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Abstract — Phase Locked Loops (PLLs) with in-loop
Moving Average Filter (MAF) and a Proportional
Integral (PI) controller are effective methods to achieve
synchronization in grid-connected converters, since they
have simple implementation, low computational burden
and excellent filtering capability. However, they are
known to be slow. The reasons are the MAF time delay
and the PI controller tuning method, which makes the
design of a fast control loop challenging. This paper
demonstrates that the second-order Padé approximation
is enough to achieve an accurate model for the MAF, and
presents a controller design technique that results in the
minimum settling times achievable for a MAF-PLL with
a PI controller. Simulation and experimental results
validate the proposed approach.

Keywords — Grid Synchronization, Moving Average
Filter, Padé Approximation, Phase Locked Loop, PI
Controller.

[. INTRODUCTION

Synchronism systems are essential to allow grid
connection of power converters, especially for distributed
generation and renewable energy applications [1]-[4]. If
synchronism is achieved, the inverter can be connected to the
grid and it can synthesize voltage and currents to inject active
power into the system. Moreover, grid codes require the
inverters to provide fault-ride-through capability during
voltage sags or swells, voltage support by means of reactive
power control, and frequency support by means of active
power injection [5], [6]. The most common synchronization
solution to perform these tasks is the Phase-Locked Loop
(PLL), which detects the phase angle and the frequency of
the AC grid fundamental component for single-phase
systems [7], or the phase angle and the frequency of the grid
positive-sequence component for three-phase systems [4],
(71, [8]-

According to Figure 1.a, the classical PLL is composed of
a Phase Detector (PD), a Controller (C) and a Voltage
Controlled Oscillator (VCO) [9]. In PLLs of grid-connected
converters the PD block usually consists of a multiplier type
phase detector [4], [7], [8]-[28], which may be followed by a
filter F(s) inside the PLL loop or preceded by a filter
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outside the PLL loop. The first published literature about
these PLLs did not apply additional filters [21], [26]. This
strategy usually resulted in poor attenuation of the low order
harmonics of v,, increasing the oscillations in output
frequency @, , and consequently augmenting the distortion in
output voltage v . This is the reason why nowadays most
PLLs of power electronics applications incorporate filters.
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Fig. 1. Classical single-phase PLL. (a) Nonlinear model. (b)
Linearized model.

In this way, literature presents many types of filters inside
or outside the PLL loop, such as Notch Filters [8], Delayed
Signal Cancellation (DSC) [20], Second-order Generalized
Integrator (SOGI) [1], [3], [4], Non-Autonomous Adaptive
Filter [13], and Moving Average Filters (MAF) [8], [10]-
[19], [23], [25], [27], [28]. Among the possibilities to
implement these filters, the MAF is a simple with low
computational complexity solution that achieves low output
distortion. The MAF may have a low computational burden
if implemented according to [15]. Some authors locate the
MAF outside the PLL loop, where it acts as a pre-filtering
stage [25]. However, typically the MAF is inside the PLL
loop, which is the case of [8], [10]-[12], [14]-[19], [23], [27],
[28], and of the PLL analyzed in this paper.

Authors of [1] and [8] stated that the main disadvantage of
in-loop MAF-PLLs consists in its slow-dynamic response,
especially for frequency jump cases. The reasons for the slow
dynamic behavior are: i) the MAF time delay, which makes
the design of a fast control loop challenging, and ii) the
controller type and its design procedure adopted.
Consequently, several strategies have been presented in
literature to solve this problem. Authors of [16] used a
Proportional Integral Derivative (PID) controller and
proposed pole-zero cancellation in the design of the PLL,
(settling time of 3.68 grid cycles). In [18] a phase lead
compensator is inserted before the PI controller to reduce the
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phase delay caused by the MAF, and the resulting structure is
denominated MPLC-PLL (1.79 cycles). The quasi type-1
PLL (QT1-PLL) is presented in [17], where the PI controller
is substituted by a simple gain, and feedforward and
feedback loops are added to the system (1.5 grid cycles).
Since the QTI1-PLL response is poor when DC offset and
odd harmonics occur in the PLL input, [19] proposes the
hybrid PLL (H-PLL), which consists of a QT1-PLL with
DSC filters before the PLL loop to eliminate these
components (2.0 cycles). Finally, the differential MAF-PLL
(DMAF-PLL) of [27] improves the dynamic response by
reducing the MAF window size to one sixth of the
fundamental period and by adding derivative filters to
eliminate second harmonic components in the PLL input
(1.27 cycles). However, the performance of the DMAF-PLL
is restricted to specific grid harmonics sequences, i.e., -5th,
+7th, -11th, +13th, etc. The performances of MPLC-PLL,
QTI-PLL, H-PLL and DMAF-PLL are compared in [28].
Most of these strategies increase the complexity of the MAF-
PLL to achieve a better dynamic response. However, this
paper shows that it is possible to obtain a fast-dynamic
response with a simple in-loop MAF-PLL by using an
adequate low-order approximation of the MAF model and by
refining the PI controller tuning method. An in-loop MAF-
PLL is considered to be fast if it achieves settling times
around two grid cycles when a phase jump is applied in the
input voltage.

