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ABSTRACT The most common motor used for industrial, residential and commercial applications is the
induction motor (three or single phase). This motor is very reliable, but faults still may occur. The present
paper focuses on the diagnosis of induction motor faults based on its temperature and vibration behaviors
on steady-state operation. The proposed method is based on the Extended Park Transform, enabling sensor
fusion which reduces the amount of data required for fault identification to 1/3 and allows the usage of a
shallow artificial neural network. To validate the proposed method, experiments have been carried using
a single phase induction motor operating under normal and fault conditions (short-circuit between main
winding turns, auxiliary turns, main-auxiliary windings and with contaminated bearing lubrication). The
results proves the efficacy of the proposed method, which has reached an accuracy over 99.5% in the
process of fault identification using low cost sensors/equipment.
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I. INTRODUCTION
Induction motors are used in the most variety of applications
(electrical vehicles, industrial, commercial or residential
applications) due to their low cost, reliability, robustness
and high efficiency [1]–[3]. These motors represent a great
percentage of the power consumption in developed coun-
tries [4], showing the great importance that they have in the
production process. As mentioned, they are very reliable,
although still susceptible to faults due to ageing or even
overload conditions. These faults can result in great damage
to the industrial process, causing production losses, thus their
quick identification, diagnosis and repair is very important
and object of many researches around the world [5]–[12].

Since faults in induction machines may result in loss
of production, the maintenance sector is vital to prevent
these faults or fix them once they occur [13]–[15]. The
researches on this topic are constantly under development
by many researchers and companies. The predictive main-
tenance considers continuous monitoring of the machine to
predict when it is going to fault. This type of maintenance
may be costly, but reduces the amount of interventions and
process downtime.

According to the surveys carried out by many researches,
papers and even surveys conducted by IEEE and EPRI
(Electric Power Research Institute) [16]–[20], faults in in-
duction motors mostly occur in the bearings (45-50%),
followed by winding faults (35-45%) and rotor faults (10%,
approximately).

Non-intrusive techniques that permit quick fault identi-
fication in electrical machines are the main focus of all
researches since it is possible to evaluate any machine
that is already operating. Within the various non-intrusive
techniques, two of them can be employed with low-cost
sensors but with good accuracy. These two techniques are
the temperature and vibration monitoring. These tools are
suitable for fault identification in induction motors since
most faults cause temperature and vibration rising [7], [21].

Temperature monitoring with non-intrusive sensors alone
is insufficient for precise fault identification in induction ma-
chines because faults like winding short circuits or bearing
issues cause similar temperature rises. However, combining
temperature data with other non-intrusive methods, such as
vibration analysis, can enhance fault diagnosis when used as
a weighting factor in systems like Artificial Neural Networks,
Fuzzy Logic, Deep Learning, or decision trees.

Vibration analysis using a 3 DoF accelerometer is a
widely researched, non-intrusive method attractive to in-
dustry. Key challenges include implementing low-cost yet
accurate sensors, developing sensorless vibration prediction,
identifying single and multiple faults from vibration patterns,
and reducing input data to lower computational effort and
enable fast fault detection.

When the vibration sensors are placed on the bearing cap,
the rotor eccentricities, bearing faults, bent shaft and other
rotor related fault can be easily identified. On the other
hand, when the sensors are placed on the stator the fault
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identification process can also identify winding faults, phase
unbalance and etc [16], [21], [22].

Online fault diagnosis is increasingly important in the con-
text of IoT and Industry 4.0. It requires local data collection
and cloud-based systems (local or remote) with powerful
computing to quickly process large data volumes. Non-
intrusive, low-cost sensors can be deployed on all motors in
an industrial plant to predict and prevent failures. However,
more sensors generate more data traffic, making it essential
to reduce the amount of data collected and transmitted.

This paper presents a new method for fault identifica-
tion in induction motors that reduces the number of input
variables to minimize data traffic and computational effort,
while maintaining accuracy. The approach uses sensor fusion
based on the Extended Park Transform (dqx) combined with
temperature monitoring, processed by an Artificial Neural
Network (ANN).

Experimental tests were conducted on a 1/4 hp single-
phase induction motor, collecting temperature data from
three sensors and vibration data from a low-cost 3 DoF ac-
celerometer. Various motor conditions were tested, including
healthy operation, winding short-circuits, and bearing faults.
A thermographic camera was used to calibrate temperature
measurements. Although tested on a single-phase motor, the
method can be adapted to other machines by retraining the
ANN. The main goal is to reduce transmitted sensor data
while preserving high fault detection accuracy.

