The time intervals associated with the current during the

turn-on and turn-off phases of the MOSFET are determined
by (5) and (6), respectively.

tri = Rg · Ciss · ln
(

gfs · (vdr(on) − Vth)

gfs · (vdr(on) − Vth)− iD

)
(5)

tfi = Rg · Ciss · ln

(
vth + iD

gfs

vth

)
, (6)

Additionally, the energy losses can be computed using
(7), (8), and (9), allowing for the quantification of switching
losses in the device.

The switching energy during turn-on (Eon) is given by:

Eon = Etri + Etfu
=

1

2
· vDS · iD (tri + tfu) , (7)
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The switching energy during turn-off (Eoff ) is given by:

Eoff = Etru + Etfi =
1

2
vDS · iD (tru + tfi) , (8)

The total switching energy (Esw) is the sum of the turn-on
and turn-off energies:

Esw =
1

2
· vDS · iD (tri + tfu + tru + tfi) . (9)

The switching loss estimation method was implemented
based on the flowchart shown in Figure 4. Each step corre-
sponds to a specific stage in the algorithm:

1) System specifications are loaded, including device pa-
rameters and operating conditions.

2) The vDS vector is defined, ranging from Vds(on) to Vdd,
with a given step size Vstep.

3) The iteration index is initialized to i = 1.
4) For each voltage level in the vDS vector:

a) Check whether i > 0 to determine if there are levels
to process.

b) Compute the capacitance Crss as a function of the
input voltage.

c) Determine the switching intervals tfu and tru.
d) Increment the index i = i + 1 and repeat the loop

until all levels are covered.
5) Compute the switching transition times tri and tfi using

(5) and (6).
6) Estimate the energy losses Eon, Eoff , and total switch-

ing energy Esw using (7)–(9)

Initialize i =1

Increment (i = i + 1)End

Define vDS vector from Vds(on) to 
Vdd with a step Vstep

Compute
 tfi and tri

F = f(Crss,Vds(on)

Compute tfu, truCompute 
Eon, Eoff, Esw

System Specifications

NoYes
(i-1>0)  

(number of  vDS 
levels?)

FIGURE 4. Flowchart for switching loss calculation.

During intervals where the drain–source voltage undergoes
rapid transitions (i.e., high dv/dt) events), the intrinsic
capacitances are treated as nonlinear, bias-dependent quan-
tities. To capture this behavior, the switching transition
is discretized into small subintervals, and the capacitance
values are updated at each step based on curves obtained
from the datasheet. The reverse transfer capacitance Crss

(associated with Cgd is interpolated as a function of the

instantaneous vDS , while the input capacitance Ciss is used
to determine the effective Cgs. These discretized values are
then employed in the computation of the switching intervals
and the corresponding energy losses (Eon, Eoff , Esw),
ensuring that the nonlinear effects of the device capacitances
are properly reflected in the energy estimation.

B. Impact of Parametric variations
This subsection presents a relative sensitivity analysis aiming
to quantify the effect of variations in key input parameters
on the estimated switching losses.

The analytical method typically exhibits relative errors
under specific operating conditions. These inaccuracies are
primarily attributed to uncertainties and imprecisions in the
input parameters commonly extracted from manufacturer
datasheets. Therefore, assessing the influence of these param-
eters on the results generated by switching loss estimation
models is essential to validate the reliability and accuracy of
such predictions.

The considered parameter variations are constrained
within realistic bounds, as commonly encountered in prac-
tical applications. To illustrate the methodology, the SiC
MOSFET SCT3120AL [20] is used as the reference device
throughout this study.

The main evaluated parameters and their respective varia-
tion ranges are summarized in Table 1. As shown, the values
for transconductance, threshold voltage, and external gate
resistance are obtained from the device datasheet.

