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Abstract – In this work, it is presented a new
direct discrete-time robust adaptive PI (Proportional
Integral) Controller for grid-injected current control
loop of a voltage source converter with LCL filter.
The mathematical background is based on Robust
Model Reference Adaptive Control theory. However,
the proposed controller is straightforward, it does not
need a reference model and has capability to track
directly currents reference. This approach simplifies
significantly controller design, resulting in a reformulation
of parameters vector used for adaptation of adjustable
gains. It turns the controller robust to unmodelled
dynamics, while avoid the complexity inherent to the
conventional high order adaptive controllers for grid-
connected power systems. Besides, it is highlighted that
proposed controller does not need resonant controllers
for grid disturbance rejection, or require any knowledge
of grid parameters, lines impedance or load power
demand. Also, due to its simple structure, it is easily
implemented and does not require a high processing
capacity. Furthermore, the effectiveness of the control
strategy in terms of reference tracking, harmonics content
and robustness to the grid impedance variation is
corroborated through experiments.

Keywords – Computational Burden Reduction, Discrete-
time Controller, Grid-tied Converters, LCL Filter, Robust
Adaptive PI Controller.

I. INTRODUCTION

Since the beginning of Second Industrial Revolution, the
demand for electrical energy has increasing significantly [1],
supplied by conventional fuel technologies [2]. However,
natural resources reserves, such as coal and oil, are limited and
have fast been ending, being necessary adhere to alternative
power generation forms.

As renewable energy systems can reduce relevantly the
dependence on fossil fuels for electricity generation [3]–[5]
and decreases carbon emissions, nowadays there is a great
demand for renewable energy generation [6]. Due to the
multi-benefits of these systems [7], [8], there is an increasing
investment on clean energy, such as solar, wind and others
renewable sources [9]. It is achieved thanks to power
electronics technologies development, which raises efficiency
of renewable energy generation [10], [11].
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Generally, VSC (Voltage Source Converters) are used to
integrate the clean energy source to the electrical grid [12],
with AC filters as interface. These filters are employed
to reduce THD (Total Harmonic Distortion), produced by
converter switching [13], once the quality of power is always
a concern for the high penetration of grid-connected power
systems [14]. It guarantees that power injection is in
compliance with specific grid-connected standards [15], such
as IEEE 1547 [16], standard for interconnecting distributed
resources with electric power systems. Among the AC filters,
L and LCL configurations are the two most used solutions,
where the LCL filter presents a set of advantages, such as:
higher attenuation (−60dB/dec in face of −20dB/dec of L
filter) and smaller reactive components, which implies in a
lower cost, weight, switching frequency and reactive power
consumption in the fundamental frequency of the grid [17].

In this bias, several control laws for internal LCL current
loop control and external voltage loop control of the grid-
connected VSC have been proposed. The internal loop
is used to ensure that injected currents are in phase with
grid voltage, with proper amplitude, providing active power.
Meanwhile, the external loop is used to voltage source
control. For internal current loop control, which is the
main focus of the investigation in this work, stand out the
following approaches: PI (Proportional-Integral) Controller
[13], PR (Proportional-Resonant) Controller [18], Deadbeat
Controller [19], Feedback Controller [20], Optimal Controller
[21], Robust Controller [22], Sliding Mode Controller [23],
Predictive Controller [24], and others. Although, these are
well-accepted control methods for LCL currents control, a
critical drawback of them is their limited range of operation,
once these controllers have fixed gains. This issue turns
relevant when the grid changes its conditions, from strong to
weak and vice-versa, due to grid impedance variation [25].
This variation affects directly the resonance peak frequency of
LCL filter, which consequently occurs at uncertain frequencies
and can turn the control loop unstable. Among the fixed gains
controllers, robust controllers are most successful methods
to deal with grid-connected power systems, because they
are designed for an operation range. However, to ensure a
good performance, it requires a very accurate mathematical
model of the plant and its control design can be grounded on
complex mathematical theories, such as LMI (Linear Matrix
Inequalities)-based controllers (see [26]). As alternative,
adaptive controllers have been proposed to deal with large
grid impedance variations and variable operation points. Some
interesting works were shown on [27]–[30].

In [28], a discrete-time direct MRAC (Model Reference
Adaptive Control) was proposed to control the converter-
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side currents of a static grid-connected converter with LCL.
In this work, authors designed a second order reference
model, using a Least Square-based algorithm for parametric
adaptation. This control approach shown that grid-side
currents were properly injected on the grid, supported by
experimental results. By the other hand, in [27], [29], the
control of grid-injected currents were made over grid-side
currents. In these works, direct RMRAC (Robust MRAC)
methods were proposed, also with adaption law based on Least
Squares algorithms. In these works, third order reference
models were designed. The presented results shown that
controllers are robust to the grid uncertainties and also
reject exogenous disturbances without need conventional PR
Controllers. However, both controllers require high processing
capacity, once the parametric adaptation law is based on Least
Squares algorithms, which has a relevant amount of matrices
multiplications. By the other hand, in [30], a discrete-time
state-feedback RMRAC was proposed. In this approach,
the adaptive identifier was a gradient-type algorithm, which
implies significantly less computational burden. Although the
presented results indicate robustness and fast current tracking,
it also depends on a third order reference model. Due to
the use of a high order reference model on control design,
the control law still have to calculate too many gains online.
Furthermore, as the controllers were designed to the grid-
injected currents control, in αβ coordinates, then there are
twice the number of gains to calculate them online. This high
quantity of operations can turn the controller infeasible in a
restrict memory microcontroller, besides make the design and
implementation a hard task. In addition, as the control is based
on state-feedback, it requires a large set of sensors, to avoid
implement state observers.

In addition to adaptive controllers based on the MRAC
theory, there are a large amount of controllers that are
developed using intelligent or iterative techniques. In this
bias, some interesting works are: adaptive PI based on Fuzzy
techniques [31], Neural Network PI Controller [32], robust
controller optimised by genetic algorithms [33], [34] and so
on. However, these controllers have a heavy and complex
mathematical background, to design and implement them.

Thereby, in alternative to the discussed studies, in this
work is presented a novel direct discrete-time robust adaptive
PI controller. The controller is developed using RMRAC
theory, completely on discrete-time. However, an unitary
reference model is considered on controller design. In
practice, it means that controller tracks straightforwardly
the reference currents and there no need to implement the
reference model. With it, a great portion of operations required
by RMRAC methods are avoided, simplifying significantly
the controller design. Mathematically, this approach results
in a reformulation of parameters vector used for adaptation
of adjustable gains. It turns the controller robust to
unmodelled dynamics, while avoid the complexity inherent to
the conventional high order robust model reference adaptive
controllers, consequently implying in a lower computational
burden. The development is presented on the text in a
light way, with focus on implementation concepts and the
mathematical proofs (robustness analysis, signal limitation
and controller stability proof) are available on Appendix A.

