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Abstract – The paper addresses the problem of

designing a stabilizing control for switched affine and

its experimental verification based on Linear Matrix

Inequalities (LMIs). The main contribution is on the

determination of a switching function that exploits the

potential of LMI control approaches and which assures

global stability and minimizes a guaranteed quadratic

cost. Slack variables are introduced to reduce the design

conservatism and new sufficient LMI conditions for the

synthesis of the controllers are presented. Thus, it is

showed that the performance of the control system is

superior with a smaller guaranteed cost upper bound of

that afforded by recent results. In addition, a theorem

with sufficient conditions for the control of switched

affine systems that allows a way to garantee a boundedControl of Switched A�  ne Systems with Bounded Sampling Time Rate on the Swit-affine systems that allows a way to garantee a boundedControl of Switched A�  ne Systems with Bounded Sampling Time Rate on the Swit-
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into account a bounded sampling time is analysed and

discussed with particular interest. Finally, the theoretical

results are applied to Buck DC-DC converter. Several

simulations show the usefulness of the methodology and

experimental results obtained from a prototype validate

this approach.

Keywords – Bounded Sampling Time, Buck DC-DC

Converter, Linear Matrix Inequalities (LMIs), Lyapunov

Function, Switched Affine System.

I. INTRODUCTION

Switched systems are a subclass of hybrid systems and

in the last years have witnessed the crescent study for

the scientific community. This interest is due to the fact
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[1]–[7]. In general, the switched systems are characterized

by having a switching rule that selects, at each instant of

time, a dynamic subsystem among a determined number of

available subsystems. However, special care should be taken

regarding their mathematical analysis, because even if all
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their subsystems are stable, a system with an inadequate

switching rule may present divergent paths. On the other

hand, a suitable switching of unstable subsystems can generate

stable trajectories. Thus, we conclude that the stability

depends not only on the dynamics of the subsystems but

also on the properties of the switching rule [8]. In general,

the main objective of this control system is to establish a

switching strategy that, given an equilibrium point, ensures

the asymptotic stability, hence assuring adequate performance

[1], [2], [9]. The techniques most used for this class of systems

consist of choosing an appropriate Lyapunov function, for

instance, a quadratic function [10] or piecewise quadratic

[11], where the difference among them is the conservativeness

in the conditions. The book [9] presents important results

in this research. Among the application fields of switchedControl of Switched A�  ne Systems with Bounded Sampling Time Rate on the Swit-in this research. Among the application fields of switchedControl of Switched A�  ne Systems with Bounded Sampling Time Rate on the Swit-
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DC converters can be described by switched affine systems

which include all nonlinearities of the system. However, in

switched affine systems it is possible that the subsystems do

not share a common equilibrium point and sometimes the

stability concept should be extended using the ideas contained

in [25].

Some results of primary works, about control applied in

the field of power converters, can be found in [26] and

[27] where the authors propose nonlinear strategies based

on quadratic Lyapunov functions. More recently, [28]–[30]

derive robust nonlinear controllers for power converters.

Accordingly, in [17] the authors presented a state-dependent

switching law for affine switching systems and its applications

to LMI based design of some basic DC-DC converters,

in order to reduce the losses due to the parasitic inductor
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The design and experimental validation of a Discrete Linear

Quadratic Regulator (DLQR) are presented in [31]. A new

theorem, whose conditions hold when the conditions of the

two theorems proposed in [17] hold, is presented in [19].

Within context, in [20] some conditions were analyzed and a

state-dependent switching strategy for switched affine systems

was designed such that minimizes a quadratic guaranteed

cost described in [17]. Additionally, in [21] the problem of

establishing a state estimator for switched affine systems was

studied and the proposed method relies on a simplification
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of estimation error, guaranteeing the estimation error to

asymptotically converge to zero, for any initial state and

switching law.

This work is concerned with the control methods design

based on LMIs for a class of switched affine systems and these

methods are applied to the control of a Buck DC-DC power

converter. LMIs [32], when feasible, are easily solved by some

tools available in the literature of convex programming [33].