II. FAULT TYPES, TEMPERATURE AND FREQUENCY
SPECTRUM
The faults in electrical machines can be divided in two main
types: electrical and mechanical. A mechanical fault may
not necessarily lead to an electrical fault, although it can
be sensed in the windings (flux-linkage, induced voltage,
induced and phase currents) or by means of the temperature
rising around the failure. Examples of mechanical faults are
rotor eccentricity, bent shaft and bearing faults. Yet, an elec-
trical fault, according to its gravity, leads to a temperature
rising, mechanical failure or, at least, reinforce an existing
failure and cause unbalance, vibration and, consequently,
wear and tear in the bearings and bearings cap.

As mentioned, the faults in the bearings are the most
common faults in electrical machines, corresponding to 50%
of all faults, approximately. This type of faults can be sensed
during the vibration analysis at frequencies dependent on the
bearing geometry and bearing and motor running speed [17],
[20], [21]. Eccentricities or unbalances in the rotor causes
high intensity vibrations along the radial directions with
frequency equal to the shaft rotating one. The presence of
this fault can be noticed via the vibration analysis when a
peak at the shaft rotating frequency is present [17], [21].
Now, if the rotor is bent, the frequencies equal to one, two
and three times the rotating frequency, with amplitudes in
descending order, indicates the presence of such fault [20].

When it comes to electrical faults in induction motors,
which corresponds to 45% of all faults, approximately, they
can be divided in stator and rotor faults. Examples of stator
faults are phase-to-phase fault or phase unbalance in three
phase motors, phase-to-earth fault or inter-turn fault for both
three and single phase motors and main winding to auxiliary
winding, auxiliary winding to auxiliary winding or capacitor
failure (short-circuited or open-circuited) for single phase
motors. Broken bars or broken end-ring are examples of rotor
faults in squirrel-cage rotors, whereas inter-turn faults are
examples of faults in wound-rotors.

Inter-turn short-circuits in the main or auxiliary windings
of single phase motors or auxlliary-main winding short-
circuit represent a condition similar to that caused by unbal-
anced phase currents in three phase motors. This is due to the
resulting unbalance distribution of electromagnetic forces.
Substantial spectrum around twice the supply frequency
(2 × fS) and around the rotating speed frequency (fω)
and its multiples indicate the presence of these faults [20].
Moreover, other harmonics can also be noticed depending
on the machine topology (three phase, single phase, poles
number) and winding distribution.

Another example of how a fault can affect the vibration
and how can be detected is related to the broken bars fault in
squirrel-cage rotors. This fault affects negatively the rotating
field created by the rotor, thus resulting in unbalanced distri-
bution of electromagnetic forces. This fault can be detected
when the vibration frequency spectra presents reasonable
component values at one and two times the rotating speed
frequency (1×fω, 2×fω) and frequencies around the rotor-
bar passing frequency [20].

III. PROPOSED METHOD AND THE FAULT
IDENTIFICATION SYSTEM
The proposed method is suitable for 3 DoF vibration sensors
(accelerometer) placed on the surface of the stator with one
of its axis aligned with the rotor shaft as will be shown in
the experimental setup.

The proposed method, referred here as to Extended Vibra-
tion Vector (EVV), is based on the Extended Park Transform
(dqx) [23], [24]. This way, it is possible to perform a
vibration sensors fusion since they are already in an or-
thogonal coordinate system and look into only one resultant
vibration signal (Extended Vibration Vector) that carries the
information of the machine condition. This resultant vector
will have its amplitude and phase angle changed according
to the vibration present in the X, Y and/or Z coordinates.

This sensor fusion technique will allow the reduction of
input data as well as the reduction of data transferred through
the connection to the online Fault Identification System.

The basis of the dqx Transform has been developed for
balanced systems only, this way, in the proposed EVV, a
consideration must be followed: one of the accelerometers
axis must be neglected. The neglected axis must have a lower
contribution on fault identification process, i.e., must carry
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no substantial information related to the desired fault type.
Otherwise, the fault identification process may fail.

Considering the background of numerous research in
literature and the state of art, as in [5]–[21], the most
suitable axis to be neglected is the axial machine’s axis
since monitoring this axis vibration is specially relevant
for bearing faults type and does not contain a remarkable
harmonic content related to winding faults or rotor faults.

