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ABSTRACT Bipolar direct current (DC) microgrids have emerged as a promising alternative for efficiently
integrating of renewable energy sources. However, these systems are susceptible to voltage imbalance
between the positive and negative poles, especially with asymmetric loads. This paper presents the modeling
and control of a non-isolated DC–DC Boost converter with a symmetric bipolar output suitable for
photovoltaic applications. The proposed topology eliminates issues related to voltage imbalance and leakage
currents while providing continuous low-ripple input current, a reduced number of components, simplified
operation, and common grounding with the output neutral point. The operating principle, modeling, and
control strategy of the converter are discussed, and its performance is validated through simulations
and experimental results from a 1500 W prototype. The results demonstrate stable operation under both
balanced and unbalanced conditions.
KEYWORDS DC microgrids, non-isolated, renewable energy sources, symmetrical bipolar output.

I. INTRODUCTION
The growing demand for sustainable energy sources has
driven the development of technologies based on renewable
resources, with an emphasis on solar energy. This transition
seeks to mitigate the scarcity of natural resources and reduce
environmental impacts, such as greenhouse gas emissions
and climate change. In this scenario, direct current (DC)
microgrids have established themselves as a promising al-
ternative to conventional alternating current (AC) systems,
especially in contexts involving the integration of renew-
able sources, such as photovoltaic (PV) generation, energy
storage systems, LED lighting, and electric vehicles (EV).
The growing interest in these architectures comes from the
several advantages associated with DC microgrids, including
higher efficiency, simpler control, high reliability, and better
compatibility with DC loads and sources. As a result, their
adoption has expanded to a wide range of applications,
including data centers, commercial buildings, and industrial
facilities [1]–[10].

Fig. 1 (a) shows the configuration of a bipolar DC
microgrid, composed of three voltage lines: positive (P),
neutral (Z), and negative (N) [1]. The power distribution in
DC microgrids can be classified as monopolar or bipolar.
Monopolar architectures operate with a single voltage level,
whereas bipolar ones use two voltage levels (+VDC and
−VDC). The bipolar architecture stands out for its versa-
tility, being particularly advantageous for supplying high-
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FIGURE 1. Bipolar DC microgrid: (a) Interconnection block diagram and
(b) Non-isolated bipolar Boost converter.
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power loads and providing greater operational flexibility to
the system [10]–[12]. For efficient management of bipolar
microgrids, DC-DC converters play a fundamental role,
acting in voltage regulation and conversion between different
voltage levels. Among the widely studied topologies, non-
isolated converters stand out for presenting greater efficiency,
smaller volume, and reduced cost compared to solutions with
galvanic isolation [9], [11]. However, the lack of isolation
can introduce undesirable effects, such as leakage currents
and common-mode voltages, compromising power quality
and system safety. To mitigate such problems, the literature
has proposed the use of innovative topologies and advanced
control strategies [3], [9], [13]–[15].

Despite their advantages, bipolar systems are susceptible
to voltage imbalance between the positive and negative poles,
usually caused by asymmetries in connected loads, sources,
or storage units. As a more efficient solution, DC-DC con-
verters with symmetrical bipolar outputs stand out, which,
in addition to performing voltage conversion, contribute to
the dynamic balancing of the microgrid without the need
for additional components. Furthermore, dedicated voltage
balancers can be integrated into DC microgrids to mitigate
or eliminate bus voltage imbalances, thus improving system
stability and performance [3], [16]–[19].

In recent years, several non-isolated bipolar DC–DC con-
verter structures have been proposed not only to mitigate
voltage imbalance, but also to improve the dynamic behavior
of bipolar DC microgrids. The authors in [12] proposed a
SEPIC–Cuk combination for bipolar DC microgrids using
a single ground-referenced switch, experimentally validating
the steady-state operation under basic PWM voltage regula-
tion. The authors in [20] extended the Cuk–SEPIC concept
with coupled inductors for PV systems, integrating MPPT
and current/voltage controllers, but without a detailed state-
space model or closed-loop dynamic analysis of the bipolar
bus. In [21], the authors presented a Zeta–Buck–Boost
SIMO converter with bipolar output and a single control-
lable switch, evaluating different operating modes under
classical cascaded control. The authors in [22] applied the
voltage-lift technique to a transformerless double-output con-
verter, emphasizing reduced control complexity compared
with transformer-based solutions while focusing mainly on
voltage-gain characteristics. A dual-output high-gain con-
verter with self-balancing bipolar voltages for DC microgrids
was introduced in [23], prioritizing static gain and efficiency
over a rigorous dynamic control design. Finally, the authors
in [24] discussed a general family of three-level DC–DC
converters and proposed a feedforward scheme to balance
intermediate capacitor voltages, providing important insights
but not a dedicated modeling and control framework for
a non-isolated bipolar boost stage. Overall, these contribu-
tions concentrate on proposing new topologies and basic
regulation schemes, whereas a detailed state-space averaged
model, systematic control design, and experimental valida-
tion specifically oriented to the dynamic voltage regulation of