Moreover, the controller is based only on output-
feedback, requiring a reduced set of sensors, for grid-side
currents. Furthermore, the controller does not need multiloop
controllers for grid disturbance rejection, or require any
knowledge of grid parameters, lines impedance or load power
demand. Also, due to its robust adaptive nature, it allows
a considerable range of values for design parameters, as
long as it respects the controller’s restrictions, provided from
robustness analysis. This controller is applied on grid-side
currents control of a static 3-wire grid-connected VSC with
LCL filter. A comparison of proposed controller and a robust
adaptive controller is provided, assessing their performance
and computational burden experimentally.

The regarding of this work is given as follows: on Section
II, the LCL model is shown. Next, on Section III, the
mathematical development of robust adaptive PI controller is
presented. In Section IV, the experimental results are shown,
besides a performance and computational burden comparison
with an RMRAC. Finally, on Section V, the conclusions of this
work are given.

II. MATHEMATICAL MODEL OF LCL FILTER

The modelling of static 3-wire grid-connected VSC with
LCL filters is well discussed on [27]–[29]. Then, here, the
model will be briefly presented. In the Figure 1, the electrical
diagram of complete system is presented, including primary
energy source, converter, LCL filter, the grid, microcontroller
DSP (Digital Signal Processor) and sensors. Firstly, to turn
easier the modelling, the converter switches are considered
ideal and the grid is assumed to be predominantly inductive.
The grid, vd , is modelled as a sinusoidal source, in series with
an inductance Lg2 and parasitic resistance Rg2. It is highlighted
that LCL circuit is represented by the Thevenin equivalent in
relation to the PCC (Point of Common Coupling) [29].

The LCL filter is compounded by converter-side inductors
Lc, with associated parasitic resistance Rc, capacitors C and
grid-side inductors Lg1, with associated parasitic resistance
Rg1. The total grid-side inductance Lg and total grid-side
resistance Rg are given by Lg = Lg1 +Lg2 and Rg = Rg1 +Rg2,
respectively. In Figure 1, the sensors are also shown as inputs
on DSP. The sensors are used to measure grid-side currents
(iga, igb and igc) and voltage at PCC (vab and vbc). In addition,
Vcc is the DC link voltage, which represents the primary energy
source that can be a solar panel, wind turbine or other clean
energy source. Moreover, DSP stores the measures, computes
the control law and synthesises it through SVM (Space Vector
Modulation) technique.

It is complex to design a controller using three-phase
LCL model in abc coordinates, once their parameters are
strongly coupled, as discussed on [28], [29]. Then, the model
is converted to two identical decoupled single-phase linear
invariant-time systems, in αβ0 coordinates, through Clarke
Transform [35]. The electrical diagram of two decoupled
systems, considering equilibrated phases, is shown on Figure
2, where α and β are the indexes for α and β coordinates,
respectively. Note that considering equilibrated phases, there
is no path for current conduction on the 000 axis, then, it can be
disregarded.

Considering converter disconnected from the grid, the



Eletrôn. Potên., Fortaleza, v. 26, n. 1, p. 19-30, jan./mar. 2021 21

C

c
b

aRc
Lc Rg1

Lg1

PCC

Rg2
Lg2

vd

Vcc
+

-

Pr
im

ar
y 

en
er

gy
 

so
ur

ce

niga,igb,igc 
SVM

DSP vab,vbc 
Fig. 1. Electrical diagram of static 3-wire grid-connected VSC with LCL filter
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Fig. 2. Electrical diagram of equivalent circuit of static 3-wire grid-
connected VSC with LCL filter, considering equilibrated phases

identical transfer function of decoupled single-phase systems,
for α and β coordinates, is given by

ig(s)
u(s)

=

1
LgLcC

s3 +
(RgLc+RcLg)

LgLc
s2 +

(Lc+Lg+RgRcC)
LgLcC s+ Rg+Rc

LgLcC

, (1)

where u(s) is the voltage synthesised by converter through
modulation technique.

III. DISCRETE-TIME ROBUST ADAPTIVE PI
CONTROLLER

The novel robust adaptive controller is developed using
PI and RMRAC theories. Then, initially, consider the plant
described as follows,

y = G(z)u, (2)

where G(z) and y are the complete plant transfer function and
its output, respectively. The G(z) can be subject to unmodelled
dynamics, as described by

G(z) = G0(z)[1+µm∆m(z)]+µa∆a(z), (3)

where µa∆a(z) and µm∆m(z) are additive and multiplicative
dynamics, respectively. With no loss of generality, the
constants µa and µm can be identical (µa = µm = µ) [36], as
will be used on robustness analysis, discussed on Appendix A.

Furthermore, G0(z) is the nominal part of the plant, given by

G0(z) = kp
Z0(z)
R0(z)

, (4)

where kp is the high frequency gain of the plant, Z0(z)
and R0(z) are monic polynomials with degree m and n,
respectively.

The nominal part of the plant, G0(z), have to satisfy the
following assumptions [36],
A1) The signal of kp and degrees m and n are known;
A2) Z0(z) is Schur polynomial with degree m ≤ n−1;
A3) ∆m(z) is a stable transfer function and ∆a(z) is a strictly
proper transfer function;
A4) An upper bound, p0, is known and the poles of ∆a(z− p)
and ∆m(z− p) are stable, internal to the unit radius circle |z|,
0 < p < 1.

The mathematical development of the controller starts from
discrete-time PI controller equation [37], which is given by

u(z) =
(

Kp +
Ki

1− z−1

)
e0(z), (5)

and in its implementable form can be written as

u(k) = u(k−1)+(Kp +Ki)e0(k)−Kpe0(k−1), (6)

where Kp and Ki are proportional and integral gains,
respectively. Moreover, e0(k) is the regulation error, given by

e0(k) = r(k)− y(k), (7)

where r(k) is the limited reference signal.
To improve adaptability to the PI controller, the RMRAC

theory is used to allow adjust gains online. To achieve it,
firstly, the regulation error is replaced in (6) and dividing the
result by −(Kp +Ki), which follows

−1
Kp +Ki

u(k)+
1

Kp +Ki
u(k−1)− y(k)− ...

...
Kp

Kp +Ki
e0(k−1)+ r(k) = 0.

(8)
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diagram of complete system is presented, including primary
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that LCL circuit is represented by the Thevenin equivalent in
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respectively. In Figure 1, the sensors are also shown as inputs
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Vcc is the DC link voltage, which represents the primary energy
source that can be a solar panel, wind turbine or other clean
energy source. Moreover, DSP stores the measures, computes
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Modulation) technique.

It is complex to design a controller using three-phase
LCL model in abc coordinates, once their parameters are
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From (8), follows the new PI control law for adaptation,
turning each term of control law in an adjustable gain,
differently from works previously discussed that adapts
specifically the Kp and KI gains or PI control action. It results
in

θ1(k)u(k)+θ2(k)u(k−1)+θ3(k)y(k)+ ...