Bearing in mind the aforementioned considerations, the
sensor fusion is performed by means of (1):[

V0

VR

]
=

[
cos(θv) sin(θv)
− sin(θv) cos(θv)

] [
VA

VB

]
(1)

where VA and VB are the two selected vibration axis that
are orthogonal to each other; VR is the resultant EVV and
is equal to

√
V 2
A + V 2

B ; V0 will always be zero; and θv is
the vibration resultant orientation, i.e., where the EVV is
pointing in the plane formed by VA and VB as expressed in
(2) and illustrated in Fig. 1.

θv = tan−1

(
−VA

VB

)
(2)

VA

VB

VR
V0

�v

FIGURE 1. EVV coordinates

This is equivalent to aligning the transformation axis
with the instantaneous vector in the original VA-VB plane,
similarly to the classical Park Transform but with a time-
varying angle defined by the measured signals themselves
rather than by a rotor or synchronous reference frame.
According to the expression for θv, this angle corresponds
to the angle between the vibration vectors VA and VR ,
as illustrated in Fig. 1. As the transformation is performed
using , the V0 value will always be zero as an intrinsic
property of this transformation as well as in the extended
park transformation [23], [24].

The frequencies present in VA and VB signals will not be
lost or even affected by the transformation, but they will be
merged according to θv. Thus, the frequency spectrum of
VR will be different from VA and VB spectrum, having an
average value and accounting for all frequencies present in
VA and VB . To support this, consider a complex signal S(t)
defined as (3) in the time domain t.

S(t) = VB(t)− jVA(t) =
∑
k

ske
jωkt (3)

where sk and ωk are complex coefficients for phase and
amplitude of VA and VB .

Now, V 2
R can be computed by means of (4).

V 2
R(t) = V 2

A(t) + V 2
B(t) = S(t)S∗(t) (4)

in which S∗(t) is the complex conjugate of S(t).
Finally, VR can be rewritten as shown in (5).

VR =

(∑
k

ske
jωkt

)(∑
m

s∗me−jωmt

)

VR =
∑
k

∑
m

sks
∗
mej(ωk−ωm)t (5)

From (5), it is clear that VR(t) contain DC terms (k = m),
proportional to the energy of each spectral line |sk|2, which
never cancels. Also, it contains AC terms (k ̸= m) with
components at frequencies |ωk − ωm|.

Because the modulus operation is nonlinear, VR(t) also
contains harmonics and sum-frequency components derived
from these terms. Therefore, identical frequency components
present in both VA and VB do not cancel out globally; their
energy is preserved in the DC and AC terms of V 2

R(t), and
remains present in VR(t).

Furthermore, the mean (DC) component of VR(t), i.e.,
|sk|2 reflects the total vibrational energy level captured by
both VA and VB . So the mean power of VR corresponds
to the sum of the powers of all spectral lines from both
channels. This is a compact indicator of steady mechanical
offsets, continuous unbalance, preload, or constant-contact
rubbing. Removing the mean value (DC) would discard
valuable diagnostic information.

In practice, the mean value (DC) is estimated over time
windows covering multiple machine cycles (or via recursive
averaging with a forgetting factor) after removing sensor
bias. Subsequently, V 2

R is computed (implicitly) as a direct
measure of mean vibrational power. Including these quanti-
ties as part of the feature set improved ANN classification
accuracy in our experiments.

The next step consists of submiting VR to a bandpass
filter and select the harmonic components that contribute
substantially to the identification process. This step will be
further detailed in the results and discussion section since
it will be based on empirical results. It is certain that the
mean value must be preserved, as it is another characteristic
of VR.

After the filtering process, the filtered signal, referred here
as to V ∗

R , must be submitted to a Discrete-Fourier Transform
(DFT), converting it from time-domain to frequency-domain.
The main harmonic orders will be submitted to the ANN
along with the temperature signal. It is worth mentioning
that the temperature monitoring has the purpose of being a
weighting factor for fault identification.
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FIGURE 2. Proposed method flowchart.

The usage of one or more temperature sensors and where
they should be placed in the motor will be discussed and
evaluated in the results and discussions section.

The flowchart that summarizes the proposed method is
found in Fig. 2.

IV. TEST BENCH AND EXPERIMENTAL PROCEDURE
The test bench, the sensors (temperature and acellerometer)
and the proposed experimental procedure are detailed in this
section. To validate the proposed method, several tests have
been performed on a single-phase induction motor under
healthy condition and multi-faulty conditions. This motor
has its parameters detailed in Table 1.