The first contribution of this paper consists of obtaining an
adequate approximation for the MAF. The MAF is originally
a discrete-time filter with a high order transfer function, and
thus the complexity of the PLL design is high [11]. To
simplify the analysis and tuning, the MAF-PLL is often
designed in continuous-time and then implemented in
discrete-time domain [16]. Since the continuous-time model
of the MAF presents an exponential function, a series
expansion of this term is typically made to obtain a rational
expression. As will be detailed in this paper, this rational
expression is used to widen the number of available control
system design methods and analysis tools for the PLL [29],
[30], as well to enable the derivation of a low-order transfer
function for the MAF, which simplifies the control system
analysis. In this way, authors of [23] did this expansion by
using Taylor series and by truncating the series in the first-
order term, resulting in a unitary gain of the MAF. Thus, the
dynamics of the MAF is neglected in [23], resulting in a slow
PLL (14.01 cycles). On the other hand, authors of [16]
improved the MAF model of [23] by using a first-order Padé
approximation in the continuous-time domain (3.68 cycles).
However, as it will be shown in Section III of this work, the
first-order Padé approximation also does not allow the design
of a fast-dynamic response MAF-PLL, since this
approximation order results in significant amplitude and
phase errors near the crossover frequency. To solve this
issue, this paper evaluates several orders of the Padé
approximation for the MAF and demonstrates that the
second-order approximation is enough to achieve an accurate
model for the MAF which allows fast-dynamic response
designs.

The second contribution of this paper consist of improving
the PI controller design. This paper uses a PI controller as the
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C(s) function of Figure 1. Typically, this controller is tuned
by the Symmetrical Optimum (SO) method, which consists
of maximizing the phase margin of the control system, as can
be seen in [16], [21], [23] and [25]. However, SO technique
does not lead to the minimum achievable settling time when
a phase angle step (jump) is applied at the PLL input. The
reasons are explained by [31], which states that for control
systems that cannot be reduced to the standard second-order
system, the correlation between the frequency response and
the transient response is more complex, and thus the transient
response cannot be easily predictable from the frequency
response. Moreover, for the PLL system under analysis the
real zero is located near the complex dominant poles, and
thus the transient response is substantially affected when
compared to the response of the standard second-order
system [32], [33]. Thus, for the PLL control system of this
paper the phase margin represents more a robustness index
than a transient response parameter to be chosen for
achieving the desired performance. In this way, this paper
presents a PI controller tuning method for a MAF-PLL which
aims at minimizing the settling time, while the phase margin
is observed only to ensure the control system stability.

Finally, by considering the MAF model with the second
order Padé approximation together with the proposed PI
controller tuning method, a fast-dynamic response in-loop
MAF-PLL is achieved. Settling times around two grid cycles
are obtained for phase jumps and for frequency step
variations at the grid voltage.

This paper is organized as follows. Section IT derives the
PLL linear model that will be used for the controllers design.
Section III presents the MAF model by using the Padé
approximation. In Section IV, the continuous-time PI
controllers are tuned for each MAF approximated by five
different Padé orders. Simulations are made to evaluate the
modeling error caused by the Padé approximation order.
Finally, in the experimental setup of Section V, the designed
PLLs are implemented in a Digital Signal Processor (DSP),
validating the model and the design criterion proposed in this
paper.