...θ4(k)e0(k−1)+ r(k) = 0.
(9)

Note that (9) is a reformulation of parameters vector used
for adaptation of adjustable gains, and, as outcome, a new
controller is developed. However, (9) does not take into
account exogenous disturbances rejection, which is necessary
for power systems connected to the grid. To achieve it,
consider that disturbances are described as

Vs(k) = Assin(ωdskTs +φs),

Vc(k) = Accos(ωdc kTs +φc),
(10)

where Vs(k) and Vc(k) are the components of phase and
quadrature of the exogenous disturbances, respectively. In
addition, A, φ and ωd are the amplitude, phase and frequency
of the components on phase and quadrature of exogenous
disturbances, respectively.

Then, considering the terms of disturbance rejection in (9),
it follows,

θ1(k)u(k)+θ2(k)u(k−1)+θ3(k)y(k)+θ4(k)e0(k−1)+ ...

...θs(k)Vs(k)+θc(k)Vc(k)+ r(k) = 0,
(11)

or, in vector representation,

θθθ T (k)ωωω(k)+ r(k) = 0, (12)

where the auxiliary vector ωωω(k) is composed by

ωωωT (k) = [ u(k) u(k−1) y(k) e0(k−1) Vs(k) Vc(k) ], (13)

and the adaptive gains vector is formed by

θθθ T (k) = [ θ1(k) θ2(k) θ3(k) θ4(k) θs(k) θc(k) ]. (14)

Note that there is no reference model, Wm(z), to design,
as is commonly seen on RMRAC projects. In this work,
it was considered as an ideal model, that is, Wm(z) =
1. It was assumed with the aim to reduce controller
complexity. Thereby, due to it, the reference currents are
tracked straightforwardly, once ym =Wm(z)r = r, where ym is
the model reference output. Therefore, the controller objective
is defined as: given a limited reference signal r(k), for some
µ∗ > 0 and any µ ∈ [0, µ∗), the closed-loop controller will be
globally stable and the plant output will track the reference
signal as closest as possible, even if the plant is subject to
unmodelled dynamics, ∆m(z) and ∆a(z). As consequence, the
computational burden to execute it experimentally is reduced,
because a great part of operations required by RMRAC
methods are avoided.

In order to adapt the parameters, a Gradient-modified

algorithm is used, which is given as follows,

θθθ(k+1) = θθθ(k)−Tsσ(k)ΓΓΓθθθ(k)−TsκΓΓΓ
ωωω(k)e0(k)

m̄2(k)
, (15)

where ΓΓΓ is a positive defined symmetric matrix, which defines
the convergence rate, as well as, the positive scalar κ , used to
accelerate gain adaptation. Also, Ts is the sampling time.

The majorant signal m̄(k) is used to improve robustness to
the parametric adaptation algorithm. This signal is similar to
a normaliser, and it is calculated as follows,

m̄2(k) = m2(k)+ωωωT (k)ΓΓΓωωω(k), (16)

where,

m(k+1) = (1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|), (17)

and the initial condition have to satisfy m(0) ≥ δ1/(1− δ0)
[36]. Furthermore, the σ -modification [38], which also
contributes to the robustness of the parametric adaptation
algorithm, avoiding parameters drifting, is given by

σ(k) =




0 if ‖θθθ(k)‖ ≤ M0

σ0(
‖θθθ(k)‖

M0
−1) if M0 < ‖θθθ(k)‖< 2M0,

σ0 if ‖θθθ(k)‖ ≥ 2M0

(18)

where M0 > ‖θθθ ∗‖ in an upper bound of θθθ ∗ norm, oversized
due to no knowledge of ‖θθθ ∗‖ and σ0 is the upper bound of
σ -modification.

A block diagram of this controller is shown on Figure 3.
Note that regulation error is given directly between reference
signal and plant output, to be used on gradient-modified
algorithm, where the gains are calculated, limited by majorant
signal and σ -modification. The robustness analysis, signal
limitation and controller stability are discussed on Appendix
A.

r(k)
y(k) +-

e0(k)

G(z)
u(k)

Gradient algorithm
θ(k)

PI(θ)

Fig. 3. Block diagram of discrete-time Robust Adaptive PI controller

The steps to implement the presented controller are:
1. Update of reference r(k)

2. Update of auxiliary signal ωωω(k)

3. Update of gains norm ||θθθ(k)||

4. Update of σ -modification σ(k)

5. Update of regulation error e0(k)

6. Update of majorant signal m̄2(k)

7. Update of gains θθθ(k+1)

8. Update of control action u(k)
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IV. EXPERIMENTAL RESULTS

To evaluate the performance of the presented controller, it
was compared with other robust adaptive controller, described
on next subsection.

The controllers were implemented in a laboratory
prototype, using a DSP TMS320F28335 Delfino
microcontroller from Texas Instruments. The prototype
has the characteristics (Lc, C and Lg1) from Table I, whereas
the parameters Rg2 and Lg2 are unknown. It is highlighted
that filter was designed following the steps presented on [39]
that guarantee a good attenuation of harmonics on grid side
and low reactive power consumption by capacitors. The
experimental setup is show on Figure 4.

TABLE I
LCL Filter Parameters

Symbol Parameter Value
Lc Converter-side inductance 1mH
Rc Converter-side resistance 50mΩ
C Capacitance of LCL filter 62µF

Lg1min Grid-side inductance 0.3mH
Lg1max Grid-side inductance 1.3mH

Rg1 Grid-side resistance 50mΩ

Fig. 4. Prototype: 1: DSP, 2: current sensors, 3: Converter and
voltage sensors, 4: LCL filter

The line voltage range was set to 110V , adjusted by a three-
phase transformer. Moreover, the DC bus voltage was set
to 500V . It is highlighted that this voltage is not controlled,
however, it did not interfered in the controller performance.
The converter’s power is 5.4kW , its switching frequency
and the controller’s sampling frequency were both 5040Hz.
By the other hand, the controller’s data (adaptive gains and
regulation errors) were saved one sample every four controller
interruptions. It was necessary to store sufficient data to
evaluate the convergence of adaptive controller parameters,
once there was not used external memory on DSP.

Furthermore, the test starts with Lg1min = 0.3mH and to
evaluate the controller performance, an additional inductance
with 1mH is added at a certain instant of the test. With
it, the LCL grid-side inductance changes to Lg1max = 1.3mH.
However, the total grid-side inductance is unknown, once grid
inductance is uncertain.

Furthermore, a Kalman Filter [40] is used to synchronise

the controller with the grid voltages, measured on PCC. In
addition, from this synchronisation, the phase voltages of
the PCC, in αβ coordinates, are used to obtain the phase
and quadrature signals of grid fundamental component, used
for disturbances rejection and also used for current reference
generation [28].

The total time of the experiment is around 1.6s. The
initial current reference amplitude was set to 20A and it is
increased to 30A after 0.4s. Besides, at a certain instant of
the experiment (0.4s after reference be changed), a parametric
variation is imposed on the grid impedance, by adding a
1mH in series with the grid, as previously discussed. This
routine test was used for robust adaptive PI controller and
the high order RMRAC, to compare their performance and
computational burden, experimentally. These results can be
seen on the next two subsections.