a non-isolated bipolar boost converter remain comparatively
less explored, which motivates the approach adopted in this
work.

Considering this scenario, this work addresses the model-
ing and control of a non-isolated DC-DC Boost converter
with symmetrical bipolar output, primarily intended for
photovoltaic systems. By incrementing a bidirectional stage,
the same structure can also be adapted for applications
with other sources, such as energy storage systems and
fuel cells. The adopted topology, shown in Fig. 1 (b),
eliminates problems related to voltage unbalance and leakage
currents, presenting continuous input current with low ripple,
reduced number of components, simplified operation and
common grounding with the output neutral point. This paper
is organized as follows: Section II presents the structure and
operational concept of the converter. Section III presents the
modeling and control. Section IV presents the simulation and
experimental results. Finally, the conclusion is presented in
Section V.

II. DESCRIPTION OF THE DC-DC CONVERTER
To mitigate voltage unbalance in bipolar DC microgrids, the
converters used must be capable of injecting power into both
poles, thus balancing the bus voltages. Thus, the evaluated
converter has two voltage outputs, VC1 and VC3, allowing
balanced energy injection into both poles of the microgrid.
This configuration contributes to the self-balancing of the
output voltage, dispensing with auxiliary circuits; however,
with the help of voltage balancers, it is possible to ensure
even more precise and stable.

The topology has several advantages, such as low input
current ripple, fewer components, simple and efficient op-
eration, and low stress on the semiconductors. The adopted
bipolar strategy also reduces the leakage current, enabling
the direct connection of the panel grounding to the AC grid
neutral, complying with the IEC 62109-2 standard [25]. The
circuit consists of two inductors (L1, L2), two switches (S1,
S2), three diodes (D1, D2, D3) and three capacitors (C1,
C2, C3).

In this section, the operating principle of the DC-DC
converter is presented, together with the equations that
describe its operation and the main associated waveforms.

A. PRINCIPLE OF OPERATING
The operation of the DC-DC converter with an equivalent re-
sistive load is described as follows. To simplify the analysis,
the following assumptions are made: 1) All semiconductors
are considered ideal and lossless. 2) The input voltage source
is assumed to be ideal, denoted by Vi. 3) All capacitors
are sufficiently large so that their voltages are considered
constant values. 4) An intrinsic resistance RD3 is included
to dampen the current through diode D3. 5) The converter
operates in continuous conduction mode (CCM). The con-
verter operation can be divided into two distinct stages over
a switching period (Fig. 2). In the first stage, switches S1 and
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FIGURE 2. Typical waveforms of the proposed converter.

S2 are turned on, and in the second stage, they are turned off.
Additionally, the equivalent circuits corresponding to these
operating modes are shown in Fig. 3.

1) First stage (t0 < t < t1) [Fig. 3 (a)]: In this
stage, switches S1 and S2 are in conduction, allowing
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FIGURE 3. Operation stages. (a) First stage. (b) Second stage.

inductors L1 and L2 to be directly magnetized by input
voltage Vi. As a result, the inductor currents increase
linearly. Diodes D1 and D2 remain reverse-biased,
while diode D3 conducts. Capacitors C1, C2, and C3

supply power to the load. The inductor currents in this
stage are given by:

iL1(t) =
Vi

L1
(t) + iL1(t0) (1)

iL2(t) =
Vi

L2
(t) + iL2(t0) (2)