TABLE 1. Machine Parameters

Parameter Value

Power [kW (HP)] 0.18 (0.25)
Pole number 4
Frequency [Hz] 60
Rated voltage [V] 127/220
Rated current [A] 6.75/2.90
Startup current [A] 30.4/13.1
Rated speed [rpm] 1750
Rated slip [%] 2.78

A data acquisition system has been used with four NTC
sensors for monitoring the motor and environment tem-
perature behavior. The data acquisition system consists of
an ATmega328 micro controller, attached to an Arduino
Nano card transmitting the temperature measurement data
via serial. The data collections are then treated and plotted
in graphic format according to scheduled time intervals.

Temperature sensors (NTC) have been attached to three
strategic points in the body of the motor (Tc1, Tc2 and Tc3).
Tc1 is attached to the enclosure, whereas Tc2 to the frontal
bearing and Tc3 to the end bracket. Another sensor has
been responsible for measuring the environment temperature
(Tc4) in order to calibrate the temperature measured by the
other three sensors. See Fig. 3. For comparison purposes,
thermographic monitoring has been carried out with a ther-
mographic camera CIR FLIR SYSTEMS ®.

(a) (b)

(c)

FIGURE 3. Thermocouples allocation. (a) Tc1 (b) Tc2 (c) Tc3.

A low-cost 3 DoF accelerometer MPU6050 has been used
for vibration data collection. Its range is ±2g, ±4g, ±8g and
±16g and it has been placed on top of the motor’s stator as
illustrated in Fig. 4 as well as the sensor coordinates. The
vibration data is collected, applied to EVV for sensor fusion
and then transmitted to a PC where the Fault Identification
System based on ANN will filter, process the data and
classify the current situation according to the previously
trained/learned conditions.

FIGURE 4. Sensor placed on stator and its coordinates.

An experimental bench has been assembled, as illustrated
in Fig. 5. It is equipped with an emergency button for safety
reasons during short-circuit conditions. The load machine
is a Permanent Magnet Synchronous Generator (PMSG)
connected to a resistive load.

First, for future data comparison and to train the ANN, a
healthy motor operating under four different load conditions
has been tested: no-load; 50%; 80% and 100% of the rated
power.

During short-circuit tests, an intermittent operating con-
dition has been emulated. The intention is to reproduce
the functioning of machines that operate in a sequence of
identical cycles. These cycles are equivalent to startup, a
period of operation with constant load and a standby period.
For the contaminated bearing lubrication test, the motor
has been also operated and tested under four different load
conditions: no-load; 50%; 80% and 100% of the rated power.
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Although the intermittent operating condition has been
considered and the vibration and temperature data has been
logged during all the experiment, only the data acquired
in steady state operating condition has been used to train
the ANN. Therefore, this paper does not deal with fault
identification during transient/non-stationary conditions.

FIGURE 5. Experimental bench

A. SHORT-CIRCUIT TESTS
The most common types of short-circuit in single phase
induction motor have been tested. The distribution of single
phase induction motor’s windings and the points available for
short-circuit tripping can be seen in the schematic diagram
illustrated in Fig. 6.

FIGURE 6. Schematic diagram of the motor auxiliary and main windings

The emulated short-circuits conditions and the points of
the winding turns connected are listed below:

1) Turn-to-turn short-circuit in the auxiliary winding
(Aux-Aux Fault): connections between the Aux 1,
Aux 2 and Aux 3 points available along the auxiliary
winding.

2) Short-circuit between auxiliary and main windings
(Aux-Main Fault): connections were made between
points 2, Aux 1, Aux 2 and Aux 3 along the main
and auxiliary windings.

3) Turn-to-turn short-circuit in the main winding (Main-
Main Fault): connections have been made between
points T34 A and T34 1/2 available along the main
winding.

B. CONTAMINATED BEARING LUBRICATION TEST
Experiments have been carried out to emulate the condition
of contaminated bearing lubrication (Bearing Fault). The
entrance of foreign bodies in the bearing is possible due
to damage in the bearing shield/seal. This damage is caused
by impact or loosening during long working terms. In this
article, the bearing shield/seal has been broken and the
lubrication has been contaminated with thin sand grains.
This emulates the situation of contamination by dirt par-
ticles present in industrial environment (Fig. 7), increasing
the friction torque and the vibration. In order to measure
and understand the level of contamination, the temperature
characteristic of the motor operating coupled to the load
and under normal conditions and with contaminated and
non contaminated bearing have been acquired and compared.
This way, it is possible to determine if the machine under
investigation is occurred of bearing faults.

(a) (b)

FIGURE 7. Motor bearing. (a) Healthy bearing. (b) Contaminated bearing.