A. Robust Model Reference Adaptive Controller
The controller implemented to realise the comparison of

performance and computational burden is the RMRAC, shown
on [41], which is based on [42]. This control technique tracks
the output ym of a reference model Wm(z), which has the same
relative degree that nominal part of the plant G0(z). For LCL
filter control, to implement this RMRAC, it is necessary a
third order reference model, which is not required by proposed
robust adaptive PI controller, once it tracks straightforwardly
the reference currents.

Then, for RMRAC, the error is given by e1(k) = y(k)−
ym(k) and the control action, u, is implemented from

θθθ T (k)ωωω(k)+ r(k) = 0, (19)

where θθθ(k) is the adaptive gains vector and ωωω(k) is
a parametric vector. The ωωω(k) vector is composed by
reconstructive filters ωωω1(k) and ωωω2(k), plant output and
control action. The reconstructive filters are given by

ωωω1(k+1) = (III +FFFTs)ωωω1(k)+qqqTsu(k),
ωωω2(k+1) = (III +FFFTs)ωωω2(k)+qqqTsy(k),

(20)

where III is an identity matrix of dimensions n× n and (FFF ,qqq)
is a controllable pair with a stable matrix FFF and a controllable
parameters vector qqq, with dimension n− 1× n− 1 and n− 1,
respectively [38].

Thus, the gradient algorithm changes to

θθθ(k+1) = θθθ(k)−Tsσ(k)ΓΓΓθθθ(k)−Ts κ
ΓΓΓζζζ (k)ε(k)

m2(k)
, (21)

where the augmented error, ε(k), is

ε(k) = e1(k)+θθθ T (k)ζζζ (k)− ym(k), (22)

and the auxiliary vector ζζζ is

ζζζ =Wm(z)ωωω, (23)

being ζζζ (k) the vector ωωω(k) filtered by Wm(z). For LCL
filter control, which is third order system, ωωω(k) is composed
by ωωω(k) = [ ω11(k) ω12(k) ω21(k) ω22(k) y(k) u(k)
Vs(k) Vc(k) ]T . Consequently, θθθ(k) = [ θ11(k) θ12(k)

From (8), follows the new PI control law for adaptation,
turning each term of control law in an adjustable gain,
differently from works previously discussed that adapts
specifically the Kp and KI gains or PI control action. It results
in

θ1(k)u(k)+θ2(k)u(k−1)+θ3(k)y(k)+ ...

...θ4(k)e0(k−1)+ r(k) = 0.
(9)

Note that (9) is a reformulation of parameters vector used
for adaptation of adjustable gains, and, as outcome, a new
controller is developed. However, (9) does not take into
account exogenous disturbances rejection, which is necessary
for power systems connected to the grid. To achieve it,
consider that disturbances are described as

Vs(k) = Assin(ωdskTs +φs),

Vc(k) = Accos(ωdc kTs +φc),
(10)

where Vs(k) and Vc(k) are the components of phase and
quadrature of the exogenous disturbances, respectively. In
addition, A, φ and ωd are the amplitude, phase and frequency
of the components on phase and quadrature of exogenous
disturbances, respectively.

Then, considering the terms of disturbance rejection in (9),
it follows,

θ1(k)u(k)+θ2(k)u(k−1)+θ3(k)y(k)+θ4(k)e0(k−1)+ ...

...θs(k)Vs(k)+θc(k)Vc(k)+ r(k) = 0,
(11)

or, in vector representation,

θθθ T (k)ωωω(k)+ r(k) = 0, (12)

where the auxiliary vector ωωω(k) is composed by

ωωωT (k) = [ u(k) u(k−1) y(k) e0(k−1) Vs(k) Vc(k) ], (13)

and the adaptive gains vector is formed by

θθθ T (k) = [ θ1(k) θ2(k) θ3(k) θ4(k) θs(k) θc(k) ]. (14)

Note that there is no reference model, Wm(z), to design,
as is commonly seen on RMRAC projects. In this work,
it was considered as an ideal model, that is, Wm(z) =
1. It was assumed with the aim to reduce controller
complexity. Thereby, due to it, the reference currents are
tracked straightforwardly, once ym =Wm(z)r = r, where ym is
the model reference output. Therefore, the controller objective
is defined as: given a limited reference signal r(k), for some
µ∗ > 0 and any µ ∈ [0, µ∗), the closed-loop controller will be
globally stable and the plant output will track the reference
signal as closest as possible, even if the plant is subject to
unmodelled dynamics, ∆m(z) and ∆a(z). As consequence, the
computational burden to execute it experimentally is reduced,
because a great part of operations required by RMRAC
methods are avoided.

In order to adapt the parameters, a Gradient-modified

algorithm is used, which is given as follows,

θθθ(k+1) = θθθ(k)−Tsσ(k)ΓΓΓθθθ(k)−TsκΓΓΓ
ωωω(k)e0(k)

m̄2(k)
, (15)

where ΓΓΓ is a positive defined symmetric matrix, which defines
the convergence rate, as well as, the positive scalar κ , used to
accelerate gain adaptation. Also, Ts is the sampling time.

The majorant signal m̄(k) is used to improve robustness to
the parametric adaptation algorithm. This signal is similar to
a normaliser, and it is calculated as follows,

m̄2(k) = m2(k)+ωωωT (k)ΓΓΓωωω(k), (16)

where,

m(k+1) = (1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|), (17)

and the initial condition have to satisfy m(0) ≥ δ1/(1− δ0)
[36]. Furthermore, the σ -modification [38], which also
contributes to the robustness of the parametric adaptation
algorithm, avoiding parameters drifting, is given by

σ(k) =




0 if ‖θθθ(k)‖ ≤ M0

σ0(
‖θθθ(k)‖

M0
−1) if M0 < ‖θθθ(k)‖< 2M0,

σ0 if ‖θθθ(k)‖ ≥ 2M0

(18)

where M0 > ‖θθθ ∗‖ in an upper bound of θθθ ∗ norm, oversized
due to no knowledge of ‖θθθ ∗‖ and σ0 is the upper bound of
σ -modification.

A block diagram of this controller is shown on Figure 3.
Note that regulation error is given directly between reference
signal and plant output, to be used on gradient-modified
algorithm, where the gains are calculated, limited by majorant
signal and σ -modification. The robustness analysis, signal
limitation and controller stability are discussed on Appendix
A.

r(k)
y(k) +-

e0(k)

G(z)
u(k)

Gradient algorithm
θ(k)

PI(θ)

Fig. 3. Block diagram of discrete-time Robust Adaptive PI controller

The steps to implement the presented controller are:
1. Update of reference r(k)

2. Update of auxiliary signal ωωω(k)

3. Update of gains norm ||θθθ(k)||

4. Update of σ -modification σ(k)

5. Update of regulation error e0(k)

6. Update of majorant signal m̄2(k)

7. Update of gains θθθ(k+1)

8. Update of control action u(k)
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θ21(k) θ22(k) θy(k) θu(k) θs(k) θc(k) ]T . It is highlighted that
σ -modification is the same as (18), as well the majorant signal,
described on (16)-(17).