II. PLL MODELING

Figure 1 shows the single-phase PLL adopted in this
paper, where @ is the grid nominal frequency that has the
function of keeping the output frequency near the grid
frequency during the initialization of the PLL. This
frequency is also known as the center frequency in the PLL
theory [9]. As can be seen in Figure 1.a, the VCO block is
responsible for generating the sinusoidal signals v, (in
phase with the input signal v,) and v, (in quadrature with
the input signal v, ). This is done by integrating the frequency
signal @, , resulting in the phase angle &, , which will be
used to synthesize v, and v, . The transfer functions of the
filter and of the PI controller are respectively given by F(s)
and C(s).

The input (v,) and output (v, ) voltage signals are
respectively given by (1) and (2), where A4, is the peak of
the grid voltage fundamental component, ¢, is the grid
fundamental frequency, 4 is the harmonic order of the grid
voltage, ¢, is the phase of the fundamental component of v,,
and ¢, isthe phase of v, .

115



v, :Alsin(a)lt+¢1)+iAhsin(ha)lt+¢h), (1
—
v, =cos(w,t+¢,)=cos(b,). )

If v, follows v (ie., if @, =, ) then the output of the
PD block is composed of a constant term and of sinusoidal
terms, according to (3), where the term n represents the sum
of all harmonics generated by the multiplier [15], [16].
Moreover, if small values of ¢, are considered, then
sin(¢,) = ¢, , which linearizes the PD block, as can be seen
in (3) and in the PLL model of Figure 1.b.

Ve = 0.54, sin (4, ) +n=0.54, sin(¢1 —4,)+n,

Vo 054, (4 —8,)+n. 3)
The controller of Figure 1 forces the difference between
@, and ¢, to be zero (ie., ¢, — 0). Moreover, the signal
n represents a disturbance to the linearized system, to be
attenuated by F(s), C(s), and by the integrator of the
VCO block. This signal also influences the behavior of 6,
in the linearized model of Figure 1.b and exists even when v,
is purely sinusoidal. For this case n presents only a
component whose frequency is 2@, with amplitude 4,/2.
Thus, if 7 is not properly attenuated, harmonic distortion will
appear in v, . This issue is detailed in next Section, which
analyses the MAF performance with respect to the
attenuation of n. Since the controller of Figure 1.b affects the
attenuation of n, and since the filter affects the PLL dynamic
performance, Sections I1T and IV assume these two blocks as
a single block to be designed.

ITI. MODELING THE MAF

This Section describes the MAF in the discrete and in the
continuous-time domains.

A. MAF Description in Discrete-time

The calculation of the N-th order MAF output (v, ) is
based on the arithmetic mean (or simply on the average
value) of the last N stored samples of the signal v, ,asitis
described by [15], i.e.,

N
v (k) =(UN) D v, (k= j+ D) =SH)/N. (4)
Jj=1
The parameter N is also known as the window size of the
MAF. In (4) the variable S(k) is the sum of the last N stored
samples and requires N-/ sum operations to be calculated. A
more efficient way to compute S(k) is by means of (5),
S(k) = S(k - 1) + vmult (k) - vmuh‘ (k - N) : (5)
Equation (5) avoids N-/ sum operations, since it employs
the value of S(k-1) calculated in previous sampling time, and
the current sample v, ,(k) minus the oldest value
v,...k—N). By replacing (5) into (4), (6) is easily
calculated by
V/- (k) = (1// N) ) [S(k - 1) + Vmu]t (k) - vmult (k - N)] : (6)

Thus, the discrete-time transfer function of a N-th order
MAF [11] is derived from (6) and given by
v, (2) 1 1-zV
Flue(2)= ! = o -
Vmult (Z) N 1 -z

(7
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Considering the sampling frequency equal to f,, N is
given by
N=f1f, ®)

where f, is the MAF base frequency. Ideally, the

harmonics of v,, which are multiple of #, have infinite

mult

attenuation, as can be seen in Figure 3 (solid line curve).
When v, contains only odd harmonics, the MAF attenuates

all the frequency components multiples of 2f . Thus,
substituting f, =2 in (8) results N = f,/2f, . On the other
hand, input signals v, with DC or odd harmonics require
f,=/f . If the grid frequency varies then attenuation of

harmonics provided by the MAF will decrease. In this case,
an adaptive MAF must be implemented by varying the
switching frequency or by changing the window size, as it is
done in [10].