In order to obtain less conservative conditions than afforded

by recently results in the literature, a more general design

procedure with performance indices, such as a decay rate

(related to the setting time) and a guaranteed cost, were

considered for this control system. In resume, the performance

of the control system is superior with a maximum upper bound

of the guaranteed cost smaller than afforded by recent results.

This is an important contribution because the reduction of the

conservatism with respect to previously published papers on

the subject. However, the proposed control strategy designing

is in general a discontinuous function. More specifically, the

methods used to designing control strategy usually neglect

the switching period and consequently the switching period

becomes small enough, which can lead to a very high

frequency and hence is usually not realizable in practice.

In addition, high-frequency caused by the chattering are

undesirable because they may excite high-frequency dynamics

on the plant that were not modeled, which could result

in unforeseen instabilities. This problem is very hard to

solve. Owing to this interest, the other contribution of the

paper is provide sufficient conditions for the control of

switched affine systems that makes a know equilibrium point

uniform ultimate boundedness [34]. Make the equilibrium

point uniform ultimate boundedness is equivalent to say that

the state variables of the system not necessarily converge

to the origin of the system, but for a closed and bounded

region around this origin. Then, our approach differs from

previous works due allows to guarantee a bounded sampling

time rate on the switching function. The last contribution of the

paper has to do with the few experimental verifications of the

proposed controller. The experimental measurements obtained

are in agreement with the simulation and this validates the

theory. Finally, a conclusion summarises the key aspects of

the design method.

The notation used is described as follows. For real matrices

or vectors (′) indicates transpose. The set composed by the

first N positive integers, 1, ...,N is denoted by IK. The set of

all vectors λ = (λ1, . . . ,λNλNλ )′ such that λiλiλ ≥ 0, i = 1,2, . . . ,N
and λ1 + λ2λ2λ + . . .+ λNλNλ = 1 is denoted by Λ. The convex

combination of a set of matrices (A1, . . . ,AN) is denoted by

Aλ = ∑N
i=1 λiλiλ Ai, where λ ∈ Λ. The trace of a matrix P is

denoted by Tr(P), IR+ indicates the set of all positive real

numbers and sgn(β ) denotes the signum function of β , which

is equal to 1,0, or − 1 if β > 0, β = 0, or β < 0, respectively.

II. SWITCHED AFFINE SYSTEMS

In this section, the problem to be dealt with is presented.

The class of switched systems of interest is defined by the

following state space realization [17]:

ẋ(t) = Aσ(t)x(t)+Bσ(t)w(t), (1)

where x(t) ∈ IRn is the state vector, y(t) ∈ IRp is the output,

w(t)∈ IRm is the input supposed to be constant for all t ≥ 0 and

σ(t): t ≥ 0 → IK is the switching strategy. For a known set of

matrices Ai ∈ IRn×n, Bi ∈ IRn×m and CiCiC ∈ IRp, i ∈ IK, such that

Aσ(t) ∈ {A1,A2, . . . ,AN}, Bσ(t) ∈ {B1,B2, . . . ,BN} and Cσ(t) ∈
{C1,C2C2C , . . . ,CNCNC }, the switching strategy σ(t) selects at each

instant of time t ≥ 0, a known subsystem among N available.

The initial control problem in this paper is to determine a set of

equilibrium point x = xe such that limt→∞ x(t) = xe holds for

all initial condition x0 ∈ IRn whenever the switched strategy

is applied. Then, consider that the class of the dynamical

systems (1), is also given by the convex combination of the

N subsystems, which is described by:

ẋ(t) = Aλ x(t)+Bλ w(t). (2)

Note that the control is now λ and it takes its values in

the whole simplex Λ. An important feature of this class of

dynamical systems is to describe the set of the equilibrium

points of the switched affine systems. This fact is already

noticed in [17], [25], [35]. The next definiton elucidates this

characterization.