2) Second stage (t1 < t < Ts) [Fig. 3 (b)]: In this stage,
switches S1 and S2 are turned off. Inductors L1 and
L2 are demagnetized, transferring energy to capacitors
C1 and C2 through diodes D1 and D2, now forward
biased. Diode D3 is blocked. The voltages applied to
the inductors are VL1 = Vi−VC1 and VL2 = Vi−VC2,
which causes their currents to decrease according to:

iL1(t) =
Vi − VC1

L1
(t) + iL1(t1) (3)

iL2(t) =
Vi − VC2

L2
(t) + iL2(t1) (4)

B. IDEAL STATIC VOLTAGE GAIN
In the steady state, by applying the volt-second balance to
the inductors L1 and L2, respectively, the voltage gain can
be obtained by:

⟨VL⟩ =
1

Ts

∫ Ts

0

[VL1(t) + VL2(t)] dt = 0 (5)

Considering that VC2 = VC3, and knowing that the output
is bipolar, that is, the capacitors are stacked, then the output
voltage Vo is given by the sum of the output capacitances:

Vo = VC1 + VC3 (6)

Since the voltage of the capacitors is:

VC1 = VC2 = VC3 =
Vi

1−D
(7)

Therefore the static gain of the converter is given by:

M =
Vo

Vi
=

2

1−D
(8)

C. DESIGN OF INDUCTORS AND CAPACITORS
The design equation for inductors L1 and L2 is given by
[26]:

L1 = L2 =
Vi

2∆iLfs
D (9)

where Vi is the input voltage, ∆iL is the peak-to-peak
inductor current ripple, fs is the switching frequency, and
D is the duty cycle.

And the design of capacitors C1, C2, and C3 are given
by [26]:
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C1 = C2 = C3 =
∆io

∆Vofs
(10)

where ∆io is the peak-to-peak output current ripple and ∆Vo

is the peak-to-peak output voltage ripple.

III. MODELING AND CONTROL
Based on the analysis of the evaluated topology, the math-
ematical model of the converter and the control strategy
appropriate to its operation are developed. In addition, the
stability of the control system is evaluated under para-
metric variations, using the Routh–Hurwitz criterion and
Lyapunov’s direct method, demonstrating the robust perfor-
mance of the bipolar DC–DC converter.

A. MODELING
The modeling is based on operation in two distinct stages,
defined by the state of the switches.

The first stage of operation (Fig. 3 (a)) occurs when the
switches are in conduction (t0 < t < t1). The differential
equations that describe the dynamic behavior of the converter
in this stage are:

diL1

dt
=

1

L1
Vi = ˙iL1 (11)

diL2

dt
=

1

L2
Vi = ˙iL2 (12)

dVC1

dt
=

1

C1

[
−VC1

R
− VC3

R

]
= ˙VC1 (13)

dVC2

dt
=

1

C2

[
VC3

RD3
− VC2

RD3

]
= ˙VC2 (14)

dVC3

dt
=

1

C3

[
−VC1

R
− VC3

R
− VC3

RD3
+

VC2

RD3

]
= ˙VC3 (15)

The second stage of operation (Fig. 3 (b)) occurs when
the switches are off (t1 < t < Ts). The dynamic equations
in this condition are as follows:

diL1

dt
=

1

L1
[Vi − VC1] = ˙iL1 (16)

diL2

dt
=

1

L2
[Vi − VC3] = ˙iL2 (17)

dVC1

dt
=

1

C1

[
iL1 −

VC1

R
− VC3

R

]
= ˙VC1 (18)

dVC2

dt
=

1

C2
[iL2] = ˙VC2 (19)

dVC3

dt
=

1

C3

[
−VC1

R
− VC3

R

]
= ˙VC3 (20)

The state vector is defined as x =[
iL1 iL2 VC1 VC2 VC3

]T
, containing the inductor

currents and capacitor voltages. The state-space model is
then expressed by:

{
ẋ = Aix(t) +Biu(t)

y = Cix(t) +Diu(t)
(21)

where i = 1 refers to the first stage of operation (switches
on) and i = 2 to the second stage (switches off). The
matrices for each stage are:

A1 =


0 0 0 0 0
0 0 0 0 0
0 0 − 1

C1R
− 1

C1R
0

0 0 − 1
C3R

−( 1
C3R

+ 1
C3RD3

) 1
C3RD3

0 0 0 1
C2RD3

− 1
C2RD3


(22)