Figure 2 shows the discrete-time nonlinear and linearized
models of the PLL with the MAF and the PI controller,
where the latter and the VCO integrator have been
discretized by applying the bilinear (Tustin) transformation,
where 7 is the sampling period. This paper adopts this
discretization method because it preserves the stability when
mapping from the continuous to the discrete-time [34].

Phase detector

Controller Integrator v,
k,,+k,%(”1 e AR 12 ,
| (z-1) 2 (z-1 o ,

[2]
(a)
Controller Integrator

I (z+Dao o, [T, (z+1) 9

k +k ; -y
2 (-1 ? 2 (z-1
2]

(b)
Fig. 2. Discrete-time single-phase PLL with the MAF. (a)
Nonlinear model. (b) Linearized model.

B. Padé Approximation for the MAF in Continuous-time

The main objective of this Section is to obtain a reduced
order MAF model in continuous-time by applying the Padé
approximation. In this way, the continuous-time version of
(4) is given by

1 L F
v 0= | vau(0)dr = al sz =] (r)de 9)
where 7, is obtained by rearranging (8), resulting in
T =N/f.=1/f . Applying the Laplace transformation to (9),
the MAF transfer function is

Fo ()= v, (s) 1 l_exp(—sTH) _l—exp(—s]jz) (10)
Ty ) T s s - .

n

n 1T,

Authors of [33] stated that for most of analytical tools
used for evaluation and design of control systems, the plant
plus controller are described by rational functions or by a
finite set of differential equations with constant coefficients.
For instance, tools such as the Routh-Hurwitz criterion are
restricted to rational transfer functions [29]. The root-locus
technique is also easily applied to systems with rational
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transfer functions [29]. Linear—quadratic—Gaussian (LQG)
regulator and pole placement do not work properly if time
delays are present [30]. In this way, to not restrict the control
system available tools and analysis, typically the pure delay
of (10) is expressed by a rational function. This paper uses
the Padé approximation of the pure delay presented in [35],
considering that the numerator and denominator have the
same order p, resulting in

1 & (2p—m)! m

— >y 2 (=sT
12,,1:0711!(2—111)!( g ") _ P (sTn)
i » (Zp—m)! (vT )m Pp(—an)
1252 m(2-m)> "

I
|
<
—~
—_—
[
~—

exp(—sT,,)

Substituting (11) into (10), the MAF transfer function
with the Padé approximation is

P (2p_m)’ m_‘ﬁ- (ZAD m)' ) )
’”Z:‘:)m!(z_”’)'( ) %Z)m!(2—m)l( sT,)
For(s)= » (2p—m)l B s
ST",”Z:‘]mi@—m);( )
_ P (=5T,) =P, (sT,)
Fyur (5) TP (5T ) (12)

As the order of the Padé approximation p increases in
(12), F,,.(s) tends to the full order discrete-time transfer
function described by (7). This can be seen in Figure 3,
where the Padé approximations from the 1% to the 3" order
are shown for a MAF with N=100, f,=120Hz and
f.=12kHz.
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Fig.3. Bode Diagram of the discrete-time MAF for N=100, f,=120
Hz, f;=12 kHz and of the continuous-time MAF transfer functions
using the 1% to 3" order Padé approximations.

The zoomed views of the magnitude and phase plots in
Figure 3 (shaded areas) show that, as the frequency increases
from f., to f.,, the first-order approximation of the
continuous-time MAF model deviates from the original
discrete-time MAF transfer function. Since the PLL
crossover frequency typically lies in the shaded areas of
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Figure 3, this means that as the crossover frequency
increases, the model mismatch of the first-order
approximation also increases (see dashed line in Figure 3).
Consequently, fast-dynamic response PLLs (i.e., with higher
crossover frequencies) must not adopt the first-order
approximation to model the MAF, as it will be confirmed in
the results of next Section. It must also be noted in Figure 3
that, by increasing only one order of the Padé approximation
to p=2, the amplitude and phase errors are significantly
reduced (see magnitude and phase errors for f., and f.,,
dotted lines in Figure 3). For instance, for f., the
magnitude and phase error for the first order approximation
are respectively 147.96% and 11.05%, while for the second
order approximation these errors decrease to respectively
4.19% and 0.33%.