Definition 1. Let XeLet XeLet X be the set of the equilibrium points related

to system (2) and defined as:

XeXeX :=
{

xe ∈ IRn, xe =−A−1
λ Bλ w(t), λ ∈ Λ

}

. (3)

As it has been shown in [17], [25], [35], the state x(t) of

system (1) can be stabilized at any equilibrium point xe ∈ IRn

using the switched state feedback law, given by:

σ(x(t)) = argmin
i∈IK

(2(x− xe)
′P(Aix+Biw)), (4)

where P > 0 satisfies the Lyapunov inequality:

A′
λ P+PAλ < 0, (5)

for some λ ∈ Λ. Another interest for the class of dynamical

systems (1), is related to generalise this result in order to

include performance indexes, for instance, a guaranteed cost

and a lower bound for the decay rate. To be more precise, let

a quadratic Lyapunov function V (x− xe) = (x− xe)
′P(x− xe)

and consider a quadratic guaranteed cost:

min
σ(t)∈IK

∫ ∞

0

∫

0

∫

(z−HσHσH (t)xe)
′(z−HσHσH (t)xe)dt

= min
σ(t)∈IK

∫ ∞

0

∫

0

∫

(x− xe)
′Qσ(t)(x− xe)dt, (6)

where z = HσHσH (t)x, Qσ(t) = H ′
σ(t)HσHσH (t) ≥ 0 for σ(t) ∈ IK and

xe ∈ IRn is a given equilibrium point. The next theorem

provides conditions that allow the specification of the

guaranteed cost and the decay rate in the same design.

Theorem 2. [36] Consider the switched affine system (1) with

a constant input w(t) = w for all t ≥ 0, let the equilibrium

point xe ∈ IRn, γ > 0 be given and suppose that the state vector

x(t) ∈ IRn is available for feedback. If there exist λ ∈ Λ, and a
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symmetric matrix P ∈ IRn×n, such that

P > (2γ)γ)γ −1Qi, (7)

A′
iP+PAi +2γPγPγ < 0, (8)

Aλ xe +Bλ w = 0, (9)

where Qi = H ′
iHiH HiHiH , i ∈ IK, then the switching strategyIK, then the switching strategyIK

σ(x(t)) = argmin
i∈IK

(2(x− xe)
′P(Aixe +Biw)), (10)

makes the equilibrium point xe ∈ IRn of switched affine system

(1) globally exponentially stable with decay rate equal to or

greater than γ and admits the guaranteed cost

J =

∫ ∞

0

∫

0

∫

(x− xe)
′Qσ (x− xe)dt < (x0 − xe)

′P(x0 − xe). (11)

Proof. See [36] for details.

Theorem 2 provides the following minimization problem:

inf
P>0

{Tr(P) : (7)− (9) hold for some

P = P′ > 0 and i ∈ IK
}

. (12)

Moreover, note that the presented restriction (7) makes

Theorem 2 conservative. In order to obtain less conservative

conditions, we propose in the next theorem another way to

consider the restrictions for decay rate and guaranteed cost.

Theorem 3. [37] Consider the switched affine system (1)

with constant input w(t) = w for all t ≥ 0, let the equilibrium

point xe ∈ IRn, γ > 0 be given and suppose that the state

vector x(t) ∈ IRn is available for feedback. If there exist λ ∈
Λ, symmetric matrices Zi, symmetric matrices Zi, symmetric matrices Z ∈ IRn×n and a symmetric positive

definite matrix P ∈ IRn×n, such that

ZiZiZ > Qi, (13)

ZiZiZ > 2γPγPγ ,P,P (14)

A′
iP+PAi +ZiZiZ < 0, (15)

Aλ xe +Bλ w = 0, (16)

where Qi = H ′
iHiH HiHiH , i ∈ IK, then the switching strategyIK, then the switching strategyIK (10)

makes the equilibrium point xe ∈ IRn of switched affine system

(1) globally exponentially stable with decay rate equal to or

greater than γ and the guaranteed cost (11) holds.