In this work, the threshold voltage (Vth) and transcon-
ductance (gfs) are treated as independent parameters. This
assumption was adopted as a practical alternative because
gfs depends on physical quantities such as mobility, ox-
ide capacitance, and device geometry, which are not fully
specified in manufacturer datasheets. The datasheet-provided
ranges and/or curves were used to represent parameter vari-
ability, allowing the Monte Carlo methodology to account for
device parameter spread while maintaining a feasible and
reproducible simulation procedure. Although Vth and gfs
are physically correlated, this correlation is not explicitly
modeled here. Nevertheless, the accuracy of the proposed
approach has been verified through experimental validation,
demonstrating that this simplification does not compromise
the reliability of the results.

TABLE 1. Evaluated parameters of the SiC MOSFET SCT3120AL

MOSFET
Range of the evaluated parameters

gfs [S] Vth [V] Rg(ext) [Ω]

SCT3120AL 0.5 – 5.6 2.7 – 5.6 10 – 15

Base Value 2.7 4.15 10

Each input parameter is normalized with respect to its base
value using the expression:
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Xnorm =
X

Xb
(10)

where X denotes the evaluated parameter, Xb represents
its base value, and Xnorm is the corresponding normalized
value.

The sensitivity analysis quantifies the impact that uncer-
tainties in the MOSFET’s input parameters have on the
estimated switching losses, Esw. The sensitivity of a given
parameter, denoted as Xsens, is computed using the following
expression:

Xsens =
(Emax − Emin)/Ebase

Xnorm(max) −Xnorm(min)

(11)

where Emax and Emin are the maximum and minimum
switching energy values observed within the parameter vari-
ation range, Xnorm(max) and Xnorm(min) are the correspond-
ing normalized extremes of the evaluated parameter, and
Ebase is the energy value associated with the base parameter.
Since the switching energies are normalized with respect
to Ebase, the resulting sensitivity Xsens is a dimensionless
quantity.

Figure 5 reveals that the most influential parameters are
the threshold voltage (Vth,sens = 0.49) and the external gate
resistance (Rg,sens = 0.75), while the transconductance ex-
hibits a considerably lower sensitivity of 0.03. Similar trends
were observed under different voltage and current conditions,
suggesting the robustness of the proposed analysis.
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FIGURE 5. Normalized sensitivity analysis of switching losses as a
function of parameter variations.

III. OVERVIEW OF THE MONTE CARLO METHOD
The Monte Carlo Method (MCM) provides approximate so-
lutions to various mathematical problems through statistical
sampling performed by a computer using random or pseudo-
random number generators, which constitute the core of the
method [21]. This approach is particularly applicable to both
deterministic problems and inherently stochastic ones.

One of the main advantages of MCMs is the elimination of
the need to derive complex differential equations describing
system behavior. Instead, the system is represented through
probability density functions (PDFs), allowing random sam-
pling based on these distributions. This process is itera-
tively executed, and the desired outcome is obtained using
statistical tools such as the mean, standard deviation, and
confidence intervals.

The Monte Carlo method fundamentally consists of the
following steps: specifying the distributions of input vari-
ables and their possible correlations; performing mathe-
matical operations on the sampled inputs to compute the
corresponding outputs; repeating the above steps N times to
generate output samples; and finally, calculating the mean,
variance, confidence intervals, and other statistical properties
of the resulting output distribution.

In this context, the characterization of the aforementioned
method involves applying the following five steps to approx-
imate the solution of problems involving uncertainties:

1) Model each uncertainty using an appropriate probability
density function;

2) Generate pseudo-random values according to the de-
fined probability density functions;

3) Compute the deterministic result by substituting the
uncertain variables with the generated values;

4) Repeat steps 2 and 3 until the desired number of
samples is obtained (it is noteworthy that increasing the
number of samples generally improves the approxima-
tion accuracy);

5) Use the collected sample results to obtain consistent
estimates of the problem’s solution.

A. Normal Probability Density Function and the Central
Limit Theorem
The normal distribution is one of the fundamental tools in
probability theory for describing random phenomena. Its sig-
nificance lies in the fact that many natural processes exhibit
characteristics consistent with this distribution, making it a
suitable model in a wide range of applications [22].

The probability density function of the normal distribution
is expressed as:

f(x) =
1√
2πσ

· e−(
1
2 )z

2

, z =

(
x− µ

σ

)
(12)

where z is the standardized variable related to the random
variable x, µ is the mean, and σ is the standard deviation
that quantifies data dispersion.