As can be seen in Figure 3, the Padé approximation of
the pure delay is a good choice for the frequency domain in a
limited range of frequency. Moreover, the use of the Padé
approximation allows to compare the proposed method with
the existing literature MAF-PLL designs.

IV. TUNING OF THE PI CONTROLLER

This Section details the proposed tuning method of the PI
controllers and the criteria to select the Padé approximation
order for the single and three-phase MAF-PLLs.

A. Tuning Method Applying the Continuous-time Linear
model
The PLL continuous-time linearized model is obtained by
substituting (12) into the F(s) function of Figure 1.b, and by
considering the PI controller described by
Cs)=k,+k[s. (13)

The PLL design procedure of this paper aims the
minimum possible settling time for an arbitrary order p of
F,,,-(s). Considering (12) and (13), the minimum order of
the closed loop system to be designed in continuous-time is
three, obtained for the 1% Padé approximation order (i.e.,
p=1). As p increases, the design complexity also increases,
and it becomes harder to obtain algebraic expressions that
relate the proportional and integral gains with the settling
time. Therefore, the controller design in this paper will be
done using a graphical procedure obtained by exhaustively
simulating the linearized model of Figure 1.b for a unit step
input. The procedure consists of first calculating the settling
time by performing a gain sweep on k, and k. Next, the
optimal values of the proportional and integral gains that
minimize the settling time are graphically evaluated,
similarly as it is done by [22]. Additionally, computation and
graphical analysis of the phase margin and the overshoot
values are also performed. Though the presented controller
tuning method may not require the time delay of (10) to be
approximated by rational functions, the Padé approximation
of (12) is applied in a way to extend the proposed model to
any controller or any simulation software which cannot
directly deal with exponential functions in control systems.

The tuning method will be shown for the second-order
Padé approximation. In this way, for f, =60Hz, p=2 and
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T =1/120s, Figure 4 shows the plot of the continuous
domain settling time 7. as a function of the gains , and k.

All settling times are calculated for the +2% final value
range. The minimum settling time is shown in Figure 4.a and
emphasized in the 2D zoomed view of Figure 4.b by the ‘“+’
symbol. This point is achieved for k,=312 and £ =16192,
resulting in 7, = 2.06 cycles.

tsc(cycles)

x 10
m==kp=300
remes kp=310 -
— kp=312
=== kp=320
15 16 17 18 19
k x10*

(b)

Fig. 4. Settling time for a unit step input in continuous-time and a
2™ order Padé approximation of the MAF, f, =60Hz and
T, =1/120s . (a) 3D view. (b) 2D plot for four values of kp.

Figure 5 shows the plot of the continuous-time domain
overshoot and phase margin as a function of the gains k, and
k.. The designed controller results in the overshoot of

M,=48.08% in Figure 5.a and in the phase margin of
34.82° in Figure 5.b, both highlighted by the “+” symbol.

B. Selection of the Padé Approximation Order and
Validation of the Tuning Method in the Linearized Discrete-
time Model

Using the proposed tuning method of Section IV.A, the
optimized gains k, and k; are now determined in continuous-
time domain for different values of p. The PLL with the
original full order discrete MAF of Figure 2.b is simulated
using MATLAB® and it is compared to the continuous-time
reduced order linearized PLL of Figure 1.b for C(s) and F(s)
respectively given by (12) and (13). Comparison of settling
times will define which is the minimum Padé approximation
order that adequately represents the discrete-time MAF.
Considering the PI controller designs based on Padé
approximation from the 1% to the 5™ order, the results are
summarized in Table I, which shows:
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- k, and k gains, designed in the continuous-time
linearized model, and obtained according to the minimum
settling time criterion proposed in Section IV.A. For the first-
order of the Padé approximation, the design for the
Symmetrical Optimum (SO) method is also shown;

- the PLL settling time #., simulated in MATLAB® for
the continuous-time linearized model of Figure 1.b, with
F(s) defined by (12);

- the PLL settling time ¢, , the gain margin G, and the
phase margin P, , simulated in MATLAB® for the full order
discrete-time linearized model of Figure 2.b.