Proof. Consider the quadratic Lyapunov candidate function

V (x− xe) = (x− xe)
′P(x− xe). From (1), (10), (13), (15) and

(16), one has for (x− xe) �=�=� 0:

V̇ (x− xe) = 2(x− xe)
′P(Aσ x+Bσ w)

= 2(x− xe)
′P(Aσ xe +Bσ w)

+(x− xe)
′(A′

σ P+PAσ )(x− xe)

= min
i∈IK

{

2(x− xe)
′P(Aixe +Biw)

}

+(x− xe)
′(A′

σ P+PAσ )(x− xe)

< min
i∈IK

{

2(x− xe)
′P(Aixe +Biw)

}

− (x− xe)
′ZσZσZ (x− xe)

≤ 2(x− xe)
′P(Aλ xe +Bλ w)− (x− xe)

′ZσZσZ (x− xe)

=−(x− xe)
′ZσZσZ (x− xe)

<−(x− xe)
′Qσ (x− xe)≤ 0. (17)

The second inequality in (17) is based on (10) and in the

following fact: the minimum of a set of real numbers is smaller

than or equal to any convex combination of these numbers [3].

Now, assuming that (x − xe) �=�=� 0, then from (14) and (17),

V̇ (x − xe) < −(x − xe)
′ZσZσZ (x − xe) < −2γ(x − xe)

′P(x − xe).
Thus, the switched affine system has a decay rate equal to or

greater than γ . Finally, integrating (17) from zero to infinityγ . Finally, integrating (17) from zero to infinityγ
and taking into account that V (x(∞)− xe) = 0, it follows (11).

The proof is concluded.

Theorem 3 provides the following minimization problem:

inf
P>0

{Tr(P) : (13)− (16) hold for some

P = P′ > 0 and i ∈ IK
}

. (18)

The next theorem compares the conditions of Theorems 2

and 3.

Theorem 4. [37] If the conditions of Theorem 2 hold, then

the conditions of Theorem 3 also hold.

Proof. Consider that (7)−(9) hold. Then, choose a constant

β such that β > 0. Now, define ZiZiZ = 2γPγPγ + β InInI , i ∈ IK and

observe that the conditions (13)−(16) from Theorem 3 hold if

the conditions (7)−(9) from Theorem 2 hold, for sufficiently

small values of β > 0:

ZiZiZ = 2γPγPγ +β InInI > 2γPγPγ > Qi,

ZiZiZ = 2γPγPγ +β InInI > 2γPγPγ ,P,P

A′
iP+PA′

i +ZiZiZ = A′
iP+PA′

i +2γPγPγ +β InInI < 0, (19)

and (9) is equal to (16). The proof is concluded.

The simulation results described in the next sections show

that there exist cases where the conditions from Theorem 3 are

less conservative than those proposed in Theorem 2.

Remark 5. It is interesting to note that to solve the conditions

related to Theorems 2 and 3 it is necessary to determine

a specific vector λ ∈ Λ, which is associated with a known

equilibrium point xe ∈ IRn. Then, for a given equilibrium point

xe ∈ IRn, the associated vector λ ∈ Λ is determined. However,

a known problem in control systems is that the equilibrium

point xe ∈ IRn can vary over time. Thus, remembering that the

solution of inequality (16), related to Theorem 3, requires the

determination of a specific value of λ ∈ Λ that is associated

with the equilibrium point xe ∈ IRn, then the proposed control

strategy (10) does not guarantee global stability to a different

equilibrium point than was projected. A possible solution to

the proposed problem is to design a control strategy dependent

only on partial equilibrium point information.
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III. BUCK DC-DC CONVERTER

+

-

+

-

L

w

S1

S2 C VCVCV (t) R

rLrLr

iL(t)

Fig. 1. Buck DC-DC converter.

Consider the Buck DC-DC converter shown in Figure 1.

The converter is modeled as nonlinear switched affine system.