The design parameters of RMRAC are ΓΓΓ = 40III, κ = 1000,
σ0 = 0.1, M0 = 10, δ0 = 0.7 and δ1 = 1, as defined on [41], as
well as the reference model,

Wm(z) =
0.343

(z−0.3)3 , (24)

and the initial gains,

θθθ α(0) =




−2.3075082
0

−0.65603852
0

−1.0379406
−1.9491602
3.3076313

−0.36709696




, θθθ β (0) =




−0.84257501
0

−0.32428530
0

−0.83423382
−1.2983845
1.5830313

−0.11256287




.

It is highlighted that gains were set by choosing final gains
of a simulation, used to be initialised closer to θθθ ∗ and avoid
excessive overshoot in the initial transient. However, they can
be initialised with any value, which will converge. The only
restriction is the signal of θu, which have to be correct to avoid
division by zero on implementation of (19).

The initial transient regime is shown on Figure5. Note
that, even with gains initialisation, a short transient regime is
observed due to grid uncertainties. This transient takes around
16ms and no excessive overshoot is observed.

Fig. 5. Initial transient regime of grid-injected currents

In the Figure 6 is shown the reference amplitude change
transient, from 20A to 30A. It takes around 12ms to achieve
the new current references, faster than initial transient. Also,
no overshoot occurred while controller gains are readapting.

As was aforementioned, to evaluate controller performance,
an additional inductance in series with the grid is triggered at a
certain instant. This instant can be seen on Figure 7. Note that
the controller acts fast to compensate the impedance variation
and only a small distortion is caused by grid condition change.
These distortions, observed on currents tracking, is corrected
in around 12ms. Furthermore, no excessive overshoot is
observed.

Finally, the steady state regime is shown on Figure 8. As
can be seen, the controller maintain the grid-injected currents
with proper amplitude, which is 30A. The THD in steady state

Fig. 6. Grid-injected currents in the reference change transient

Fig. 7. Grid-injected currents in the parametric variation transient

regime is 2.48%, respecting the IEEE 1547.

Fig. 8. Grid-injected currents in steady state

As the controller was designed on αβ coordinates, the
tracking errors in these coordinates are shown on Figure 9,
complementing the currents information from oscilloscope,
previously presented. As can be seen, the tracking errors
remain small and converge to a residual set asymptotically.

To evaluate the controller parameters convergence, the θθθ(k)
gains, in α and β coordinates, are presented in Figure 10 and
Figure 11, respectively. Note that gains converge fast, and, as
they were properly initialised, there are small transient regime.
Besides, when references change the gains readapt fast. The
same behaviour can be observed when the grid condition
was altered, once the gains are closer to an ideal set. By
consequence, the transient regimes for reference change and
when parametric variation occurred were shorter than initial
transient.

As expected, the RMRAC has a good performance when
applied to grid-side currents control of a VSC with LCL
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Fig. 9. Tracking errors in αβ coordinates
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Fig. 11. Gains in β coordinate

filter. However, to achieve this high performance, it requires
a large set of operations (182 addition/subtraction and 446
multiplication/division), which requires 37.56µs to execute it.

B. Robust Adaptive PI Controller
Due to robust adaptive nature of the controller, it allows

a considerable range of values for design parameters, as
long as it respects the controller’s restrictions, provided from
robustness analysis, presented on Appendix A. However, for
fast practical implementation, the parameters can be set as
follows: ΓΓΓκTs ≤ 20; δ0 and δ1 are chosen to act as a slow
dynamics filter to smooth m̄(k) response; and M0 can be
securely oversized, M0 ≥ 2||θθθ ∗||, as discussed on [42]. The
design parameters are ΓΓΓ = 500, κ = 1000, σ0 = 0.1, M0 = 15,
m2(0) = 4, δ0 = 0.7 and δ1 = 1.

To initialise the gains θθθ(0), in α and β , a simulation
was performed and the final values of θθθ(k) were used as
initial values of the experiment. It is emphasised that it is
only used to avoid excessive overshoot in the initial transient

regime, once high currents can damage the prototype. If the
application does not have security issues, the gains can be
initialised with random values. For this application, the initial
gains were set as

θθθ α(0) =




1.4666969
1.4666969
−1.0000000
−8.3924341
−2.9755771
−0.4001412




, θθθ β (0) =




1.4994920
1.4994920
−1.0000000
−8.3349009
−2.8854203
−0.0643255



.

The initial transient regime is shown on Figure12. Note
that, even while parameters are converging for a set of limited
gains close to θθθ ∗, it presents no excessive overshoot, thanks
to proper gains initialisation. Due to the grid uncertainties, a
short transient regime is observed. It takes around 20ms, to
adjust their gains and regulate the grid-injected currents with
desired amplitude reference, which is 20A.

Fig. 12. Initial transient regime of grid-injected currents

In the Figure 13 is shown the instant that reference
amplitude is changed from 20A to 30A. Again, the currents
tracks fast the references. A small distortion is observed
on measured currents, which occurs while the controller is
readapting their gains for the new nominal point of operation.
Note that it takes around 12ms, less time than initial transient,
once the gains in this situation are close than an ideal set of
gains. Moreover, although some oscillations occur in this
transient, no relevant overshoot affects the currents while
controller adjust their gains.

Fig. 13. Grid-injected currents in the reference change transient

As was aforementioned, to evaluate controller performance,
an additional inductance in series with the grid is triggered
at a certain instant. This instant can be seen on Figure

θ21(k) θ22(k) θy(k) θu(k) θs(k) θc(k) ]T . It is highlighted that
σ -modification is the same as (18), as well the majorant signal,
described on (16)-(17).

The design parameters of RMRAC are ΓΓΓ = 40III, κ = 1000,
σ0 = 0.1, M0 = 10, δ0 = 0.7 and δ1 = 1, as defined on [41], as
well as the reference model,

Wm(z) =
0.343

(z−0.3)3 , (24)

and the initial gains,

θθθ α(0) =




−2.3075082
0

−0.65603852
0

−1.0379406
−1.9491602
3.3076313

−0.36709696




, θθθ β (0) =




−0.84257501
0

−0.32428530
0

−0.83423382
−1.2983845
1.5830313

−0.11256287




.

It is highlighted that gains were set by choosing final gains
of a simulation, used to be initialised closer to θθθ ∗ and avoid
excessive overshoot in the initial transient. However, they can
be initialised with any value, which will converge. The only
restriction is the signal of θu, which have to be correct to avoid
division by zero on implementation of (19).

The initial transient regime is shown on Figure5. Note
that, even with gains initialisation, a short transient regime is
observed due to grid uncertainties. This transient takes around
16ms and no excessive overshoot is observed.

