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Abstract – Transient analysis of RC circuit with voltage 
step source, constant resistor and nonlinear voltage-
dependent capacitors with the capacitance given by 

, where  and  are constant 
and is the voltage across the capacitor, was carried out. 
The analysis was restricted to this class of nonlinear 
capacitors, because they represent with acceptable 
approximation the capacitances of reverse-biased 
Schottky diodes, which are very important and usually 
used in several static power converters practical 
applications. The charging and discharging are described 
by explicitly solvable nonlinear first-order differential 
equations. The theoretical analysis results are verified by 
numerical examples with computer simulation and also 
by experimentation in the laboratory. 

   
Keywords – RC circuit, transient analysis, voltage-

dependent capacitor, Schottky diode. 
 

 
I. INTRODUCTION 

 
It is well known that a Schottky diode biased in the 

reverse direction exhibits a voltage-variable capacitance and 
that this characteristic can be useful in a number of 
applications, which includes voltage tuning of an LC 
resonant circuit, voltage-controlled oscillators, parametric 
amplifiers and frequency multipliers. 

Nonlinear voltage-dependent capacitances are also 
inherently present in silicon, GaN and SiC power 
semiconductor devices, where they can have a significant 
impact on the operation of high frequency switched-mode 
power converters. They can affect the switching times, 
commutation losses and the converter dynamics and can 
limit the maximum operation frequency of these converters. 

In [1] the study on the charging and discharging of two 
types of nonlinear semiconductor capacitors through linear 
resistor is reported: one having a capacitance increasing 
exponentially with the voltage across it and the other, the 
space-charge capacitor that obey the function 

. In [2] a solution for the large 
signal transient response of a reverse biased p-n junction 
diode to a step voltage is presented, but only during the 
charging period. Reference [3] presents an analysis of the 
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large signal step response of a junction capacitor considering 
charging and discharging through a linear resistance. It is 
shown that the behavior of an abrupt or a linearly graded 
junction capacitor is different from that of a conventional and 
voltage-independent capacitor. In [4], using a closed-form 
solution of the static Poisson’s equation in the depletion 
layer, the large signal step response of a single-diffused 
junction is studied and it is shown that it deviates from that 
of either a linearly graded or abrupt junction. However, none 
of these articles present an explicit solution to the nonlinear 
differential equations that describe the transient behavior of 
the voltage across the capacitors. 

Reference [5] has shown how the optimal solution for 
charging linear and nonlinear capacitor is computed, 
including the optimal charging voltage for a MOSFET gate 
capacitor, which capacitance is given by 

. Reference [6] also analyzes RC 
circuits containing a voltage-dependent capacitor, expanding 
and generalizing the analysis presented in [5]. 

However, as the objective of these studies was to find how 
the input voltage should change with respect to time to 
minimize the resistor losses, no explicit expressions for the 
voltage across the capacitor as a function of time was 
provided, when the circuit is supplied by an input voltage 
step.  

In the research reported herein we investigate the transient 
behavior of RC networks containing nonlinear voltage-
dependent capacitors. The analysis was restricted to basic 
circuits containing capacitors given by 

, which represents the reverse biased 
Schottky diode voltage-dependent capacitance. With this 
class of capacitors, as demonstrated in this paper, it is 
possible to find a closed form solution for the voltage across 
the nonlinear capacitors, the energy converted into heat in the 
series resistor, the energy stored in the capacitor, and the 
charging and discharging times. 

 
II. THE SCHOTTKY DIODE VOLTAGE-DEPENDENT 

CAPACITANCE 
 
Let the voltage-dependent capacitor be that shown in 

Figure 1. 

 
 Fig. 1. Voltage-dependent capacitor. 

The current flowing through the capacitor is given by  
 

( ) 1c o c biC v C v V= + oC biV

cv

( ) ( )sinhc o c cC v C v va a=

( ) 1c o c biC v C v V= +

( ) 1c o c biC v C v V= +
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   (1) 

 
where denotes the electric charge on the capacitor plates, 
which is given by 
 

   (2) 
 
We can rewrite (1) as 
   

   (3) 

 
which substituted in (3) yields [7] 
 

   (4) 

The voltage-dependent depletion-layer capacitance of a 
reverse-biased Schottky diode is given by [8] 

 
   (5) 

 
where  is the zero-bias junction capacitance and  is the 
built-in voltage of the Schottky diode. 