To illustrate the standard normal distribution, Figure 6
shows the probability density function with shading repre-
senting the probability intervals within ±1σ (68.26%), ±2σ
(95.45%), ±3σ (99.73%), and ±5σ (approximately 100%).
These shaded regions highlight the cumulative probability
for different standard deviations, providing insight into the
dispersion of values around the mean (µ = 0) for a normally
distributed variable.
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FIGURE 6. Illustration of the standard normal distribution highlighting the
probability intervals within ±1σ (68.26%), ±2σ (95.45%), ±3σ (99.73%),
and ±5σ (approximately 100%).

In this distribution, the most probable value of the variable
x is its mean µ. Moreover, as the value deviates from the
mean, its probability of occurrence progressively decreases.
This behavior can be quantitatively expressed as:

P (µ− σ < x < µ+ σ) ≈ 68.26%

P (µ− 2σ < x < µ+ 2σ) ≈ 95.45%

P (µ− 3σ < x < µ+ 3σ) ≈ 99.73%

P (µ− 5σ < x < µ+ 5σ) ≈ 100%.

(13)

An important property of the normal distribution is that,
regardless of the original distribution of a given random
variable, for a sufficiently large sample size, the distribution
of the sample means tends toward a normal distribution. This
phenomenon is justified by the Central Limit Theorem [23],
which forms the basis for using Gaussian models in a wide
range of engineering applications.

B. Non-sequential Monte Carlo Simulation
The Non-Sequential Monte Carlo Simulation (NSMCS) ap-
proach proposed in this work does not consider the chrono-
logical sequence of events within the analyzed system. In-
stead, NSMCS relies on random sampling of input variables
combined with the analysis of five key statistical parameters:
the test function, its estimator, the variance of the test
function, the variance of the estimator, and the convergence
coefficient of the method, denoted by β.

The test function, denoted by fT , characterizes the be-
havior of the system under analysis and is formally defined
as

fT : R → R. (14)

The corresponding estimator, which represents the sample
mean of the test function values over NS samples, is given

by

E(fT ) =
1

NS

NS∑
i=1

fT . (15)

The variance of the test function, used to quantify the spread
of the values around the mean, is computed as

V (fT ) =

∑NS

i=1

[
f2
T −NS · (E(fT ))

2
]

NS − 1
. (16)

From this, the variance of the estimator E(fT ) can be derived
as

V (E(fT )) =
V (fT )

NS
. (17)

Finally, the convergence coefficient β, which quantifies the
numerical stability and convergence behavior of the NSMCS
method, is defined as

β =

√
V (E(fT ))

E(fT )
. (18)

In the proposed model for evaluating switching losses in
power MOSFETs, the input parameters exhibit stochastic
behavior. This uncertainty makes the NSMCS method partic-
ularly suitable for estimating switching energy losses while
accounting for parameter variability.

Given the probabilistic nature of the variables involved
in the switching process, the application of Monte Carlo
techniques provides statistically meaningful estimates of
energy losses, while also capturing the intrinsic variability
of the system.

The next section presents the detailed implementation
of the proposed probabilistic methodology, highlighting the
modeling assumptions and simulation strategies adopted.

IV. PROBABILISTIC APPROACH TO SWITCHING LOSS
ESTIMATION
The probabilistic approach for switching loss estimation
builds upon the foundations discussed in Sections II and
III. Figure 7 presents the flowchart that summarizes the
implementation of the Monte Carlo-based switching loss
estimation strategy.

The following procedure outlines the Monte Carlo-based
methodology employed for estimating the switching losses
in MOSFETs, as illustrated in Figure 4.
STEP 1: Definition of the maximum number of draws

(NSmax ), the maximum tolerance for the conver-
gence coefficient (tol), and initialization of the
number of draws to zero (NS = 0);

STEP 2: Obtaining the Probability Density Functions of
normal distribution for each of the random vari-
ables (MOSFET parameters), followed by drawing
values from the generated Gaussian distributions;

STEP 3: Compute switching energies values Eon, Eoff , and
Esw (see Fig. 4);

STEP 4: Update the number of draws (NS = NS + 1);
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STEP 5: Calculate the estimates of the test functions E(fT )
as shown in (19);

Ẽ [FT (U)] =
1

NS
·
NS∑
i=1

FT (Ui) (19)

STEP 6: Compute the variances associated with the test
functions and the variances of the estimates, fol-
lowed by the calculation of the coefficient β in
(20);

β =

√
V
{
Ẽ [FT (U)]

}
Ẽ [FT (U)]

(20)

STEP 7: Evaluate the convergence of the method according
to the condition described in the decision block.

