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ABSTRACT The growing penetration of Electric Vehicles (EVs) poses new challenges to distribution
system operation, particularly regarding peak demand and asset overloading. This paper proposes an
optimization model for EV charging profiles based on time-varying and location-sensitive signals derived
from the electrical impedance matrix of the distribution network. Building on a previously published
tariff-sensitivity framework, this study develops an EV charging optimization model that uses nodal and
hourly signals to reflect the marginal impact of current injections on line congestion. The optimization
minimizes the total EV charging cost while mitigating adverse grid impacts. Simulation results using the
IEEE 123-bus system demonstrate reductions in losses and line loading, as well as cost savings for EV
owners. By combining the proposed approach with the existing tariff-sensitivity framework, Distribution
System Operators (DSOs) can better align incentives for EV owners, without compromising their charging
profiles, and mitigate network issues, thereby supporting the scalable integration of EVs.

KEYWORDS Charging Optimization, Distribution System Operation, Demand Response Program, Electric
Vehicles, Sensitivity-Based Network Tariffs.

NOMENCLATURE
Index

p Phase index.
k Bus index of the distribution system.
ℓ Line index of the distribution system.
t Time index.

Sets

Ωp Set of phases of a line.
Ωk Set of buses in the system.
Ωℓ Set of lines in the distribution system.
Ωt Set of time periods (analysis horizon).
Ωv,nc

t Set of time periods during which the electric vehi-
cle is unavailable for charging.

Constants

aℓ,k Element of the current sensitivity matrix relating
line ℓ and bus k.

aℓ,k,p Element of the current sensitivity matrix relating
line ℓ, bus k, and phase p.

cuℓ Unit cost of a line.
Cℓ Cost of a distribution line.
Capℓ Capacity of a distribution line.
Id,Real
k,p,t Real part of current demand for each bus, phase,

and time.
yi,j Admittance of line (i, j).
yshi,j Shunt admittance of line (i, j).
zbus(i,k) Element (i, k) of the Zbus impedance matrix.

T p Tariff during peak hours.
T op Tariff during off-peak hours.
T p,a Tariff related to current during peak hours.
T op,a Tariff related to current during off-peak hours.
Rℓ Line resistance.
RT∆y Transformation ratio (reflection factor) from sec-

ondary to primary side for a ∆–Y transformer.

Variables

Ik,p,t Bus current for each phase and time.
IReal
ℓ,p,t Real part of the bus current for all phases and times.
IImag
ℓ,p,t Imaginary part of the bus current for all phases and

times.
Iabsℓ,p,t Quadratic magnitude of peak current for each line

and phase.
IReal
ℓ,p,t Real part of line current for each phase and time.
IImag
ℓ,p,t Imaginary part of line current for each phase and

time.
Vi Voltage at bus i.
Vj Voltage at bus j.
δk,p,t Locational and hourly cost associated with each

bus.
∆Ik,p,tSum of Electric Vehicles (EVs) charging for each

bus, phase, and time.
∆IEV

v,k,p,tIndividual EV charging current for each bus, phase,
and time.

∆IEV
v Power capacity of the Electric Vehicles (EVs).

δℓ,p Cost of the maximum loading of line ℓ.
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Abbreviations

EV Electric Vehicle.
DRP Demand Response Program.
DER Distributed Energy Resource.