B1 =


1
L1
1
L2

0
0
0

 (23)

C1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (24)

D1 =


0
0
0
0
0

 (25)

A2 =


0 0 − 1

L1
0 0

0 0 0 0 − 1
L2

1
C1 0 − 1

C1R
− 1

C1R
0

0 0 − 1
C3R

− 1
C3R

0

0 1
C2

0 0 0

 (26)

B2 =


1
L1
1
L2

0
0
0

 (27)

C2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (28)

D2 =


0
0
0
0
0

 (29)

From the equations obtained in the modeling and using the
parameters specified in Table 1, it is possible to determine
the transfer function that relates the inductor current iL1 to
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TABLE 1. DC-DC converter design parameters

Parameters Value
Input voltage (Vi) 136 V

Output voltage (VC1, VC3) 400 V
Duty cycle (D) 0.67

Output power (Po) 1500 W
Switching frequency (fs) 50 kHz
Capacitors (C1, C2, C3) 27 µF (700 V, film)

Inductors (L1, L2) 500 µH (149.2 mΩ / 149 mΩ)
Diodes (D1, D2, D3) FFSH2065A (650 V / 20 A / 1.5 V)

Switches (S1, S2) STW48N60DM2 (600 V / 40 A / 0.065 Ω)

the duty cycle, by linearizing the small-signal AC model,
expressed by:

GiL1−u =
a1s

4 + a2s
3 + a3s

2 + a4s+ a5
b1s5 + b2s4 + b3s3 + b4s2 + b5s+ b6

(30)

where: a1 = 5.44× 105, a2 = 2.01× 1011, a3 = 7.5× 1013,
a4 = 1.8 × 1018, a5 = 6.9 × 1020, b1 = 1, b2 = 3.7 × 105,
b3 = 8.8 × 107, b4 = 1.02 × 1013, b5 = 9.7 × 1014, b6 =
6.3× 1019.

The model validation is performed by comparing the
behavior of the linear model with the simulated converter
when both are subjected to the same input conditions.
Applying to the plant obtained by modeling, a step of 0.02
in the duty cycle, in the time of 0.2 seconds, as shown in
Fig. 4 (a). Similarly, a step of -0.02 was applied in 0.2
seconds, shown in Fig. 4 (b). The results demonstrate that
the mathematical model accurately represents the dynamic
behavior of the converter under duty cycle perturbations,
capturing its transient response despite minor oscillations,
thereby validating its suitability for control design.

B. CONTROLLER DESIGN
Under unbalanced load conditions, the proposed converter
keeps the bipolar voltages regulated without the need for an
external voltage balancer. As the power demanded by one
pole increases, the corresponding currents in the inductor
and switch change, and the input currents in the inductor
are redistributed, while the control system maintains the
bus voltages close to their reference values, preserving the
symmetry of the bipolar bus.

The bipolar boost converter control system aims to regu-
late the DC-bus voltage Vo = VC1+VC3 around a reference
value Vref . To achieve this objective, a control strategy
based on proportional–integral (PI) controllers is adopted.
The internal control loop, characterized by faster dynamics,
regulates the inductor current, ensuring a rapid transient
response. The external control loop, with slower dynamics,
is responsible for regulating the output voltage, guaranteeing
that the capacitor voltages remain balanced and constant
under different operating conditions. Fig. 5 illustrates the
block diagram of the adopted control strategy.
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FIGURE 4. Model validation for duty-cycle variation: (a) +0.02 step and
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For the external voltage circuit, a PI compensator was
implemented to increase the system gain at low frequencies
and eliminate steady-state error. The controller was set with
a cutoff frequency of approximately 50 Hz, which is low
enough to avoid interaction with the converter’s switching
frequency (50 kHz) but high enough to ensure good dynamic
regulation of the bus voltage. Fig. 6 shows the Bode diagram
of the closed-loop voltage controller plant. The transfer
function of the voltage controller is:

CV o =
418.87 (s+ 300)

s (s+ 31420)
(31)

For the internal current circuit, the goal is to ensure
an accurate tracking of the inductor current reference.
The crossover frequency was chosen a decade below the
switching frequency, around 5 kHz. To achieve this, an
integrator was introduced for zero steady-state error, and a
zero was placed a decade below the crossover frequency,
at approximately 500 Hz, to improve stability. Fig. 7 shows
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the Bode diagram of the closed-loop current controller plant.
The resulting transfer function is:

CL1 =
0.040431(s+ 3710)

s
(32)

C. STABILITY ANALYSIS
The closed-loop stability of the proposed system was eval-
uated using the linearized state-space model around the
operating point. The corresponding characteristic equation
can be expressed in the general form:

s5 + c4s
4 + c3s

3 + c2s
2 + c1s+ c0 = 0, (33)

where the coefficients ci are functions of the converter
parameters and controller gains.