V. RESULTS AND DISCUSSIONS
This section presents the results obtained with the experi-
ments and the discussions regarding the implementation of
the proposed method.

The first point to be discussed is related to the constraint of
the proposed method that uses only two of three accelerom-
eters axis. As mentioned, the neglected axis must have no
substantial contribution on fault identification as well as in
the description of the machine vibration behavior. For the
sensor coordinates considered in all tests performed during
this research, as illustrated in Fig. 4, the accelerometer axis
neglected is the Y-axis since the vibration collected in its
direction is considerably lower, when compared to the X-
and Z-axis, for the fault conditions tested. Maybe, for fault
conditions different of those observed and tested in this
research, the Y-axis may have a substantial information that
must be considered.

To illustrate how Y-axis behaves during a fault condition
and compare it to X- and Z-axis and justify why it has been
neglected, the Fig. 8 shows the data collected for X-, Y- and
Z-axis. For all fault conditions tested during this research, Y-
axis vibration data presented a similar aspect of Fig. 8 when
compared to X- an Z-axis, showing no relevant contribution
for data analysis.
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FIGURE 8. Comparison of X-, Y- and Z-axis vibration data under
main-winding fault condition. (a) Time-domain data of X-, Y- and Z-axis.
(b) Frequency spectrum of X-, Y- and Z-axis data.

Next, the selected X- and Z- vibration axis are applied
to (1) and (2) in order to obtain the VR, the resultant
EVV. For sake of clarity, the X- and Z- vibration axis
are VA and VB , respectively, in (1) and (2). It is found
in Figs. 10 and 11, one result of VR in its time-domain
and frequency-domain, respectively, for each kind of fault
considered in this paper. As can be noticed, all VR have
an average value and a different harmonic content due to
the related fault. Therefore, it is possible to select the most
important/relevant frequencies that will be applied to the
ANN for fault identification.

To cover all interested faults, the selected frequencies are
0Hz (DC component of DFT), 17Hz, 21Hz, 29Hz, 46Hz,
120Hz and 140Hz. These frequencies are highlighted in Fig.
11 by the red vertical lines surrounding them. Furthermore,
these frequencies have a relevant value that changes accord-
ing to the fault and load condition.

The chosen frequencies will compose the input vector
of the ANN along with the temperature acquired by each
thermocouples (TC).

Since this paper is focused in low-cost systems as the
MPU6050, the number of TCs and where they are placed is
one of the interesting variable that is considered. This way,
although four thermocouples have been used, the TC4 that
acquires the environment temperature will be neglected in the
fault identification process since this temperature will vary
according to the place where the motor is installed and in the
presented case it has been used to calibrate the system. With
three TCs (Tc1,2,3), the input vector can be composed of the
seven selected frequencies in addition to one, two or three
temperature signals. Therefore, the resulting combination
yields seven different input vector strategies to the fault
identification system, as listed in Table 2. For comparison
purpose, an additional input vector considering only the V ∗

R

has been tested.

TABLE 2. Input vectors

Input Vector Vector Length

V ∗
R 7

V ∗
R + Tc1 8

V ∗
R + Tc2 8

V ∗
R + Tc3 8

V ∗
R + Tc1,2,3 10

V ∗
R + Tc1,2 9

V ∗
R + Tc1,3 9

V ∗
R + Tc2,3 9

Although the length of the input vector vary depending
on the number of TCs considered, the core of the fault
identification system is based on a shallow ANN with 1
hidden layer with 10 neurons, and the output of this system
is as described in Table 3, being composed of 5 outputs that
classify motor condition.

The choice of a shallow ANN lies on the fact that with
the reduced number of input parameters there is no need for
a deep ANN or deep learning tool as can be found in many
other researches published [19], [25], [26]. This reduction in
the number of input parameters has been achieved thanks to
the proposed method which, firstly, reduced the 3 vectors into
2 vector, by neglecting the Y-axis contribution, then reduced
the 2 remains vectors into 1 vector, namely VR, and finally,
reducing it to its main harmonic components, V ∗

R .
If it is considered that X-, Y- and Z-axis have 151

harmonic components (from DC to 150Hz), and if they were
reduced to their main harmonic components, which in most
case will result in more than 7 components each one [27],
it can be stated that the proposed method presented in this
paper would result in a reduction of at least 2/3 of the input
parameters. As a consequence, a shallow ANN can be used.