Consider that iL(t) denotes the inductor current and VCVCV (t) the

capacitor voltage. Define the state vector x(t)′ = [x= [x= [ 1(t) x2(t)] =
[iL(t)VCVCV (t)] and consider an equilibrium point x′e = [x= [x= [ 1e x2e] =
[iLe VCeVCeV ]. Now, assume that the systems described by (1)

consist of a group of N = 2 affine subsystems sharing the

same state vector and the decision of which subsystem is

active is the control variable, resulting in a switching strategy

σ(x − xe) ∈ {1,2}. Initially, for theoretical analysis of the

Buck DC-DC converter, no limit is imposed on the switching

frequency because the trajectory of the system evolves on a

sliding surface with infinite frequency. Then, it is not difficult

to verify that this system is given as [17], [19]:

A1 =

[

−rLrLr /L −1/L

1/C −1/RC

]

, A2 =

[

−rLrLr /L −1/L

1/C −1/RC

]

,

B1 =

[

1/L

0

]

, B2 =

[

0

0

]

. (20)

Now, for the analysis of Theorems 2 and 3, suppose the

following values to the parameters:

w = 24V, R = 15Ω, rLrLr = 2.6Ω, L = 3.6 mH, C = 10µF,
(21)

and Qi = diag{ρ1rLrLr , ρ2/R}, where Qi ≥ 0, i ∈ IK, is the

performance index matrix associated with the guaranteed cost:

∫ ∞

0

∫

0

∫

(ρ2R−1(VCVCV −VCeVCeV )2 +ρ1rLrLr (iL − iLe)
2dt, (22)

which ρ1 and ρ2 ∈ IR+ are design parameters that plays

an important role with regard to the peak current value and

settling time of the voltage [17]. In this study, consider ρ1 = 0

and ρ2 = 1. The set of all attainable equilibrium points of the

Buck DC-DC converter is given by [17]:

xe =

{

[iLe VCeVCeV ]′ : VCeVCeV = RiLe, 0 ≤ iLe ≤
w

(rLrLr +R)

}

.

(23)

For the analysis of the Buck DC-DC converter, suppose

the following value of load voltage VCeVCeV = 6V and a decay

rate γ = 42s−1. From (23) the equilibrium point is x′e =
[iLe VCeVCeV ] = [0.4 6]. Therefore, from (9) one obtains λ1 =

0.2933 and λ2λ2λ = 0.7067. Moreover, observe that the proposed

design method can also be used for different values of the

parameters or reference points. Then, from the minimization

problem (12), corresponding to Theorem 2, the solution was

the following matrix:

P =

[

0.0911 −0.0027

−0.0027 0.0009

]

. (24)

Considering the same parameters above, from (16) one

obtains λ1 = 0.2933 and λ2λ2λ = 0.7067. Then, from the

minimization problem (18), related to Theorem 3, the obtained

solution was the following matrix:

P = 10−4 ×

[

13.9213 0.0946

0.0946 0.0464

]

. (25)

Simulation results for the initial conditions

(x1(0),x2(0))
′ = (0,0) and (1,15), considering the proposed

method and the procedure presented in [36], described in

Theorem 2, are shown in Figures 2 to 4.
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Fig. 2. Time simulations of the state variable x1(t) = iL(t) (the

reference value is x1e = 0.4 A).
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Fig. 3. Time simulations of the state variable x2(t) = VCVCV (t) (the

reference value is x2e = 6 V ).
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Fig. 4. Phase plane of the state variables x1(t) = iL(t) and x2(t) =
VCVCV (t).
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Observe that the proposed method presents a better

convergence speed. Table I displays the obtained results.

TABLE I

Buck DC-DC Converter Results for γ = 42

Initial

conditions

Voltage settling

time

Guaranteed cost

(11)

Theorem 2 (0,0) 1.00 ms 0.03310

Theorem 3 (0,0) 0.50 ms 0.00043

Theorem 2 (1,15) 1.25 ms 0.07450

Theorem 3 (1,15) 0.75 ms 0.00097

Moreover, from Table I also note that the proposed method

presents a smaller cost when compared with the cost obtained

with Theorem 2. This fact illustrates the results presented in

Theorem 4.

Nevertheless, a key assumption behind the switching

function (10) is the non-continuous nature. Note that the

controller proposed operates with a high switching frequency

and this fact makes it impossible to be implemented in

practical systems. This ideal switching phenomenon is known

as chattering. Furthermore, high-frequency components

caused by the chattering are undesirable, because they may

excite high-frequency dynamics on the plant that were not

modeled, which could result in unforeseen instabilities. This

problem is very hard to solve. Owing to this interest, we

provide in the next theorem sufficient conditions for the

control of switched affine systems that allows a way to

guarantee a bounded sampling time rate on the switching

function. The next theorem provides an important result on

this subject.