The measured  characteristics of the Schottky diode 
STPS 10L25 from STMicroelectronics are shown in Figure 2 
[7]. 

 
Fig. 2. Measured C-V characteristics of STPS10L25 [7]. 
 

From the characteristics shown in Fig. 2, we can extract 
the parameters of equation (6), which are and 

 
 
III. CHARGING TRANSIENT OF THE VOLTAGE-

DEPENDENT CAPACITOR 
  
Let us consider the circuit shown in Figure 3. At  the 

voltage source  is connected and the capacitor, with no 
initial voltage, begins to charge. 

 
Fig. 3. Circuit for charging the voltage-dependent capacitor through 
the linear resistor R. 

 
As follows from Kirchhoff’s voltage law 
 
   (6) 
 
Since 
 

   (7) 

 
we have 
 

   (8) 

    
Substitution of (5) in (8) yields 
 

   (9) 

 
Thus 
 

   (10) 

 
From (10) we obtain 
 

   (11) 

 
Therefore, 
 

   (12) 

 
where  is the constant of integration. 

It is well known that 
 

   (13) 

 
Integrating the first term of (12) we find 
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 (14) 

 
After appropriate algebraic manipulation we obtain 
 

  (15) 

 
In order to determine , we substitute (14) and (15) in 

(13)  and set   and . Hence, 
 

   (16) 

 
Substitution of (13),  (15) and (16)  in (12) yields 

 

   (17) 

 
Rearranging the terms of (17) we find 
 

   (18) 

 
Let be defined by 
 

   (19) 

 

Substituting (19) in (18) we find 
 

   (20) 

 
Solving (20) for   we obtain 
 

  (21) 

 
From (21) we find 
 

  (22) 

 
Equation (22) represents the behavior of the voltage 

across the voltage-dependent capacitor of the electric circuit 
shown in Figure. 3. 

Let ,  and  be defined by (23), (24) and (25), 
respectively. 

 

   (23) 

   (24) 

and 
 

   (25) 

 
Substituting (23), (24) and (25) in (22) and rearranging the 

terms we obtain 
 

  (26) 

 
Figure 4 shows the plot of the normalized voltage   

across the voltage-dependent capacitor of the circuit shown 
in Figure. 3, as function of the normalized time , for 
different values of . 

 

( )
1

1 1

1

1 1ln
1 .

1 1ln

bi c biC

c bi c bi

bi c bi

V v V Vdv
V v V v V V

V v V V

é ùæ ö
ê ú+ç ÷ç ÷+ +ê úè ø= ê ú

- + + æ öê ú
- -ç ÷ê úç ÷+ +ê úè øë û

ò

( )
1

1 1

1

1 1
1 ln .

1 1
bi c biC

c bi c bi

bi c bi

V v V Vdv
V v V v V V

V v V V

æ ö+ç ÷+ +ç ÷=
ç ÷- + + -ç ÷+ +è ø

ò

K
0t = ( )0 0cv =

1

1

1

1 1
1 ln .

1 1
bi bi

bi

bi bi

V V V
K

V V
V V V

æ ö+ç ÷+ç ÷=
ç ÷+ -ç ÷+è ø

1

1

1

1

1

1

1 1ln
1

1 1ln

1 1ln
1 .

1 1ln

bi c bi

bi

bi c bi

bi bi

bi o bi

bi bi

V v V V

V V

V v V V

V V V t
V V RC V

V V V

é ùæ ö
ê ú+ç ÷ç ÷+ +ê úè ø =ê ú

+ æ öê ú
- -ç ÷ê úç ÷+ +ê úè øë û
é ùæ ö
ê ú+ç ÷ç ÷+ê úè ø +ê ú

+ æ öê ú
- -ç ÷ê úç ÷+ê úè øë û

1

1 1

1

1

1 1

1 1

ln .
1 1

1 1

bi c bi

bi bi c bi

o bi

bi c bi

bi bi

V v V V

t V V V v V V
RC V

V v V V

V V V

æ ö+ç ÷+ +ç ÷
ç ÷-ç ÷+ + +ç ÷=
ç ÷

+ç ÷+ +ç ÷
ç ÷
- +ç ÷+è ø

a

1 .bi

o bi

V V
RC V

a
+

=

1 1

1 1

1 1 1 1

.
1 1 1 1
bi c bi bi bit

bi c bi bi bi

V v V V V V V
e

V v V V V V V

a

æ ö+ +ç ÷+ + +ç ÷=
ç ÷

- - +ç ÷+ + +è ø

c biv V+

1 1 1

1

1 1

.