I. INTRODUCTION
The transition toward decarbonization in the transportation
sector is accelerating the worldwide adoption of Electric
Vehicles (EVs). While EVs represent a promising alternative
to internal combustion engine vehicles, their large-scale in-
tegration into electric distribution systems poses operational
challenges. If not properly managed, these may result in
undesirable effects such as line overloading, voltage viola-
tions, and increased system losses [1], [2]. Uncontrolled or
poorly coordinated EV charging may cause demand peaks,
overloading distribution system components and increasing
the need for infrastructure upgrades. This challenge becomes
more critical in low- and medium-voltage networks, where
limited hosting capacity and radial topologies dominate. Sev-
eral studies have investigated smart charging strategies aimed
at optimizing EV charging profiles to align with network
limitations and electricity price signals [3], [4]. Con-
trol strategies range from centralized architectures, where
an aggregator optimizes the collective behavior of a fleet
of EVs, to decentralized and price-based mechanisms that
allow individual users to make local decisions based on
dynamic tariffs as presented in [5] and [6]. Central-
ized approaches are generally more effective in minimizing
system-wide impacts but usually require significant com-
munication infrastructure and user coordination. In contrast,
price-responsive decentralized methods offer scalability and
flexibility but may be inefficient if tariff signals do not
reflect localized grid constraints [7]. In response to these
limitations, recent research has focused on locational pricing
mechanisms that consider the physical characteristics of the
network. Nodal and hourly prices enable the derivation of
sensitivity coefficients that quantify the impact of current
injections or withdrawals at each node on system power
flows and losses [8]. These sensitivity-based tariffs provide
Distribution System Operators (DSOs) with a tool to create
economic incentives that reflect technical priorities, such as
congestion relief or voltage profile support. Additionally,
Demand Response (DR) programs have emerged as a key
strategy to enhance distribution system flexibility and ac-
tively engage consumers in energy management. In partic-
ular, price-based DR programs encourage users to adjust
their consumption in response to dynamic electricity prices.
When combined with smart EV charging, such programs
help shift demand to off-peak periods, reduce peak loads,
and optimize asset utilization [9], [10]. Recent regulatory
advances, such as ANEEL’s Resolution No. 964/2021 ( [11])
in Brazil, have provided a formal structure for DR partici-
pation in wholesale markets, enabling consumers to respond
to market signals in real time. Integrating sensitivity-based
pricing into DR programs, particularly in the context of

EV charging, offers a promising pathway to simultaneously
achieve economic efficiency and grid stability. Building on
this foundation, the current study extends the concept of
tariff sensitivity to smart charging of EVs. The proposed
optimization model schedules EV charging in response to
the price signal associated with network impact. These price
signals internalize the marginal impact of charging actions
on the grid by linking user behavior to localized stress
indicators, such as line loading. The novelty of this work lies
in the combination of impedance-based pricing with smart
EV charging strategies. By incorporating sensitivity metrics
directly into the objective function of the optimization model,
the approach enables a more efficient allocation of grid
resources, promoting load flattening and improved reliability
without the need for heavy infrastructure expansion. More-
over, the model supports time-varying tariffs that reflect
both temporal and spatial grid conditions, enhancing user
responsiveness to network needs and providing a natural
extension of previous work [12]. Meanwhile, Zbus-based
allocation methods have traditionally been applied for cost
attribution in transmission and distribution networks, with
applications in network tariff design and access pricing [12],
[13]. Their adaptation to demand response and EV charging
is an emerging area explored in this work. Lima and Teixeira
[12] proposed a DR program that uses sensitivity-based tariff
signals to manage the operation of energy storage devices in
distribution systems. The model showed potential to delay
infrastructure investment and reduce operational costs. To
provide a clear structure, the remainder of this paper is
organized as follows. Section 2 describes the mathematical
model for EV charging. Section 3 presents the case study
and simulation setup, followed by the results and discussion.
Finally, Section 4 concludes the paper with insights into the
model’s potential and directions for future research.

II. PROPOSED OPTIMIZATION MODEL
This section presents the strategic distribution of the DR
program, the locational and hourly signals for system usage,
and the optimization model for EV charging that supports
the DR program.

A. Demand Response Program for EV charging
One of the key challenges in implementing a DR program for
EV charging is that peak currents in a line may simply shift
from one time slot to another, potentially causing adverse
effects on the distribution system, particularly in lines or
transformers operating near their thermal limits. To address
this issue, the DR program should incorporate time- and
location-sensitive distribution usage signals, allowing the
identification of optimal buses and time slots for load shifting
within a 24-hour horizon. This targeted strategy enhances
the effectiveness of the DR program while preserving EV
owners’ charging requirements and scheduling preferences.