The Routh–Hurwitz criterion was applied to this fifth-order
polynomial, which requires that all the elements of the first
column of the Routh array be positive. The Routh array is
given by:

s5 1 c3 c1
s4 c4 c2 c0

s3
c4c3 − c2

c4

c4c1 − c0
c4

0

s2 A B 0

s1
A

(
c4c1 − c0

c4

)
−Bc4

A
0 0

s0 B 0 0

(34)

where:

A =

(
c4c3−c2

c4

)
c2 − c4

(
c4c1−c0

c4

)
c4c3−c2

c4

(35)

B =
A
(

c4c1−c0
c4

)
− 0

A
(36)

G.M.: inf
Freq: Inf

P.M.: 76.3 deg
Freq: 50 Hz
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The conditions for stability are then:

c4 > 0,
c4c3 − c2

c4
> 0, A > 0,

A
(

c4c1−c0
c4

)
−Bc4

A
> 0, B > 0.

(37)

These requirements were verified for the nominal design
parameters, confirming that the system is stable.

To investigate robustness, parametric variations of ±20%
were applied to L1, L2, C1, C2, and C3, as well as a 50%
variation in load. The pole distribution obtained under these
variations is shown in Fig. 8, where all poles remain in
the left half-plane. The dominant poles maintain sufficient
damping, and no migration to the unstable region was
observed, confirming robust stability.

The stability margins were also quantified. The minimum
damping ratio observed was ζmin = 0.15, while the minimum
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phase margin was PMmin = 42◦. Additionally, the gain
margin remained above 6 dB in all tested conditions. These
values, although reduced compared to the nominal case,
still guaranty satisfactory transient performance. Therefore,
the combined use of the Routh–Hurwitz criterion, pole
distribution analysis, and margin quantification demonstrates
that the proposed control strategy provides stable operation
and robust performance even under significant parameter
deviations and load variations.

IV. SIMULATION AND EXPERIMENTAL RESULTS
To evaluate the performance of the proposed converter and
control system, simulation and experimental analyses were
performed using a 1.5 kW prototype, as shown in Fig. 9. The
simulations were carried out in the PSIM software, and the
parameters listed in Table 1 were used to obtain the results.

Fig. 10 (a) and (b) illustrate the system behavior when
faced with a load step from 100 % to 50 % of nominal
power, applied at t = 0.25 s. It can be observed that
the total output voltage (Vo) remained regulated at 800 V,
even after the disturbance occurred. The maximum voltage
drop was approximately 20 % of nominal voltage, and the
recovery time to steady state was t = 17 ms. The inductor
current L1 follows the reference satisfactorily, evidencing the
effectiveness of the internal current control loop.

Furthermore, Fig. 11 (a) and (b) show the system response
to an inverse step, from 50 % to 100 % load, applied at
t = 0.25 s. The output voltage remained at 800 V after
the disturbance, with a dip of approximately 16.5 % of the
nominal voltage and a settling time of approximately t = 27
ms. The inductor current again followed the reference with
good accuracy, confirming the robustness of the control even
under abrupt load variations.

Details of the DC-DC converter waveforms can be seen
from top to bottom as follows: VS1, VS2, Vi and Vo in Fig.
12, VC1, VC2 and VC3 in Fig. 13, ii, iL1 and iL2 in Fig. 14,

L1L1

L1L2

L1C1

L1C2

L1C3

L1S1

L1S2

L1D1

L1D2

L1D3

L1Gate Driver

FIGURE 9. Prototype experimental circuit.
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FIGURE 10. Load variation from 100% to 50%: (a) Output-voltage
response and (b) Inductor-current response.
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FIGURE 11. Load variation from 50% to 100%: (a) Output-voltage
response and (b) Inductor-current response.

ii, iS1 and iS2 in Fig. 15, respectively. The corresponding
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(1000 V/div)VS1 A

VS2  A(1000 V/div)

Vi (50 V/div)

Vo (250 V/div)

4 us/div

FIGURE 12. Voltages VS1 (1000 V/div), VS2 (1000 V/div), Vi (50 V/div) and
Vo (250 V/div).