Again, all settling times are referred to the £2% final
value range for a step response.
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Fig. 5. Response for a unit step input in continuous-time and a 2™

order Padé approximation of the MATF,
T, =1/120s . (a) Overshoot. (b) Phase Margin.

fi=60Hz and

Table T shows that for the proposed tuning method the
settling time of the first-order Padé approximation in the
discrete-time model is 3.24 cycles of v, while the value
obtained for the Ilinearized model of Figure 1.b is
t-=1.99 cycles. This discrepancy confirms that the first-
order approximation does not model adequately the MAF for
fast-dynamic responses PLLs. As stated before, this is due to
the errors of the 1% order Padé approximation at the
crossover frequency region, when compared to the full order
discrete-time MAF. The MAF continuous-time model
mismatch for the first-order approximation can be seen in
Figure 3, where the crossover frequency of the continuous-
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time model using
Sy =28.56Hz.

The analysis of Table I also shows that, from the 2" order
on, the settling time of the continuous-time and discrete-time
models are the same. Moreover, the gain and phase margins
are enough to guarantee the control system stability. Table I
also confirms that for the in loop MAF-PLL with a PI
controller, MAF approximations of order higher than two do
not result in significant improvements on the dynamic
response. This result is compatible with [11], where the full
order MAF discrete-time transfer function with N=100 is
employed but settlings times around two grid cycles are
achieved. That is, if settling times lower than two cycles are
desired for a the proposed PLL topology, more complex
control strategies, which are out of the scope of this paper,
must be adopted.

For instance, Figure 3 shows that by using the proposed
tuning method and the second-order approximation, the
crossover frequency is f., =24.45Hz and the MAF
modeling errors are very small. In summary, considering the
simplicity of the transfer function, the 2™ order
approximation is chosen in this paper for the PI controller
design, since higher orders would only bring complexity to
the control system design without improving the dynamic
response.

the proposed tuning method is

TABLE 1
Simulation of the Single-phase Discrete-time Linearized
PLL for f, =60Hz, f, =12kHz, N =100

cycles and 45.25°) match with the results of the discrete-time
model (3.71 cycles and 43.57°). In summary, to avoid
unacceptable modeling and design errors, the first-order Padé
approximation may be only used for slow-dynamic response
MAF-PLLs.

The proposed tuning method may be applied for the most
typical grid frequencies f, =50Hz and f, =60Hz, as well
for the most typical MAFs found in literature ( f, = f, and
f,=2f). In this way, PI gains are obtained in continuous-
time and are shown in Table II, where the parameters 7, ,
G,, G,and f. were obtained for a discrete-time
implementation with f; =12kHz. As it is stated in [16],
since typically the PLL bandwidth is much lower than its
sampling frequency, the continuous-time design can provide
an accuracy as good as that achievable in discrete-time
domain. In any case, design guidelines for discrete-time
analysis and tuning are shown in [10], [11] and [12]. In [12]
an existing pair of discrete controller gains can be easily
readjusted for other operation conditions, including new
sampling frequencies values.

TABLE 11
Controller Gains for Single Phase Discrete-time
Linearized PLL

1, g, Pade K, ty, G, P, f.
Order (cyc) (dB) (deg) (Hz)
50 IS 159 3300 6.47 8.23 31.75 11.93
50 Hz 2 130 2800 4.10 991 34.88 10.18
Hz 100 I 319 13300 3.23 8.27 31.78 2393
Hz ond 260 11290 2.05 9.97 34.88 20.38
60 1st 191 4780 6.46 8.23 31.68 14.33
60 Hz ond 156 4064 4.09 991 34.76 12.23
Hz 120 ™ 380 19120 3.24 8.35 31.92 28.56
Hz ond 312 16192 2.06 10.01 35.02 2445

Padé k k ts(‘ tsg Gm I’m
P i

Order (cye)  (cye)  (dB)  (deg)

1"-SO 200 8334 3.74 3.71 14.26 43.57
1 380 19120 1.99 3.24 8.35 31.92
ond 312 16192 2.06 2.06 10.01 35.02
3 312 16219 2.05 2.05 10.00 34.99
4 312 16240 2.04 2.05 10.00 34.97
5M 312 16240 2.04 2.05 10.00 34.97

If the PI controller is tuned according to the SO method,
the design proposed in [16] is based on (14) and (15), where
A; is the amplitude of the fundamental component and b is a
design constant which should be selected according to the
required transient response and stability margin. Assuming
60 Hz as the grid nominal frequency, the grid fundamental
component 4, =1.0V, b=24 and 7, =1/120s, then for
the single phase model of Figure 1.b the controller gains are
k,=200 and k, =8333.34.

k,=2(2/AbT)),
k. =2(4/4b°T)).