To describe the proposed approach, the Demand Response
(DR) program algorithm can be summarized as follows:
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i. Initialization of input data, including tariffs, network
parameters, baseline load curve, and the initial and final
state of charge and time for each EV.

ii. Computation of the power flow solution in OpenDSS
to assess the initial network conditions without EVs.

iii. Execution of an optimization process to minimize net-
work costs, energy losses, and EV charging costs by
determining the optimal charging profile for each EV
under both network and EV constraints.

iv. Generation of an EV charging schedule for each vehicle.
v. Computation of a power flow using a naı̈ve (uncoordi-

nated) solution for comparison purposes.

In the proposed paper, the uncoordinated solution assumes
that all EVs charge simultaneously. Although this is not a
realistic scenario, it emphasizes the importance of the pro-
posed model in reducing network costs through coordinated
charging. Furthermore, the proposed model can be adapted
to operate under different tariff structures, as it is sensitive
to current variations along each line over time.

The proposed optimization problem was implemented
in Python using the Pyomo library and solved with the
Gurobi solver. As the model includes quadratic and convex
constraints, it was formulated as a continuous quadratic
programming (QP) problem and solved using Gurobi’s Bar-
rier (Interior-Point) Method. Considering the computational
effort, the optimization is intended to be executed preemp-
tively, for instance, the day before, using forecasted base
load and tariff data.

B. Zbus Network sensitive matrix
The Zbus method was originally proposed for transmission
systems, as detailed in [13]. In this method, system costs
are allocated according to the electrical location of cur-
rent injection and extraction buses within the transmission
network. Thus, tariffs reflect the costs associated with the
grid infrastructure at each bus. In this work, the method is
adapted for distribution systems to capture both locational
and temporal cost signals.

Nodal voltages (Vi) can be expressed using the elements
of the impedance matrix (zbus(i,k)) and the current injection
(Ik) at each bus as follows:

Vi =
∑
k∈Ωk

zbus(i,k)Ik (1)

The line current (I(i,j)) flowing through line (i, j) is given
by:

Ii,j = (Vi − Vj)y(i,j) + Viy
sh
(i,j) (2)

Being y(i,j) and ysh(i,j), the line and shunt admitance,
respectively. Thus, the line current can be formulated as the
sum of contributions from the current injections at each bus

k, as follows:

Ii,j =

(∑
k∈Ωk

zbus(i,k)Ik −
∑
k∈Ωk

zbus(j,k)Ik

)
y(i,j)

+
∑
k∈Ωk

zbus(i,k)Iky
sh
(i,j)

(3)

When the distribution system is unbalanced, it is important
to differentiate the usage of each phase. Therefore, the
equation is adapted as follows:

Ii,j =
∑
k∈Ωk

{[
zbus(i,k) − zbus(j,k)

]
y(i,j) + zbus(i,k)y

sh
(i,j)

}
Ik (4)

Note that the coefficient multiplying the current element
in (4) includes only network parameters. Therefore, the
sensitivity coefficient (aℓ,k) is defined, and the equation can
be simplified as:

I(i,j) = Iℓ =
∑
k∈Ωk

aℓ,kIk (5)

When the distribution system is unbalanced, it is important
to differentiate the usage of each phase p ∈ Ωp and bus
k ∈ Ωk. Thus, the phase-dependent sensitivity coefficient
(a(ℓ,k,p)) is introduced, and the equation is adapted as
follows:

Iℓ,p =
∑

k∈Ωk, p∈Ωp

aℓ,k,pIk,p (6)

Developing (6),the line current for each phase and time
(I(ℓ,p,t)) can be expressed by:

Iℓ,p,t = IReal
ℓ,p,t + jI Imag

ℓ,p,t (7)

Each term of (7) can be written as:

IReal
ℓ,p,t =

∑
k∈Ωk

(
aReal
ℓ,k,pI

Real
k,p,t − aImag

ℓ,k,pI
Imag
k,p,t

)
(8)

I Imag
ℓ,p,t =

∑
k∈Ωk

(
aReal
ℓ,k,pI

Imag
k,p,t + aImag

ℓ,k,pI
Real
k,p,t

)
(9)

The squared magnitude of line current (Iabs(ℓ,p,t)) can be
expressed by:

Iabs
ℓ,p,t =

(
IReal
ℓ,p,t

)2
+
(
I Imag
ℓ,p,t

)2
(10)

Since line current can be expressed as the power injection
or extraction of each bus, the individual cost of each line
can be optimized by considering the indirect effect of load
variations on line current. In order to provide a cost sensi-
tivity model, the line cost (δ(ℓ,p)) considering each time and
phase can be expressed by:

δℓ,p = cuℓ,p ·max
t∈Ωt

(
Iabs
ℓ,p,t

)
(11)

The parameter cuℓ,p represents the unit cost associated with
each line, expressed in

(
R$
A2

)
. The variable δℓ,p represents the

cost associated with the maximum loading of line ℓ.
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C. Optimization model for EV charging using DR program
The DR program is an energy management strategy in which
end-users reduce or shift their consumption in response to
price signals associated with grid conditions. The primary
objective of the DR program in this study is to minimize peak
loading in the distribution network caused by EV charging.
This helps to reduce the impact on system infrastructure
and defer investments in network expansion. Maintenance
costs also decrease, as the network operates with reduced
overloading and, consequently, lower risk of failures.

In general, load reduction is achieved through power flow
management. In this work, however, line current is used as
a reasonable approximation of power flow in the network.
In this work, the low-voltage system is considered as an
equivalent consumer with the combination of EVs and other
loads to implement the DR program. EV charging in low-
voltage systems is coordinated to reduce line currents and
energy losses while simultaneously lowering consumers’ en-
ergy bills, thereby ensuring alignment between the objectives
of utilities and EV owners.

The optimization model is presented as follows. The
objective function (12) seeks to minimize the sum of the
costs associated with line current peaks, energy losses during
peak and off-peak times, and the additional energy bill for
consumers:

min
∆IEV

v,k,p,t

∑
ℓ,p

δℓ,p +
∑

ℓ,p,t∈Ωp
t

T p,aRℓI
abs
ℓ,p,t +

∑
ℓ,p,t∈Ωop

t

T op,aRℓI
abs
ℓ,p,t

+
∑

k,p,t∈Ωp
t

T p,a∆IEV
v,k,p,t +

∑
k,p,t∈Ωop

t

T op,a∆IEV
v,k,p,t

(12)
Subject to:

Iabsℓ,p,t = (IReal
ℓ,p,t )

2 + (IImag
ℓ,p,t )2 (13)

IReal
k,p,t = I

(d),Real
k,p,t +∆Ik,p,t (14)

IReal
ℓ,p,t =

∑
k∈Ωk

(
aReal
ℓ,k,pI

Real
k,p,t − aImag

ℓ,k,p IImag
k,p,t

)
(15)

IImag
ℓ,p,t =

∑
k∈Ωk

(
aImag
ℓ,k,p IReal

k,p,t + aReal
ℓ,k,pI

Imag
k,p,t

)
(16)

Iabsℓ,p,t ≤ Cap2ℓ (17)

∆Ik,p,t =
∑

v∈Ωk,p
v

∆IEV
v,k,p,t

RT∆y
(18)

∆Iinicialv +
∑

v∈ΩEV
v

∆IEV
v,k,p,t ≥ ∆Ifinalv (19)

∆IEV
v,k,p,t = 0 ∀t ∈ Ωv,n,c

t (20)

0 ≤ ∆IEV
v,k,p,t ≤ ∆IEV

v , ∀v ∈ Ωk,p
v , t ∈ Ωc

t (21)