Theorem 6. [37] Consider the switched affine system (1) with

constant input w(t) = w for all t ≥ 0. If the LMIs (13)−(16) of

Theorem 3 hold, then the switching strategy (10), with σ(t) =
σ(kT ), kT ≤ t < (k+1)T , k = 0,1,2, . . ., for all constant T >
0, makes the equilibrium point xe ∈ IRn for the switched affine

system (1) uniformly ultimate bounded.

Proof. Consider the quadratic Lyapunov function candidate

V (x − xe) = (x − xe)
′P(x − xe) where xe ∈ IRn is a know

equilibrium point. From (1), (10), (14), (15) and (x− xe) �=�=� 0,

one has:

V̇ (x− xe) = 2(x− xe)
′P(Aσ x+Bσ w)

= 2(x− xe)
′P(Aσ xe +Bσ w)

+(x− xe)
′(A′

σ P+PAσ )(x− xe)

= 2(x− xe)
′P(Aσ xe +Bσ w)

+(x− xe)
′(A′

σ P+PAσ +ZσZσZ )(x− xe)

− (x− xe)
′ZσZσZ (x− xe)

< 2(x− xe)
′P(Aσ xe +Bσ w)− (x− xe)

′ZσZσZ (x− xe)

= min
i∈IK

(

2(x− xe)
′P(Aixe +Biw)

)

− (x− xe)
′ZσZσZ (x− xe)

< min
i∈IK

(

2(x− xe)
′P(Aixe +Biw)

)

− (x− xe)
′2γPγPγ (x− xe)

≤−ε1 �(x− xe)�
2 + ε2ε2ε �(x− xe)� , (26)

where −ε1 < 0 denotes the maximum eigenvalue of −(2γPγPγ ),
γ > 0, P > 0 and ε2ε2ε > 0 represents the maximum

value of �2P(Aixe +Biw)�, i ∈ IK where �(x− xe)� =
√

(x− xe)′(x− xe). Thus, for (x − xe) �=�=� 0, V̇ (x − xe) < 0 if

||(x−xe)||> ε2ε2ε /ε1 and according to [34] the controlled system

is uniformly ultimately bounded. Moreover, assuming that

(x−xe) �=�=� 0, then from (13), (26) and recalling that Qi ≥ 0, i ∈
IK, then V̇ (x−xe)<−(x−xe)

′ZσZσZ (x−xe)<−(x−xe)
′Qσ (x−

xe)≤ 0. The proof is concluded.

Remark 7. Say that the switching strategy σ(t) = σ(kT ), for

kT ≤ t ≤ (k + 1)T , k = 0,1,2, . . . makes the switched affine

system uniform ultimate bounded is equivalent to say that the

state variables of the system not necessarily converge to the

origin of the system, but for a closed and bounded region

around this origin. Furthermore, this bounded region becomes

smaller when the sampling time rate (T ) on the switching

function σ(t) = σ(kT ) decreases.

Remark 8. From (11), observe that for t → ∞ the guaranteed

cost of the system, controlled by the switching strategy σ(t) =
σ(kT ), kT ≤ t < (k+1)T and k = 0,1,2, . . ., is infinity. Thus,

the guaranteed cost of the controlled system can be interpreted

as the necessary cost for the controlled system converge to a

neighborhood of the equilibrium point.

In the next section, this procedure is applied to the Buck

DC-DC converter in order to illustrate the control design

method developed.

IV. BUCK DC-DC CONVERTER OPERATING WITH

BOUNDED SAMPLING TIME RATE

Consider the same parameters previously defined in (21).

Adopting the following value of load voltage VCeVCeV = 6V and

a maximum decay rate γ = 42s−1. From (23) the reference

point is xe = [iLe VCeVCeV ]′ = [0.4 6]′. Then, from Theorem

6, note that the minimization problem is the same to (18),

related to Theorem 3. Thus, the obtained solution was the

same matrix (25). Simulation results for the initial condition

(x1(0), x2(0)) = (0,0), obtained using a switching strategy

σ(t) = σ(kT ), kT ≤ t < (k + 1)T , k = 0,1,2, . . ., proposed

by Theorem 6, and a bounded sampling time rate equal to

T = 10µs are shown in Figures 5 to 8.