Another novelty that must be highlighted is that there is
no need of evaluating a set of features or a set of statistical
features (named: Mean value (µ); Standard deviation (σ);
Skewness; Kurtosis; Mean squared value (V 2

R); Mean bearing
temperature, etc.) for the signals as employed in some
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approaches presented in the literature [19], [28], [29]. The
absence of this need makes the proprosed method simpler
than others and, as will be further discussed, keeps high
level of accuracy during the fault identification process.

All this process helps not only in the reduction of the
input parameters and in the ANN hidden layer size, but
also in reducing the computational effort needed to solve
the problem.

Moreover, the reduction in the data transmitted from the
local low-cost device (that contains the accelerometer and
thermocouples) is achieved if this device can at least apply
(1) and (2), which can be considered a very simple task for
any embedded micro controller.

Therefore, in order to summarize the advantages of the
proposed method, a short list is presented below.

• Compactness – combines two vibration channels and
one temperature signal into a small, information-rich
vector.

• Complementarity – time-domain statistics capture
global behavior and impulsive events, while spectral
amplitudes capture specific fault-related orders, and
temperature adds operational context.

• Robustness – the combination increases resilience to
noise, load changes, and transients.

• Generality – features are not machine-specific, enabling
adaptation to other rotating machinery with minimal
changes.

• Low computational cost – features are inexpensive to
compute, enabling real-time deployment in embedded
systems.

TABLE 3. ANN Classification Code

Condition Code

Aux-Aux Fault 10000
Aux-Main Fault 01000
Main-Main Fault 00100
Bearing Fault 00010
Healthy Motor 00001

The training, validation and test procedures of the ANN
have been carried out with a total of 728 samples (70% for
training, 15% for validation and 15% for testing).

The accuracy of each trained ANN according to the input
vectors is shown in Table 4. The corresponding confusion
matrix can be depicted in Fig. 9.As can be noticed, if the
input vector is composed only of V ∗

R , a very high accuracy
ratio can be achieved as well as the lowest cost system, since
it will be comprised only of the 3 DoF accelerometer and
the micro controller. On the other hand, if the temperature
measurement of at least one thermocouple is taken into
account, this accuracy increases and can achieve 100%.

The reason why the input vectors comprised of V ∗
R+Tc2,

V ∗
R+Tc2,3 and V ∗

R+Tc1,2,3 have achieved the highest preci-
sion is due to the difficulty of defining the motor condition
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FIGURE 9. Confusion Matrix for the proposed ANN

when the only fault present in the motor is in the front bear-
ing. As can be observed in Figs. 10 and 11, the contaminated
bearing fault has a low overall contribution in the chosen
frequencies and could cause the ANN to misunderstand it as
a healthy motor under low load condition.

Therefore, if the contaminated bearing fault condition was
tested for the end bracket, it could be stated that the Tc3
would have a greater importance as an input parameter for
the fault identification system.

As a conclusion, the best combination for monitoring
the motor condition is V ∗

R + Tc2,3. This way, it would
be possible to identify both, front bearing and end bracket
failures as well as any one of the proposed winding faults
(Aux-Aux Fault, Aux-Main Fault, Main-Main Fault).

TABLE 4. Results Accuracy

Input Vector Accuracy

V ∗
R 99.5 %

V ∗
R + Tc1 99.7 %

V ∗
R + Tc2 100 %

V ∗
R + Tc3 99.8 %

V ∗
R + Tc1,2,3 100 %

V ∗
R + Tc1,2 99.8 %

V ∗
R + Tc1,3 99.7 %

V ∗
R + Tc2,3 100 %
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FIGURE 10. Time-domain VR vector signal for each fault. From top to the
bottom: Auxiliary-to-Auxiliary winding fault, Auxiliary-to-Main winding
fault, Main-to-Main winding fault, Contaminated Bearing (no-load) and
Healthy motor(Full load)

VI. CONCLUSION
Faults in induction motors may lead to severe losses in the
industrial process. Thus, when a fault occurs, its quick iden-
tification and repair is vital. The present paper has proposed
a method to identify the type of the faults considering the
motor temperature and vibration analysis by means of a
sensor fusion. This fusion is made by means of adapting the
Extended Park Transform to this application, enabling the
usage of a shallow artificial neural network. Several tests
have been carried out in order to validate the method for
a single-phase induction motor. The tests have proved the
efficacy of the proposed method: it achieved an accuracy
over 99.5% when identifying the type of the fault that the
motor has been submitted. In addition, the sensors/equipment
needed for the implementation of the method have low cost,
showing the robustness of the proposed method.
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