δℓ,p ≥ cuℓ,p · Iabsℓ,p,t (22)

Where ℓ ∈ Ωℓ, p ∈ Ωp, t ∈ Ωt, k ∈ Ωk, and v ∈ Ωv.
The optimization variable ∆IEV

v,k,p,t represents the varia-
tion in charging current for each electric vehicle v connected

at phase p of node k and time t. This formulation allows the
model to explicitly determine individual EV charging profiles
while capturing their combined impact on the distribution
network. The aggregated current variations at the medium-
voltage level, ∆Ik,p,t, are subsequently derived from the
sum of these individual EV contributions, ensuring that the
optimization process remains consistent with the system
representation and the network constraints defined in the
medium-voltage domain.

Constraint (13) computes the squared magnitude of peak
current for each line and phase across the time horizon,
which is then minimized in the objective function. Constraint
(14) defines the active current for each bus, phase, and time,
composed of the base demand I

(d),Real
(k,p,t) plus the decision

variable ∆I(k,p,t), which reflects the EVs charging in each
bus, phase, and time. The base demand (I(d),Real

(k,p,t) ) serves as
the baseline for defining the DR program. This current is
computed using OpenDSS [14], which simulates power flow
in distribution systems, and the resulting current demand is
extracted for use in the proposed model.

Constraint (15) calculates the real part of line current using
the sensitivity matrix aℓ,k,p, as presented in Section II.B.
Even though the model does not alter the reactive current
at the buses, the reactive line current must be computed
because it is influenced by the real bus current. Constraint
(16) computes the reactive line current for all lines, phases,
and time periods, in the same way as in (15). Constraint
(17) ensures that the squared peak current for each time and
each line remains below its power capacity, thereby avoiding
additional utility expenses for system expansion.

The model treats the DR program as a load-shifting
mechanism, reducing costs for both utilities and EV owners.
Thus, ∆I(k,p,t), computed in (18), can be interpreted as the
reflection from the secondary to the primary of the sum of
EVs charging (∆IEV

(v,k,p,t)), in each bus, time, and phase.
Constraint (19) ensures that EVs reach their pre-

determined state of charge, as defined by the consumer, con-
sidering the initial battery level. Constraint (20) establishes
the time interval in which the EV is not charging. Constraint
(21) bounds ∆IEV

(v,k,p,t) to the maximum value of ∆IEV
v ,

which represents the power capacity of the EV.
Finally, constraint (22) computes the cost associated with

line current peak. This cost depends on the peak line current
and the unitary cost associated with each line. The allocation
of the benefits associated with the DR program is out of the
scope of this paper, but it could be done for all participants
of the DR program proportionally to their flexibility and
the gains provided to the network compared with the non-
coordinated solution. Additionally, the proposed model can
be combined with the framework presented in [12], creat-
ing incentives across different time periods and regions to
expand EV adoption.
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III. CASE STUDY AND SIMULATION RESULTS
A. Database
To validate the proposed model and its effectiveness, three
case studies are carried out using the IEEE 123-bus test
system, shown in Figure 1. The case studies consider the
integration of 15, 45, and 90 EVs connected to the secondary
buses of the system. Each case is also illustrated in Figure
1.In Cases 2 and 3, each bus accommodates five EVs,
representing network conditions with a higher density of
charging stations and, therefore, increased local demand.
This approach allowed us to associate the increased load
either with a higher number of EVs or with fast-charging
behavior. To evaluate the impact of the EV charging on the
distribution network, results are presented in three situations:
(i) without EVs connected to the system; and (ii) the uncoor-
dinated charging scenario, in which EVs charge simultane-
ously; and (iii) coordinated charging, applying the proposed
model.The assumption of simultaneous charging start times
was intentionally adopted to represent a worst-case scenario,
where charging demand is highly concentrated. This allows
the model’s effectiveness in mitigating network impacts to
be more clearly demonstrated.

FIGURE 1. Topology of the IEEE 123-bus system.