From Figures 5 and 7, note that even with a bounded

sampling time rate, the proposed switching strategy σ(t) =
σ(kT ), kT ≤ t < (k+ 1)T and k = 0,1,2, . . ., leads the state

variables to a bounded region around the desired equilibrium

point. Moreover, from Figure 6, observe that the voltage

settling time is equal to that obtained when no limit is imposed

on the sampling time rate, which highlights the quality of the

results. Table II presents the obtained results.

TABLE II

Buck DC-DC Converter Results

Steady state

x2(t) =VcVcV (t)
Voltage settling

time

Sampling time

rate

Theorem 3 6.00 V 0.50 ms no limit

Theorem 6 6.17 V 0.50 ms 10µs
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Fig. 5. Time simulations of the state variable x1(t) = iL(t) (the

reference value is x1e = 0.4 A).
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Fig. 6. Time simulations of the state variable x2(t) = VCVCV (t) (the

reference value is x2e = 6 V ).
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Fig. 7. Amplification of the state variable x2(t) =VCVCV (t) (the reference

value is x2e = 6 V ).
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Fig. 8. Time simulations of the switching strategy σ(t) = σ(kT ),
kT ≤ t < (k+1)T , k = 0,1,2, . . .

V. EXPERIMENTAL VERIFICATION FOR BUCK DC-DC

CONVERTER OPERATING WITH BOUNDED

SAMPLING TIME RATE

To demonstrate the advantages of the proposed control,

an experimental prototype of a Buck DC-DC converter has

been implemented. The structure of the converter with the

controller is shown in Figure 9 and an electronic configuration

for the DC-DC converter is shown in Figure 10. The design

parameters are the same defined previously in (21).

LL

RR

D

www((t)) C

MM
rrLLrLrrLr

Driver Microcontroler

Fig. 9. Equivalent electric scheme for control of Buck DC-DC

converter.

Fig. 10. Electric scheme for control of Buck DC-DC converter.

Note that the switch S1 was changed by the MOSFET

transistor M and the control of σ(t) on M is the following:

σ(t) = 1 when M is ON and σ(t) = 2 when M is OFF.

Then, from the switching strategy (10), i ∈ {1,2}, define the

following signal: H = 2(x−xe)
′P((A1−A2)xe+(B1−B2)w).

Next, from (20), (21), (25) and recalling that the state vector

x(t)′ = [x= [x= [ 1(t) x2(t)] = [iL(t) VCVCV (t)] and the equilibrium point

x′e = [x= [x= [ 1e x2e] = [iLe VCeVCeV ], one has:

H = 18.5644(iL(t)− iLe)+0.1261(VCVCV (t)−VCeVCeV ). (27)

Again, recalling that sgn(H ) denotes the signum function

of H , which is equal to 1,0, or −1 if H > 0, H = 0 or H <
0, respectively, one has, from (10), the following switching

rule described in Table III.

TABLE III

Switching Rule

sgn(H ) σ(t) S1 MOSFET (M)

i f H < 0 −1 1 1 ON

i f H > 0 1 2 0 OFF

Now, from Table III, the switching strategy σ(t) can be

implemented by a microcontroller with periodic interrupts.

At each interruption, the controller reads the state variables

values through the sensors signals received from the A/D

converter and makes the decision of which subsystem should

be activated. Therefore, note that the switching frequency is
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not infinite as assumed in the theoretical developments. This

fact keeps the MOSFET operating with a bounded sampling

time rate and its illustrates the results presented in Theorem

6. From the aforementioned analysis, in order to demonstrate

the effectiveness of the proposed method, assume that the

sampling time rate is T = 10µs. Then, Figure 11 depicts the

transient digital response for the current iL(t) and Figure 12

shows the transient response for the voltage signal VCVCV (t),
obtained when the converter start-up and operating at the

nominal equilibrium point.
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Fig. 11. Digital response of the state variable x1(t) = iL(t) (the

reference value is x1e = 0.4 A).