(14)
(15)

A slower dynamic PLL is achieved for the SO method and
the 1% order approximation is enough to represent the MAF
model. This can be noted in Figure 3 for the crossover
frequency f., =9.44Hz obtained for the SO tuning
method. As can be seen in the Table I, the settling times and
the phase margin obtained in continuous-time domain (3.74
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Despite they must not be used for fast-dynamic responses
MAF-PLLs, the gains for the first order Padé approximations
are also shown in Table II. They are only presented because
they will be used for the experiments in Section V.

The extension of the proposed tuning method to the three-
phase case is shown in next Section.

a ®
+
vib 4 %vmult
& \z)
ViC b ® /+
Voa vnh VocT
COS COS COS

0 I —27/3] +27/3
90

Fig. 6. Three-phase multiplier

C. Extension to Three-phase PLL

The previous single-phase results may be extended to
three-phase PLLs if some modifications are made in the
control system of Figures 1 and 2. The first one consists of
generating the equally displaced three-phase VCO signals
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v, ,.v, , according to Figure 6 [24]. The multiplier output
is obtained by means of the dot product of the input
signals v, v, ,.v, . and the VCO voltages v, v v, ..

Since the three-phase dot product gain is 3/2 [24] and the
single-phase multiplier gain of Figure 1.b is 1/2, the
controllers gains derived for the single-phase PLL in Table I
must be divided by 3 to keep the loop gain unchanged. It
must also be clarified that for both single and three-phase
PLLs, the amplitude of the input signal A4; is considered
unitary, and this can be achieved by normalizing the input

signals by their nominal fundamental peak amplitude.

v

[

v

mult

V. EXPERIMENTAL RESULTS

The PLL of Figure 2.a was implemented in the
TMS320F28335 Texas DSP for the three-phase structure of
Section IV-C. The PLL input signals (v,) were generated in
the DSP, and data were post processed in MATLAB®.

By using the tuning method proposed in this paper, the PI
controllers (designed for the first and second-order Padé
approximation of the MAF) are tested, and then their
performances are compared to the PI controller adjusted by
the SO for the following cases:

e Case A: f,=60Hz, f =120Hz and f, =12kHz
(N =100);

e Case B: f,=50Hz, f,=100Hz and f, =10kHz
(N =100);

e Case C: f =50Hz,
(N =200).

f,=50Hz and f, =10kHz

In all cases a phase jump of 40° and a frequency jump of 5
Hz are applied for the three input voltages. The PI controllers
gains of Table 11 are divided by three for the three-phase
PLL, as stated in Section IV-C.

Figures 7, 8 and 9 show the results for the Proposed
Tuning (PT) method based on the first and second-order
Padé approximations for the MAF, and for the Symmetrical
Optimum (SO) technique considering the first order Padé
approximation. Table IIT summarizes the experimental
results for the phase jump case, for different fundamental
frequencies and different MAF window sizes. These results
confirm again that the behavior of the system designed for
the 1% order Padé approximation is significantly different
from that achieved for the discrete-time MAF if the
minimum settling time criterion is adopted (fast-dynamic
response PLL), since the mean of the errors of Table III is
64.92% for ¢ and 33.84% for M ,. Furthermore, it is
possible to note that by increasing the Padé approximation to
the second-order, the designed and experimental values of
the settling times are almost equal, and the mean of the errors
between the continuous and discrete-time models are reduced
to 1.38% for ¢, and 0.43% for M , .
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On the other hand, if the PLL is designed according to SO
method for the 1* order Padé approximation, the mean of the
errors for the settling time and overshoot are 0.95% and
2.57%, respectively. These results confirm that for a slow-
dynamic response MAF-PLL, the 1% order Padé
approximation represents a feasible model for the MAF.

In summary, the results obtained in Table III demonstrate
that the second-order linear approximation of the MAF is
adequate to model the non-linear PLL with the full order
MAF and the PI Controller of Figure 2.a for different
window sizes and fundamental frequencies, and fast-dynamic
response.