The base load used in the studies is the same for all buses,
with loads defined by a base power of 20 kW for active
power and 10 kVAr for reactive power. The adopted load
shape, representing daily demand variation, is illustrated in
Figure 2. These data were used to configure the base case
for the power flow solution from OpenDSS.

The proposed model considers EV charging in the low-
voltage system and its impact on the medium-voltage level.
Because of this, the bus and phase in medium voltage where
the EV is connected should be indicated, as well as its
capacity (in kW and A) and the accumulated energy (kWh
and Ah), initial and final state of charge, charging start time,
and charging end time. The capacity and energy data used are
based on the BYD Dolphin Mini model, with specifications
available in [15]. The start and end times of charging

FIGURE 2. Load shape over time.

represent the availability period of each EV for participation
in the DR program. Table 1 presents the input data used in
the model, including sample information for a representative
EV considered in the coordinated charging process.

The charging period between 17h and 23h was intention-
ally selected to represent the peak load hours of the distribu-
tion network. This configuration enables the evaluation of the
proposed model under the most critical operating conditions,
where network congestions are more likely to occur. The
complete information for all EVs, as well as the information
of the peak and off-peak tariff can be seen in [16]. The
transformation from R$/kWh to R$/Ah was performed
based on the nominal voltage of the system.

In addition to the EV data, the line cost is also an
important component to be considered in the DR program.
For brevity, Table 2 presents statistical information of the line
parameters used in the proposed model. All data required for
the simulations are available in [16].

B. Case studies simulations
Figure 3 and Figure 4 present the uncoordinated and co-
ordinated charging profiles for all EVs, respectively. As
observed, the larger the number of EVs in the network,
the greater the load variation. In general, the coordinated
charging pattern accelerates charging for some EVs at the
beginning of the process and reduces the charging intensity
toward the end. For other EVs, the charging intensity is lower
at the beginning and higher at the end of the process. The
currents shown in Figures 3 and 4 represents the variation
in the current on the secondary side (medium-voltage level).
Therefore, its magnitude appears smaller than the actual low-
voltage current, which varies approximately from 15 A to 75
A. In each case, the same number of EVs is connected per
bus; however, the number of buses and EVs per bus increases
in Case 3, resulting in higher overall demand and different
network conditions.
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TABLE 1. Data from each EV.

Cap
(kW)

Cap
(A)

T p

(R$/kWh)
T p

(R$/Ah)
T op

(R$/kWh)
T op

(R$/Ah)
Initial

Charge (%)
Final

Charge (%)
Initial

Time (h)
Final

Time (h)

6.6 17.32 1.95892 0.746448 0.64767 0.246795 20% 90% 17 23

FIGURE 3. Uncoordinated charging for 15, 45 and 90 EVs.

FIGURE 4. Coordinated charging for 15, 45 and 90 EVs.

TABLE 2. Statistical information of the line parameters.

Statistic Line Capacity (A) Current Base (A) Unitary cost (R$/A2)

Minimum 0.00 0.00 10.00
Mean 52.17 41.73 20.51

Maximum 350.68 280.54 30.00

In order to evaluate the impact on distribution systems for
the three case studies, in Figure 5 and Figure 6, are presented
the line currents for simultaneous charging (uncoordinated)
and coordinated charging, respectively. As shown, line ca-
pacity limits are violated in the uncoordinated case. These
lines are located at the beginning of the system, close to the
substation. In contrast, in the coordinated case, the optimiza-
tion model guarantees that all line currents remain within
their capacity limits. To illustrate the voltage impact, Figure
7 and Figure 8 show the bus voltages for uncoordinated
and coordinated charging. These results show that under
coordinated charging, voltage drops are less pronounced,
indicating more stable system operation.