Fig. 5. Initial transient regime of grid-injected currents

In the Figure 6 is shown the reference amplitude change
transient, from 20A to 30A. It takes around 12ms to achieve
the new current references, faster than initial transient. Also,
no overshoot occurred while controller gains are readapting.

As was aforementioned, to evaluate controller performance,
an additional inductance in series with the grid is triggered at a
certain instant. This instant can be seen on Figure 7. Note that
the controller acts fast to compensate the impedance variation
and only a small distortion is caused by grid condition change.
These distortions, observed on currents tracking, is corrected
in around 12ms. Furthermore, no excessive overshoot is
observed.

Finally, the steady state regime is shown on Figure 8. As
can be seen, the controller maintain the grid-injected currents
with proper amplitude, which is 30A. The THD in steady state

Fig. 6. Grid-injected currents in the reference change transient

Fig. 7. Grid-injected currents in the parametric variation transient

regime is 2.48%, respecting the IEEE 1547.

Fig. 8. Grid-injected currents in steady state

As the controller was designed on αβ coordinates, the
tracking errors in these coordinates are shown on Figure 9,
complementing the currents information from oscilloscope,
previously presented. As can be seen, the tracking errors
remain small and converge to a residual set asymptotically.

To evaluate the controller parameters convergence, the θθθ(k)
gains, in α and β coordinates, are presented in Figure 10 and
Figure 11, respectively. Note that gains converge fast, and, as
they were properly initialised, there are small transient regime.
Besides, when references change the gains readapt fast. The
same behaviour can be observed when the grid condition
was altered, once the gains are closer to an ideal set. By
consequence, the transient regimes for reference change and
when parametric variation occurred were shorter than initial
transient.

As expected, the RMRAC has a good performance when
applied to grid-side currents control of a VSC with LCL
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14. Note that the controller acts fast to compensate the
impedance variation and only a small distortion is caused by
grid condition change. These distortions, observed on currents
tracking, is corrected in around 6ms.

Fig. 14. Grid-injected currents in the parametric variation transient

Finally, the steady state regime is shown on Figure 15. As
can be seen, the controller maintain the grid-injected currents
with proper amplitude, which is 30A. The THD in steady state
regime is 2.47%, respecting the IEEE 1547 and similar to the
high order RMRAC.

Fig. 15. Grid-injected currents in steady state

As the controller was designed on αβ coordinates, the
regulation errors in these coordinates are shown on Figure 16,
complementing the currents information from oscilloscope,
previously presented. As can be seen, the regulation errors
remain small and converge to a residual set asymptotically.
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Fig. 16. Regulation errors in αβ coordinates

To evaluate the controller parameters convergence, the θθθ(k)
gains, in α and β coordinates, are presented in Figures 17 and
18, respectively. Note that gains converge fast, and, as they
were initialised closer to ideal gains, there are small transient
regime. Moreover, as the boundness of all closed-loop signals
are ensured by majorant signal and the σ -modification being

used to avoid parameters drift, no bursting phenomena (a kind
of local instability) occurred during the experiment.

Fig. 17. Gains in α coordinate

Fig. 18. Gains in β coordinate

In comparison with RMRAC, the robust adaptive PI
controller presented a similar performance, in regarding to
current tracking error and THD, however, without a complex
control design. It can be achieved by direct tracking of
reference, which reduces computation delay and cumulative
truncation error. Besides, the transient times of both were also
similar. For robust adaptive PI controller, they are: 20ms,
12ms and 6ms for initial instant, reference change instant
and parametric variation instant, respectively. For RMRAC,
they are: 16ms, 12ms and 12ms, for initial instant, reference
change instant and parametric variation instant, respectively.
Then, in regarding to the performance, the controllers can be
considered equivalent, once they presented similar transient
time, THD and currents tracking errors.

By the other hand, in terms of computational burden,
the robust adaptive PI controller requires a reduced set
of operations, which implies in a relevant reduction of
time processing. This set of operations consist in 102
addition/subtraction and 228 multiplication/division, which
requires 21.96µs to execute it. Comparing with RMRAC,
the robust adaptive PI controller reduces 41,64% of time
processing, which alleviates significantly microcontroller
requirements. Thereby, these results corroborate that
presented controller is a feasible control strategy for
grid-connected VSC with LCL filter, which maintain the
performance of high order RMRAC and provides a simpler
controller with reduced computational burden.

V. CONCLUSION

In this paper, a direct discrete-time robust adaptive PI
controller was presented and used to control the grid-injected
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currents of a grid-connected VSC with LCL filter. By
means of experimental results, it was verified the controller
performance, which achieves fast convergence, equivalent
to a high order RMRAC. The longer transient regime
occurred on initial instants, when the gains are adapting more
intensively, and takes around 20ms. After gains converged,
the transient regime were shorter. They were 12ms and 6ms
for reference change instant and parametric variation instant,
respectively. Also, no relevant overshoot was observed in
these transient regime. The advantages of proposed technique
in relation to existing high order adaptive controllers is its
reduced computational burden, simpler structure that tracks
the references directly, intuitive parameters tuning, which has
global stability ensured if designed respecting the robustness
constraints, and small amount of sensors to implement it. In
regarding to computational burden, the presented controller
requires 41,64% less processing time than conventional high
order RMRAC, maintaining a similar performance. Its THD in
steady state regime was 2.47%. Moreover, it presents another
advantage in relation to other classical controller, such as the
PI in synchronous frame, once the presented controller does
not need to convert to dq coordinates, and it does not require
PR controllers to reject exogenous disturbances, commonly
associated to fixed-gains controllers. Besides, the presented
robust adaptive PI controller do not require any knowledge
of grid parameters, lines impedance or load power demand to
control the grid-side currents, and consequently the active or
reactive power output of VSC, as well as others grid-connected
power systems. Thus, the robust adaptive PI controller is a
feasible controller, which does not require a high processing
capacity.

Appendix A - Robustness Analysis and Stability Proof

Consider the plant described by (2)-(4), subject to
assumptions A1 to A4, using the control law (12)-(14), and
the adaptation algorithm (15)-(18), with limited reference, are
able to find a parameters vector θθθ(k) whose limitation of
parametric error vector φφφ(k) is ensured.

Following the steps shown in [36], it is possible to write the
regulation error in function to unmodelled dynamics,

e0 =−(φφφ T ωωω +µη), (25)

where η is unmodelled dynamics. Be a Lyapunov function
candidate defined as

V (k) = φφφ T (k)ΓΓΓ−1φφφ(k), (26)

where φφφ(k) = θθθ(k)− θθθ ∗ and θθθ ∗ are the ideal gains. Then,
subtracting θθθ ∗ in both sides of (15), then φφφ(k) is obtained,

φφφ(k+1) = φφφ(k)−Tsσ(k)ΓΓΓθθθ(k)−TsκΓΓΓ
ωωω(k)e0(k)

m̄2(k)
. (27)

From (27), it is obtained that ∆φφφ(k) is

∆φφφ(k) =−TsΓΓΓσ(k)θθθ(k)−TsκΓΓΓ
ωωω(k)e0(k)

m̄2(k)
, (28)

and as φφφ(k) can be written as φφφ(k+1)−∆φφφ(k), follows that

∆V (k)≤ 2φφφ T (k+1)ΓΓΓ−1∆φφφ(k). (29)

By applying Cauchy-Schwarz Inequality, the fact that
2φφφ T (k)θθθ(k) = ||φφφ(k)||2 + ||θθθ(k)||2 −||θθθ ∗||2 [36], completing
squares and organizing the terms, follows that

∆V (k)≤ ...