Generate Gaussian PDFs and draw initial 
samples

Compute Eon, Eoff  (see Fig. 4)

Update number of samples (Ns  = Ns +1) 
and recompute estimators

β <  tol
or

NS > NS(max) ?

End

No

Compute variances and the coefficient β  

Yes

Start

Define tol,  and 
Ns(max), initialize Ns

FIGURE 7. Flowchart representing the Monte Carlo-based switching loss
estimation procedure.

The random variables were selected based on the sen-
sitivity analysis presented in Section II, which identified
the gate resistance, transconductance, and threshold voltage
as the most influential parameters affecting switching loss

10−1 100 101

iD (A)

10−1

100

101

g f
s

(S
)

FIGURE 8. Transconductance curve of the SiC MOSFET SCT3120AL,
extracted from the device’s datasheet [20].

TABLE 2. Mean and standard deviation values for the selected random

variables.

MOSFET Variables Mean Standard Deviation

SCT3120AL

Rg 28 Ω 2.8 Ω

gfs Function of iD Function of iD

Vth 4.15 V 1.45 V

IRF840

Rg 10.6 1.06

gfs 4.9 0.49

Vth 3 1

estimates. The total gate resistance Rg was considered with
a variation range of 10%, adopting the tolerance range of
the external resistor. The choice of the transconductance
value was based on a 10% variation around the average
value obtained from the curve extracted from the device’s
datasheet, according to the desired temperature, as illustrated
in Figure 8. Finally, the variation of the Vth parameter was
adopted from the minimum and maximum values presented
in the device’s datasheet.

Table 2 shows the values of the means and standard
deviations associated with each of the random variables for
the analyzed devices. These values are important for the
generation of the Gaussian PDFs. It is worth noting that
the typical value of the threshold voltage was chosen as the
mean of the Gaussian PDF.

It is worth emphasizing that the high-level (Vdr(on))
and low-level (Vdr(off)) drive voltages were held constant
throughout the analysis, in order to isolate the impact of
parasitic elements on switching dynamics and energy dissi-
pation.

V. EXPERIMENTAL RESULTS AND DISCUSSION
To experimentally validate the proposed probabilistic ap-
proach, a double-pulse test circuit was implemented for
switching loss characterization in power MOSFETs. The
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experimental setup is shown in Fig. 9, where key components
are clearly identified in Table 3. The printed circuit board
includes a dedicated slot for the current probe, eliminating
the need for external wiring during measurements. A low-
recovery SiC diode (Ds) was selected to minimize its impact
on switching energy. Voltage waveforms vDS and vGS were
captured using 500 MHz passive probes, and the gate-drive
circuitry was digitally controlled by a field-programmable
gate array (FPGA). To minimize skew effects, a de-skew
procedure was applied to the oscilloscope inputs prior to
acquisition.

Input power

  supply

DC link capacitor  

DUT  

Ds  

Load 

inductor  

FIGURE 9. Experimental setup for DPT measurements.

TABLE 3. Key Parameters and Parasitic Values of the Double-Pulse Test

Circuit.

Section Parameter Value Parameter Value

Power circuit Vdd 100–300 V Idd 1–5 A

Gate drive circuit Vgg 18 V Vggl 0 V

Rg 28 Ω (incl. Rgint = 18 Ω)

Diode C3D16065A Rd (25°C) 35 mΩ VF 1.5 V

For the analysis and calculation of switching losses, the
signals vDS , vGS , and iD acquired by the oscilloscope
were stored and subsequently processed using MATLAB
routines on a personal computer. A dedicated function was
implemented to analyze the collected data for a given set of
samples and to extract the relevant information regarding the
device energy losses.