The frequency jump test for the three-phase case resulted
null frequency and phase errors. The mean f, settling times
for N=100 are equal to 2.21 cycles (SO), 1.39 cycles (1*
order PT) and 1.58 cycles (2™ order PT). The mean fo
overshoots for N=100 are equal to 2.75 % (SO), 4.38% (1*
order PT) and 3.94% (2" order PT).

Figure 10 compares the continuous-time linearized PLL
(simulation of Figure 1b) with the discrete-time nonlinear
PLL (experimental results, Figure 2.a) for the 40° phase
jump of Case A. The PI controllers are tuned using the
Proposed Tuning Method and the 2™ order Padé
approximation for the MAF. Results show good agreement
between the continuous-time linear model and the real PLL.

V. CONCLUSION

This work has analyzed the modeling and the design of
PLLs which use Moving Average Filters inside the Phase
Detector and PI controllers in the Loop Filter block. This
paper has shown that it is possible to obtain a fast-dynamic
response stable MAF-PLL if the MAF is modelled by using a
second-order Padé approximation, and if the controller gains
are selected in a way to minimize the settling time instead of
maximizing the phase margin. Simulation and experimental
results of single and three-phase cases have shown that the
proposed model and tuning method allow achieving settling
times of approximately two grid cycles for phase jumps
when f, =2f,, with null frequency and phase errors,
validating the proposed approach.
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TABLE III
Experimental and Designed Results of 7 and M, for 40° Phase Jump

Case A (60Hz, N=100) Case B (50Hz, N=100) Case C (50Hz, N=200)
PLL design 2"order, 1"order, 1*"order, 2" order, 1"order, 1"order, 2" order, 1"order, 1% order,
PT PT SO PT PT SO PT PT SO
. (ms) 34.25 33.17 61.33 41.00 39.60 73.60 82.40 79.40 147.20
Designed fsc eycles) 2.06 1.99 3.68 2.05 1.98 3.68 412 3.97 736
(continuous-
time) M, (%) 48.08 39.88 33.84 48.39 39.91 33.78 48.14 39.78 33.83
(ms) 34.67 54.67 61.87 41.54 65.36 74.29 83.71 130.92 148.73
P (cycles) 2.08 3.28 3.71 2.08 3.29 3.71 4.18 6.55 7.44
SD
Experimental fj/g’r 1.23 64.82 0.88 1.32 65.05 0.94 1.59 64.88 1.04
(discrete-time)
(%) 48.38 53.51 34.72 48.51 53.57 34.67 47.94 52.95 34.67
M, Error
(%)* 0.62 34.18 2.60 0.25 34.23 2.63 0.41 33.11 2.48

*Error (%) = 100 x |(experimental result - designed value) / designed value|

= 1Slorder PT
—2"%rder PT| |
== 1Slorder SO

-10 i i i i 20 i i i i
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Time (s) Time (s)

N
L 64

o

=
o

58 i i i i
0 0.02 0.04 006 0.08 01 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a) (b)
Fig. 7. Experimental results for Case A ( f, = 60Hz, f, =120Hz, N = 100) . Output phase angle 6, (top) and estimated frequency
/., (bottom). (a) 40° phase jump. (b) SHz frequency jump.

= 1%order PT | |
—2"%rder PT

== 15rder SO | |

-10 i i i L i -20 i i i L i 1
0 0.02 0.04 006 0.08 01 012 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Time (s) Time (s)

f, (Hz)

48 1 L 1 L 1 L
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 O. 0.12 0.14

(a) (b)

Fig. 8. Experimental results for Case B ( f, =50Hz, f, =100Hz, N = 100) . Output phase angle &, (top) and estimated frequency
/., (bottom). (a) 40° phase jump. (b) SHz frequency jump.
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Fig. 9. Experimental results for Case C ( f, =50Hz, f, =50Hz, N = 200) . Output phase angle &, (top) and estimated frequency
/., (bottom). (a) 40° phase jump. (b) SHz frequency jump.
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Fig. 10. Output phase angle &, for case A and a 40° phase jump.

Simulation of continuous-time linear PLL (dotted line) and

experimental results for nonlinear model (solid line).
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