Finally, to present the overall network impact, Figure 9
illustrates the sum of line currents for the base case (without
EVs), uncoordinated charging, and coordinated charging
with 15, 45, and 90 EVs. Results indicate that as the number

of EVs in the network increases, the hosting capacity effect
becomes more pronounced, particularly during peak periods.
In addition to the technical results, financial outcomes were
also obtained, including charging costs and loss costs for
the three scenarios (coordinated and uncoordinated charging,
with 15, 45, and 90 EVs). Table 3 summarizes the results.
For all case studies, coordinated charging produced better
results, especially for 45 EVs, with charging cost savings of
49.54%and a cost of losses reducing by 3% . It is important
to highlight that all costs and gains were computed for 1 day
of analysis.

Although the IEEE 123-bus test system presents relatively
short line lengths compared to typical Brazilian distribution
networks, the proposed model can be readily adapted to
larger and more complex systems. In particular, in Brazilian
networks with longer feeders and a higher penetration of
photovoltaic generation, the coordinated EV charging strat-
egy can help alleviate medium-voltage stress by aligning the
charging periods with local PV production.

IV. CONCLUSIONS
This paper presented an optimization model for Electric Ve-
hicle (EV) charging based on time- and location-sensitive tar-
iff signals derived from the distribution network impedance
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FIGURE 5. Line currents for uncoordinated charging for 15, 45 and 90 EVs.

FIGURE 6. Line currents for coordinated charging for 15, 45 and 90 EVs.

FIGURE 7. Voltages for uncoordinated charging for 15, 45 and 90 EVs.

FIGURE 8. Voltages for coordinated charging for 15, 45 and 90 EVs.
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FIGURE 9. Sum of line currents for 15, 45 and 90 EVs.

TABLE 3. Charging and Energy losses cost.

Cases /
Costs

Case 1
(15 EVs)

Case 2
(45 EVs)

Case 3
(90 EVs)

Coordinated Simultaneous
Gain
(%)

Coordinated Simultaneous
Gain
(%)

Coordinated Simultaneous
Gain
(%)

Charging (R$) 14.73 34.10 56.8% 51.62 102.30 49.54% 111.03 204.60 45.73%
Energy Losses (R$) 676.33 684.44 1% 690.86 713.61 3% 717.24 763.76 6%

matrix. By incorporating sensitivity metrics into a demand
response (DR) program, the proposed framework effectively
aligns EV owners’ charging needs with the operational
requirements of the grid.

Simulation results using the IEEE 123-bus system demon-
strated that the proposed approach reduces peak line currents,
keeps all lines within capacity limits, and mitigates voltage
deviations. Beyond these technical improvements, coordi-
nated charging also provides economic benefits, including
up to 45.73% savings in charging costs and a 6% reduction
in loss-related costs compared to the uncoordinated charging
scenario with 45 EVs. These results highlight the potential of
sensitivity-based pricing mechanisms to enhance distribution
system efficiency while ensuring fairness and scalability in
EV integration.

The main contribution of this study lies in combining
impedance-based tariff signals with the optimization of EV
charging schedules, thereby offering a practical methodol-
ogy for Distribution System Operators (DSOs) to manage
increasing EV penetration without costly infrastructure ex-
pansion.

Only peak and off-peak tariffs were considered in this
work, following the Brazilian standard structure. However,
since the proposed model operates on an hourly basis,
incorporating dynamic time-varying prices, such as those
adopted in other countries, would simply require adjusting
the input data to reflect time-dependent tariffs.

The uncoordinated charging case was intentionally de-
fined to represent a worst-case scenario, allowing a clearer
comparison with the benefits achieved by the coordinated
charging strategy. As future work, we intend to include, in
addition to the baseline case, a scenario in which each EV
has its own dynamic charging profile obtained by minimizing
only the individual consumer’s energy cost under EV-specific

constraints, without considering the overall network cost and
constraints.

Future research directions include extending the model to
multi-day horizons, integrating distributed renewable gen-
eration and energy storage systems, and assessing regula-
tory mechanisms to enable large-scale implementation of
sensitivity-based DR programs in real-world distribution
networks.
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