As an illustrative example, Fig. 10 presents the waveforms
of iD, vGS , and vDSfor the SCT3120AL MOSFET under
a 100V–4A operating condition. These waveforms closely
resemble the typical behavior presented in Fig. 2, thereby
confirming the consistency of the acquired measurements.

Based on these processed signals, both the analytical
model and the experimental results corresponding to the
dynamics of vDS , vGS , and iD during turn-on and turn-
off were employed to calculate the dissipated energy over
a short time interval. The instantaneous energy, Einst(i), is
obtained through integration of the instantaneous power, P ,
and its evaluation using the trapezoidal approximation over
p samples was originally presented in [12] and is adopted in
the present work.

In addition to the electrical characterization, the elec-
trothermal behavior was also investigated. All experiments
were conducted using a Peltier-based thermal control system,
following the procedure described in [13]. This system
ensures that the electrical parameters of the device under test
remain at the specified temperature conditions, e.g., similar
to those defined in the datasheet. Temperature control was
achieved using a DC voltage supply in combination with
an external monitoring thermocouple, allowing the device
junction temperature (Tjc) to be set at multiple levels.
Each measurement was performed under thermal steady-state
conditions to guarantee a stable junction temperature during
the double-pulse test.

Several MOSFET parameters exhibit temperature depen-
dence. In particular, Rds(on) and gfs present positive temper-
ature coefficients, while Vth exhibits a negative coefficient.
Although some datasheets provide the variation of these
parameters with temperature, this information is not always
available and may need to be experimentally determined.
Once the temperature-dependent expressions for gfs(Tjc),
Vth(Tjc), and Rds(on)(Tjc) are obtained, they can be in-
corporated into the Monte Carlo methodology to account
for parameter variability under specific thermal conditions,
enabling probabilistic switching-loss estimates at the desired
temperature.

The DPT measurements were performed at three bus
voltage levels (100V to 300V, in 100V increments) and
three load currents (1A, 2A, and 5A). For each operating
condition, the proposed method was applied to estimate the
switching energy distributions using the SMC-NC algorithm.

Fig. 11 illustrates a representative case, showing the
histograms of the switching energies fitted with Gaussian
probability density functions, characterized by their mean (µ)
and standard deviation (σ). The corresponding experimental
values are superimposed to allow direct comparison and to
assess the accuracy of the probabilistic estimates.

The first case analyzed, corresponding to an operating
condition of 300V and 1A, is detailed in Fig. 12 and Table 4.
Fig. 12 illustrates the estimated probability distributions
of the turn-on (Eon), turn-off (Eoff ) and total switching
energy (Esw) together with the experimental measurements
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 vDS  (25 V/div) 

 vGS (4.25V/div)

 iD (0.5A/div)

FIGURE 10. Drain current (iD), gate-to-source voltage (vGS ), and
drain-to-source voltage (vDS ) waveforms of the SCT3120AL MOSFET at
100 V–4 A.
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FIGURE 11. Switching energy estimation using SMC-NC and comparison
to experimental result.

indicated by magenta lines. Table 4 provides a quantitative
summary, reporting the mean values and standard deviations
of Eon, Eoff and Esw under this operating condition. The
close agreement between the probabilistic estimates and
the experimental results demonstrates the effectiveness and
reliability of the proposed Monte Carlo-based approach for
switching loss evaluation.

TABLE 4. Comparison Between Experimental and Probabilistic Estimates

at 300 V / 1 A

Condition Method Eon (µJ) Eoff (µJ) Esw (µJ)

300 V / 1 A Experimental 18.15 5.74 23.89
Probabilistic (µ) 17.75 5.35 23.10
Prob. (µ ± σ) 17.75 ± 1.25 5.35 ± 0.32 23.10 ± 1.56

To assess the convergence characteristics of the SMC-
NC method, Fig. 13 shows the evolution of the estimated
switching energy as a function of the number of Monte Carlo
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FIGURE 12. Estimated distributions of Eon, Eoff, and Esw using the
SMC-NC method at 300 V / 1 A.

samples. Results indicate that approximately 300 samples are
sufficient for convergence under this operating condition.
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FIGURE 13. Convergence of switching energy estimation (300 V / 1 A)
with Monte Carlo sample size.