...−Tsσ(k)
(
||θθθ(k)||2 −||θθθ ∗||2 −2Tsσ(k)||ΓΓΓ||||θθθ(k)||2

)
− ...

...Tsκ
[φφφ T (k)ωωω(k)]2

m̄2(k)
+ ...

µ2η2(k)
m̄2(k)

− ...

...Tsκ
e2

0(k)
m̄2(k)

(
1−2Tsκσ2(k)||ΓΓΓ|| ||ω

ωω(k)||2

m̄2(k)

)
.

(30)

From (30), the following controller constraints can be
concluded to maintain a stable closed-loop operation,
I)

(
||θθθ(k)||2 −||θθθ ∗||2 −2Tsσ(k)||ΓΓΓ||||θθθ(k)||2

)
≥ 0, for

positive defined symmetric ΓΓΓ and σ(k) ∈ [0,σ0], where
0 < σ0 < 1 so that it satisfies the following design
constraint 2Tsσ(k)||ΓΓΓ|| ≤ ||θθθ(k)||2 − ||θθθ ∗||2 and therefore
−Tsσ(k)(||θθθ(k)||2 −||θθθ ∗||2− 2Tsσ(k)||ΓΓΓ||||θθθ(k)||2)≤ 0;

II) −Tsκ [φφφT (k)ωωω(k)]2

m̄2(k) ≤ 0 for Ts > 0 and κ > 0;

III)
(

1−2Tsκ||ΓΓΓ||σ2(k) ||ωωω(k)||2
m̄2(k)

)
≥ 0, for positive defined

symmetric ΓΓΓ and σ(k) ∈ [0,σ0], where 0 < σ0 < 1,

and knowing that ||ωωω(k)||2
m̄2(k) < 1 due to Lemma I,

discussed later, so that it satisfies the following design
constraint 2Tsκ||ΓΓΓ||σ2(k) ||ωωω(k)||2

m̄2(k) ≤ 1, and therefore

−Tsκ
e2

0(k)
m̄2(k)

(
1−2Tsκσ2(k)||ΓΓΓ|| ||ωωω(k)||2

m̄2(k)

)
≤ 0;

IV) µ2η2(k)
m̄2(k) is limited, small in the mean and belongs to a

residual set Ψ(k), as Theorem I, discussed later.
From (30), it can be affirmed that, in presence of unknown

dynamics, φφφ(k) is limited, once ∆V (k) is almost always
negative. However, when ∆V (k) is positive, V (k) increases,
but ||φφφ(k)|| and ||θθθ(k)|| also increase, and ∆V (k) turns
negative again. Thus, V (k) has an upper bound given by
V̄ (k) = [µ2η2(k)]/m̄2(k).

�
To prove that all closed-loop signals are limited, consider

the Lemma I [36],
Lemma I. Be the system: xxx(k+ 1) = AAAxxx(k)+BBBŪ , where

xxx(k) ∈ ℜn are states and the eigenvalues of AAA satisfy |λi(AAA)|<
δ0 − δ2, i = 1,2, ...,n, 0 < δ0 < 1, 0 < δ2 < δ0 < 1, and
||Ū || ≤ |u(k)|+ |y(k)|. Therefore, there is a positive constant
ξ1 such that ||xxx(k)||/m(k) < ξ0 + ε(k), where ε(k) is a term
that depends on initial conditions and converges exponentially
to zero when k → ∞.

Proof of Lemma I: it is presented in [36], and then, here it
is omitted.

�
Using Lemma I, the system closed-loop signals
are proven to be limited by majorant signal. As
m̄2(k) = m2(k) + ωωωT (k)ΓΓΓωωω(k) and m(k + 1) =
(1 − Tsδ0)m(k) + Tsδ1(1 + |u(k)| + |y(k)|), then the

14. Note that the controller acts fast to compensate the
impedance variation and only a small distortion is caused by
grid condition change. These distortions, observed on currents
tracking, is corrected in around 6ms.

Fig. 14. Grid-injected currents in the parametric variation transient

Finally, the steady state regime is shown on Figure 15. As
can be seen, the controller maintain the grid-injected currents
with proper amplitude, which is 30A. The THD in steady state
regime is 2.47%, respecting the IEEE 1547 and similar to the
high order RMRAC.

Fig. 15. Grid-injected currents in steady state

As the controller was designed on αβ coordinates, the
regulation errors in these coordinates are shown on Figure 16,
complementing the currents information from oscilloscope,
previously presented. As can be seen, the regulation errors
remain small and converge to a residual set asymptotically.
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Fig. 16. Regulation errors in αβ coordinates

To evaluate the controller parameters convergence, the θθθ(k)
gains, in α and β coordinates, are presented in Figures 17 and
18, respectively. Note that gains converge fast, and, as they
were initialised closer to ideal gains, there are small transient
regime. Moreover, as the boundness of all closed-loop signals
are ensured by majorant signal and the σ -modification being

used to avoid parameters drift, no bursting phenomena (a kind
of local instability) occurred during the experiment.

Fig. 17. Gains in α coordinate

Fig. 18. Gains in β coordinate

In comparison with RMRAC, the robust adaptive PI
controller presented a similar performance, in regarding to
current tracking error and THD, however, without a complex
control design. It can be achieved by direct tracking of
reference, which reduces computation delay and cumulative
truncation error. Besides, the transient times of both were also
similar. For robust adaptive PI controller, they are: 20ms,
12ms and 6ms for initial instant, reference change instant
and parametric variation instant, respectively. For RMRAC,
they are: 16ms, 12ms and 12ms, for initial instant, reference
change instant and parametric variation instant, respectively.
Then, in regarding to the performance, the controllers can be
considered equivalent, once they presented similar transient
time, THD and currents tracking errors.

By the other hand, in terms of computational burden,
the robust adaptive PI controller requires a reduced set
of operations, which implies in a relevant reduction of
time processing. This set of operations consist in 102
addition/subtraction and 228 multiplication/division, which
requires 21.96µs to execute it. Comparing with RMRAC,
the robust adaptive PI controller reduces 41,64% of time
processing, which alleviates significantly microcontroller
requirements. Thereby, these results corroborate that
presented controller is a feasible control strategy for
grid-connected VSC with LCL filter, which maintain the
performance of high order RMRAC and provides a simpler
controller with reduced computational burden.

V. CONCLUSION

In this paper, a direct discrete-time robust adaptive PI
controller was presented and used to control the grid-injected
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boundedness plant output and control action follows directly,

|y(k)|
m̄2(k)

= ...