VC1 A(100 V/div)

VC2  A(100 V/div)

VC3 A(100 V/div)
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FIGURE 13. Voltages VC1 (100 V/div), VC2 (100 V/div) and VC3 (100 V/div).
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iL1 (2.5 A/div)

iL2 (2.5 A/div)
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FIGURE 14. Currents ii (5 A/div), iL1 (2.5 A/div) and iL2 (2.5 A/div).

voltages and currents are as follows: VS1 = 400 V, VS2 =
400 V, Vi = 136 V and Vo = 800 V, VC1 = 400 V, VC2 =
400 V, VC3 = 400 V, ii = 11.2 A, iL1 = 5.6 A, iL2 = 5.6
A, iS1 = 5.6 A and iS2 = 8 A. Furthermore, it is noted that
the inductor current is in CCM, as expected, ensuring low
ripple and stable operation, and the capacitor voltages are
balanced around 400 V.

Fig. 16 (a) and (b) show the experimental load step
tests. In the first case, the load was reduced from 100%
to 50% and then increased again from 50% to 100%. In
both situations, the bus voltage quickly recovered after the
disturbance and the control maintained the system stable,
corroborating the results obtained in the simulation. Fig. 17
shows the unbalanced load test, where a 450 W load was

ii (5 A/div)

iS1 (5 A/div)

iS2 (10 A/div)

4 us/div

FIGURE 15. Currents ii (5 A/div), iS1 (5 A/div) and iS2 (10 A/div).
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Vo (400 V/div)
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(a)

Vo (400 V/div)

ii (5 A/div)

Vi (50 V/div)

400 us/div

(b)

FIGURE 16. Waveforms: (a) Load step from 100 % to 50 % and (b) Load
step from 50% to 100%.

connected to the positive pole and a 750 W load to the neg-
ative pole. Even with this asymmetry, the capacitor voltages
remained balanced at 400 V, validating the topology’s ability
to maintain pole symmetry without the need for auxiliary
circuits.

Fig. 18 and 19 show disturbances applied to the input of
the converter. In Fig. 18 (a) and (b), the input voltage was
varied from 100 V to 136 V and then from 136 V to 100 V,
while in Fig. 19 (a) and (b) the input current was stepped
from 8 A to 11 A and from 11 A to 8 A. In both cases, the
bus voltage remained stable, demonstrating the robustness of
the control against source disturbances.
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FIGURE 17. Results unbalanced load test.
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FIGURE 18. Waveforms: (a) Input voltage step from 100 V to 136 V and (b)
Input voltage step from 136 V to 100 V.

Finally, Fig. 20 shows the converter’s efficiency curve. The
prototype achieved efficiency above 98%, remaining above
97% throughout almost the entire operating range. It can be
seen that under light load conditions, semiconductor losses
become more significant, reducing efficiency, while near
nominal power, conduction and switching losses become
more significant.

V. CONCLUSION
This paper presented the modeling, control, and validation
of a non-isolated DC-DC Boost converter with symmetrical
bipolar output, suitable for applications in photovoltaic sys-
tems, energy storage, and fuel cells. The proposed topology
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Vo  (400 V/div)

io (1 A/div)

ii (10 A/div)

2 ms/div

(a)

(50 V/div)Vi

Vo  (400 V/div)

io (1 A/div)

ii (10 A/div)

2 ms/div

(b)

FIGURE 19. Waveforms: (a) Input current step from 8 A to 11 A and (b)
Input current step from 11 A to 8 A.
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E
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FIGURE 20. DC-DC converter efficiency.

offers low input current ripple, simplified operation, and
reduced component count, while contributing to voltage self-
balancing in bipolar DC microgrids without the need for
auxiliary circuitry. A mathematical model was developed
and used to design an efficient two-loop control strategy.
Simulation and experimental results obtained from a 1500 W
prototype confirmed the converter’s dynamic performance
and voltage balancing capability under load variations,
demonstrating its viability for practical applications.
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