The proposed method was evaluated across 9 operating
conditions for the SCT3120AL, covering all voltage and
current combinations. The results were compared to two
classical estimation methods: the datasheet-based approach
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TABLE 5. Comparison between experimental and estimated switching

energies for the SCT3120AL. Values in parentheses denote relative per-

centage errors.

Condition Exp. Proposed [19] [24] [13]
(V-I) [µJ] [µJ (%)] [µJ (%)] [µJ (%)] [µJ (%)]

100–1 3.67 4.06 (10.6) 6.96 (89.7) 3.43 (6.5) 3.73 (1.63)
100–2 8.76 8.16 (6.9) 12.70 (45.0) 5.61 (36.0) 7.25 (-17.23)
100–5 19.58 21.60 (10.3) 32.30 (65.0) 14.53 (25.8) 15.87 (-18.96)

200–1 11.30 9.62 (14.9) 17.82 (57.7) 16.27 (44.0) 15.41 (36.36)
200–2 22.19 23.75 (7.0) 34.85 (57.1) 23.03 (3.8) 22.89 (3.17)
200–5 52.02 47.63 (8.4) 81.32 (56.3) 44.39 (14.7) 41.52 (-20.18)

by Guo [19], the analytical model by Ahmed [24], and
improved method [13]. As presented in Table 5, the proba-
bilistic method outperformed the deterministic approaches
in all scenarios. In all 9 analyzed cases, the stochastic
method produced results that were consistently closer to
the experimentally obtained values. The proposed probabilis-
tic approach is particularly relevant during the pre-design
stage of power converters, where engineers must define
thermal margins and select components without access to
exhaustive experimental data. Unlike deterministic methods,
which provide a single nominal value, the Monte Carlo-based
methodology delivers a statistical distribution of switching
losses, reflecting the variability of key device parameters
such as threshold voltage, transconductance, and gate resis-
tance. This information enables designers to anticipate worst-
case scenarios and optimize heat sink sizing, gate driver
design, and protection strategies with greater confidence. The
simulation framework incorporates a discretized capacitance
model to account for the nonlinear behavior of Ciss, Coss,
and Crss during high dv/dt transitions, ensuring accurate
estimation of switching intervals and energy dissipation.
Although the method requires a moderate computational
effort (approximately 20 minutes per operating point), its
ability to capture parameter uncertainty and nonlinear ca-
pacitance effects results in predictions that closely match
experimental measurements, offering a more robust founda-
tion for early-stage design decisions. Despite its relatively
higher computational time when compared to analytical or
deterministic methods, it demonstrates a higher degree of
accuracy, making it suitable not only for pre-design analysis
but also for use in optimization algorithms, particularly in the
final design phases (>TRL-6) of power electronic converters
for industrial applications.

To extend the proposed probabilistic method, this study
also considered a different MOSFET technology, namely
the IRF840. For the implementation of the Gaussian dis-
tributions, the parameter data described in Table 2 were
used. It is important to highlight that, since the MOSFET
does not provide a transconductance curve as a function of
current variation, only the minimum and maximum limits
were considered to generate the Gaussian PDF related to
this parameter. A total of six test conditions were analyzed

TABLE 6. Comparison between experimental and estimated switching

energies for the IRF840. Values in parentheses denote percentage errors.

Condition Exp. Proposed [19] [24] [13]
(V–I) [µJ] [µJ (%)] [µJ (%)] [µJ (%)] [µJ (%)]

100–1 3.20 3.53 (10.31) 2.51 (–21.56) 2.61 (–18.44) 2.81 (−12.19)
100–2 4.85 5.56 (14.64) 12.89 (165.77) 6.56 (35.26) 6.12 (26.19)
100–6 22.10 23.28 (5.34) 38.67 (75.05) 32.69 (47.88) 27.34 (23.71)

200–1 8.95 9.11 (1.79) 9.54 (6.59) 11.94 (33.40) 10.56 (17.99)
200–2 13.58 17.12 (26.06) 20.42 (50.34) 17.70 (30.37) 17.61 (29.68)
200–6 44.19 45.29 (2.49) 82.10 (85.78) 71.74 (62.31) 67.57 (52.91)

(two voltage levels and three current levels), as illustrated
in Table 6. Once again, it is observed that the probabilistic
method yields the closest estimation of the switching losses
when compared to the experimental results obtained from
the double-pulse test circuit.