...
y(k)

(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)+ωωωT (k)ΓΓΓωωω(k)
,

(31)

or,
|y(k)|
m̄2(k)

≤ ξ1 + ε(k), (32)

where ξ1 is positive constant and ε(k) is a term that decays
exponentially to zero when k → ∞, and

|u(k)|
m̄2(k)

= ...

...
u(k)

(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)+ωωωT (k)ΓΓΓωωω(k)
,

(33)

or,
|u(k)|
m̄2(k)

≤ ξ2 + ε(k), (34)

where ξ2 is a positive constant.
Next, to prove η limitation, note that η = ∆(z)u, where

∆(z) is a stable and strictly proper transfer function, due to
assumption A3 from controller design. Thereby, as u(k) is
bounded, then η(k) also is bounded,

|η |
m̄2 = ∆(z)

u
(1−Tsδ0)m+Tsδ1(1+ |u|+ |y|)+ωωωT ΓΓΓωωω

, (35)

or,
|η(k)|
m̄2(k)

≤ ξ3 + ε(k), (36)

where ξ3 is a positive constant.
Besides, to prove ωωω(k) boundedness, note that ωωωT (k) =

[ u(k) u(k − 1) y(k) e0(k − 1) ], where the regulation error
e0(k) belongs to a residual set Ψ(k), discussed later, and then
it is limited, u(k) and y(k) are also bounded, as previously
discussed, therefore the ωωω(k) boundedness follows directly,

|ωωω(k)|
m̄2(k)

=
ωωω(k)

(1−Tsδ0)m+Tsδ1(1+ |u|+ |y|)+ωωωT (k)ΓΓΓωωω(k)
,

(37)
or,

|ωωω(k)|
m̄2(k)

≤ ξ4 + ε(k), (38)

where ξ4 is a positive constant.
Finally, the m(k + 1) boundedness proof start by dividing

both sides of (17) by m̄2(k) and using the fact that m̄2(k) >
m(k+ 1) ∀k > 0, once ωωωT (k)ΓΓΓωωω(k) ≥ 0 for positive defined
ΓΓΓ, and by boundedness of y(k), u(k) and ωωω(k), previously
discussed, then the proof follows directly,

|m(k+1)|
m̄2(k)

= ...

(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)
(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)+ωωωT (k)ΓΓΓωωω(k)

(39)

or,
|m(k+1)|

m̄2(k)
≤ ξ5 + ε(k) (40)

where ξ5 is a positive constant.
�

The controller stability is analysed by Theorem I.
Theorem I. Be r(k) and ∆r(k) uniformly limited signals.

Be also, the plant given by (2)-(4), subject to assumptions
A1−A4, control structure (12), along the adaptation algorithm
(15)-(18). Then, there is a µ∗ > 0 such that for all µ ∈
[0,µ∗), all closed-loop signals are limited to any limited initial
conditions. Furthermore, the controller stability analysis
shows that regulation error converges to the residual set, Ψ(k),

Ψ(k) =

{
e0(k) : lim

N→∞
sup
N>0

1
N ∑

i=0
N|e0(k)| ≤ q6

√
ε0 +µq7

}

(41)
∀i > 0,N → ∞, where N is the amount of samples in one
period, q6 and q7 are constants and ε0 > 0 is a small arbitrary
number.

Proof of Theorem I: it is similar to the proof presented in
[36], and then, here it is omitted.
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boundedness plant output and control action follows directly,

|y(k)|
m̄2(k)

= ...

...
y(k)

(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)+ωωωT (k)ΓΓΓωωω(k)
,

(31)

or,
|y(k)|
m̄2(k)

≤ ξ1 + ε(k), (32)

where ξ1 is positive constant and ε(k) is a term that decays
exponentially to zero when k → ∞, and

|u(k)|
m̄2(k)

= ...

...
u(k)

(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)+ωωωT (k)ΓΓΓωωω(k)
,

(33)

or,
|u(k)|
m̄2(k)

≤ ξ2 + ε(k), (34)

where ξ2 is a positive constant.
Next, to prove η limitation, note that η = ∆(z)u, where

∆(z) is a stable and strictly proper transfer function, due to
assumption A3 from controller design. Thereby, as u(k) is
bounded, then η(k) also is bounded,

|η |
m̄2 = ∆(z)

u
(1−Tsδ0)m+Tsδ1(1+ |u|+ |y|)+ωωωT ΓΓΓωωω

, (35)

or,
|η(k)|
m̄2(k)

≤ ξ3 + ε(k), (36)

where ξ3 is a positive constant.
Besides, to prove ωωω(k) boundedness, note that ωωωT (k) =

[ u(k) u(k − 1) y(k) e0(k − 1) ], where the regulation error
e0(k) belongs to a residual set Ψ(k), discussed later, and then
it is limited, u(k) and y(k) are also bounded, as previously
discussed, therefore the ωωω(k) boundedness follows directly,

|ωωω(k)|
m̄2(k)

=
ωωω(k)

(1−Tsδ0)m+Tsδ1(1+ |u|+ |y|)+ωωωT (k)ΓΓΓωωω(k)
,

(37)
or,

|ωωω(k)|
m̄2(k)

≤ ξ4 + ε(k), (38)

where ξ4 is a positive constant.
Finally, the m(k + 1) boundedness proof start by dividing

both sides of (17) by m̄2(k) and using the fact that m̄2(k) >
m(k+ 1) ∀k > 0, once ωωωT (k)ΓΓΓωωω(k) ≥ 0 for positive defined
ΓΓΓ, and by boundedness of y(k), u(k) and ωωω(k), previously
discussed, then the proof follows directly,

|m(k+1)|
m̄2(k)

= ...

(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)
(1−Tsδ0)m(k)+Tsδ1(1+ |u(k)|+ |y(k)|)+ωωωT (k)ΓΓΓωωω(k)

(39)

or,
|m(k+1)|

m̄2(k)
≤ ξ5 + ε(k) (40)

where ξ5 is a positive constant.
�

The controller stability is analysed by Theorem I.
Theorem I. Be r(k) and ∆r(k) uniformly limited signals.

Be also, the plant given by (2)-(4), subject to assumptions
A1−A4, control structure (12), along the adaptation algorithm
(15)-(18). Then, there is a µ∗ > 0 such that for all µ ∈
[0,µ∗), all closed-loop signals are limited to any limited initial
conditions. Furthermore, the controller stability analysis
shows that regulation error converges to the residual set, Ψ(k),

Ψ(k) =

{
e0(k) : lim

N→∞
sup
N>0

1
N ∑

i=0
N|e0(k)| ≤ q6

√
ε0 +µq7

}

(41)
∀i > 0,N → ∞, where N is the amount of samples in one
period, q6 and q7 are constants and ε0 > 0 is a small arbitrary
number.

Proof of Theorem I: it is similar to the proof presented in
[36], and then, here it is omitted.
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