Fig. 12. Transient response for the state variable x2(t) = VCVCV (t) (the

reference value is x2e = 6 V ).

From Figure 11, note that the amplitude and frequency of

the current iL(t) diverges from the result illustrated in Figure 5.

This fact is due to the sensing and analog conditioning of the

current signal. More specifically, the current at the equilibrium

point is equal to 0.4A4A4 and the sensor used (ACS712) has a

nominal current equal to 3A, then concludes that the sensor

operates with an analog gain smaller than adequate. Moreover,

from Figure 12, observe that the voltage settling time obtained

is 5ms and it is equal to that obtained in Figure 6.

VI. COMPARATION OF THE BUCK DC-DC

CONVERTER OPERATING WITH PI AND PI WITH

LEAD CONTROLLER

In this example, the main idea is to compare the proposed

results by the Theorem 6 with the classics controllers in the

literature, more specifically PI and PI with Lead controller.

Then, for the DC-DC Buck converter illustrated in Figure 1,

consider the same parameters previously defined in (21) and

the following value of load voltage VCeVCeV = 6V . Results of

Frequency Domain analysis of the Phase Margin and the

Crossover Frequency is tabulated in Table IV.

TABLE IV

Frequency Domain Analysis for PI and PI with Lead

Compensation

Controller
Phase Margin in

Degrees

Gain cross over

Frequency (kHz)
PI 30.0 2.0

PI with Lead 50.0 5.0

Then, for the frequency domain analysis presented in

Table IV, one has for PI compensator, kpkpk = 0.234 and

ki = 294.294, where KpKpK and KiKiK are the parameters of PI

controller. Following, for PI with Lead controller, one has,

kpkpk = 1.473, ki = 4626.790, Glead = 0.444, wz = −13954.430

and wp = −70727.370, where KpKpK and KiKiK are the parameters

of PI controller and Glead , wz and wp are the parameters of

lead compensator. Simulation results for the initial condition

(x1(0), x2(0)) = (0,0), using a switching strategy σ(t) =
σ(kT ), kT ≤ t < (k + 1)T , k = 0,1,2, . . ., proposed by

Theorem 6, PI and PI with Lead controllers are shown in

Figures 13 and 14.
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Fig. 13. Time simulations of the state variable x1(t) = iL(t) (the

reference value is x1e = 0.4 A).
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Fig. 14. Time simulations of the state variable x2(t) = VCVCV (t) (the

reference value is x2e = 6 V ).

The comparative results are presented in Table V.

TABLE V

Analysis for DC-DC Buck Converter

Steady state

x2(t) =VcVcV (t)
Voltage settling

time

Voltage

Overshoot

Theorem 6 6.17 V 0.50 ms 0 V

PI with Lead 6.09 V 1.00 ms 7.80 V

PI 5,85 V 1.60 ms 7.80 V

The time domain response shows that the PI and the PI with

lead compensation has a large settling time when compared

to the proposed control technique. More specifically, the
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proposed control technique gives a good steady state and

transient response. response

VII. CONCLUSION

In this paper, we have addressed a study and design

for a new switching strategy for switched affine systems.

The control design was based on Lyapunov stability using

a quadratic function and LMIs. A quadratic guaranteed

cost has been minimised. The main advantage of this

approach is that the proposed design method can improve

the convergence speed of a Buck DC-DC power converter,

with a smaller quadratic guaranteed cost. Also, we have

proposed a new control strategy in order to guarantee

uniform ultimate boundedness for switched affine systems

that allows to guarantee a bounded sampling time on the

switching function. With the proposed method, steady-state

performances can be taken into account and the resulting

design has good performance characteristics despite the

conservatism in the sampling time model. Besides, the

experimental measurements from a prototype of the Buck

power converter have verified the results and it showed a great

agreement with the design. Finally, the approach used here can

be extended to other more complex converters such as Boost,

Buck-Boost and Sepic.
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