It is important to note that analytical methods provide
a straightforward mechanism to obtain an initial estima-
tion of switching losses with a very short convergence
time—typically less than 1minute per operating point when
executed on a computer equipped with an Intel Core i7
processor (2GHz, 32GB RAM). In contrast, the probabilistic
method proposed in this work requires an average simulation
time of approximately 20minutes per operating point under
the same hardware conditions. This additional computational
effort is primarily due to the iterative nature of the Monte
Carlo simulation, which involves repeated sampling of key
parameters (Vth , gfs , Rg) and recalculation of switch-
ing intervals and energy losses (Eon, Eoff , Esw) until the
convergence criterion ( β < 0.01) is satisfied. Despite this
higher computational cost, the proposed approach offers a
significant advantage in terms of accuracy and robustness,
as it captures parameter variability and nonlinear capacitance
effects that deterministic methods neglect. Consequently, the
method is particularly suitable for design optimization and
reliability assessment, where accurate prediction of switch-
ing losses is critical.

The results presented in this section demonstrate the
effectiveness of the proposed Monte Carlo methodology in
capturing the impact of parameter variability on the switch-
ing losses of SiC and Si MOSFETs. While the methodology
has not been explicitly applied to CoolMOS and GaN devices
in this study, its general formulation allows for straightfor-
ward extension to these technologies. This is particularly
significant, as both superjunction and GaN devices exhibit
a strong sensitivity of their switching behavior to device
parameter variations, suggesting that the proposed approach
can also provide valuable insights for the analysis and design
of these families of devices.

VI. CONCLUSION
This paper proposed a probabilistic switching loss estimation
method for Si and SIC MOSFETs based on the Monte
Carlo approach, using only datasheet parameters as input.
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A sensitivity analysis was performed to identify the most
influential parameters contributing to inaccuracies in con-
ventional estimation techniques.

The proposed model integrates a switching loss estimation
procedure that accounts for the nonlinear behavior of the in-
trinsic capacitances of the MOSFETs with a Non-Sequential
Monte Carlo Simulation approach, which abstracts from the
chronological order of events in the system under analysis.
This non-sequential strategy enables a flexible and effi-
cient assessment framework, particularly suitable for systems
characterized by time-independent random variables.

To evaluate the accuracy of the proposed methodology,
simulations were conducted under various voltage and cur-
rent conditions. The estimated losses were compared with
experimental results obtained from double-pulse test mea-
surements, as well as with three analytical, deterministic
computation methods reported in the literature.

The analytical methods presented in [24] and their im-
proved version [13] provide results close to the experimental
values. However, they do not exhibit a consistent error
pattern: in some cases, the estimated values closely match
the expected results, while in others they differ significantly.
Although these methods converge relatively quickly, their
implementation is complex, requiring the solution of many
differential equations and the import of capacitance curves
from digitization software. While the method in [19] is
straightforward to implement, it tends to overestimate losses
and also lacks a consistent error pattern. The proposed Monte
Carlo-based approach considers the parametric variation
of device parameters according to their sensitivity, using
values derived directly from the manufacturer datasheets.
This method yields a range of results that more consistently
aligns with experimental data, making it suitable for power
converter design and optimization. A potential drawback is
the relatively long simulation time required for convergence,
though such simulations are typically required only to be run
a few times, at specific design stages.

Overall, the proposed probabilistic method demonstrated
a significant improvement in accuracy compared to conven-
tional deterministic approaches. A key limitation remains the
increased computational effort needed for convergence, with
simulation times reaching tens of minutes (less than an hour),
depending on the complexity of the analyzed case.
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