t
bi bi bi

t t
bi bi bi

bi c t t
bi bi bi bi

V V V V V V e

V e V V V e
V v

V e V V V V V e

a

a a

a a

+ - - +

+ + +
+ =

+ + - + +

2

1 1 1

1

1 1

.

t
bi bi bi

t t
bi bi bi

c bit t
bi bi bi bi

V V V V V V e

V e V V V e
v V

V e V V V V V e

a

a a

a a

æ ö+ - - +
ç ÷
ç ÷+ + +

= -ç ÷
+ + - + +ç ÷

ç ÷ç ÷
è ø

g cv t

1

.bi
V
V

g =

1

c
c
v

v
V

=

.
o

tt
RC

=

( )( ) ( )( )
( )( ) ( )( )

2
1

1

1 1 1 1
.

1 1

t

c
t

e
v

e

g
g

g
g

g g g g g g
g

g g g g

+

+

æ ö
+ - - + + + +ç ÷

= -ç ÷
ç ÷+ - + + +ç ÷
è ø

cv

t
g



Eletrôn. Potên., Florianópolis, v. 28, n. 4, p. 295-303, out./dez. 2023298

 

 

 
Fig.4. Normalized transient voltage  across the voltage-
dependent capacitor in Figure 3 as function of the normalized time 

, taking  as a parameter for:  (a) , (b)   and 
(c) . 
 
 

As shown in Figure 4, the higher the value of , which 
implies a lower value of the power supply voltage , the 
longer the time required for the capacitor to fully charge, 
which occurs when  . This behavior is explained due 
to the nonlinearity caused by the voltage-dependent 
capacitance of the capacitor. 

 
A. Charging Time 

Substituting (24) and (25) in (22) and solving for  we 
find 

 

   (27) 

 
Substitution of (23) in (19) yields 
 

   (28) 

 
Substituting (25) in (28) we get 

 

   (29) 

 
Substitution of (29) in (27) gives 
 

  (30) 

 
Solving (30) for  we find 
 

  (31) 

 
Equation (31) directly gives the normalized charging time 

 as a function of the normalized voltage  across the 
capacitor terminals, where  is the parameter of the 
equation. 

As follows from (26), the voltage across the capacitor 
asymptotically approaches the steady-state value, which is 
equal to the input voltage , and the transient duration is 
theoretically infinite. 

Let us define the rise time  as the time required for the 
capacitor voltage to rise from 10% to 90% of its final value, 
which is equal to . Hence, the normalized voltage  rises 

from 0.1 to 0.9. The normalized rise time is then 
 
   (32) 

 
Figure 5 presents the normalized rise time as function of 

, given by (32). As shown in this figure, the rise time 
increases with increasing , or with decreasing the voltage 

 . 
 

 
Fig. 5. Plot of the normalized rise time  versus . 

 
B. Energy Stored in the Capacitor 

The instantaneous power in the capacitor is 
 
   (33) 
 
Substitution of (5) in (39) gives 
 

   (34) 

 
The energy stored in the capacitor is given by 
 

   (35) 
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Hence 
 
   (36) 

 
Substitutions of (5) in (36) yields 
 

   (37) 

 
Integrating (37) in the interval  we find 
 

   (38) 

 
C. Energy Supplied by the Voltage Source 

The instantaneous power in the voltage source  is 
 
   (39) 
 
Substitution of (5) in (39) gives 
 

   (40) 

 
The energy supplied by the voltage source is given by 
 

   (41) 

Hence 
 

   (42) 

 
Substitutions of (5) in (42) yields 
 

   (43) 

 
Integrating (43) in the interval  and rearranging the 

terms we find 
 

   (44) 

 
Equation (44) gives the total energy transferred from the 

voltage source   to the pair RC during the charging of the 
voltage-dependent capacitor. 

 
D. Energy Dissipated in the Resistor 

The energy  dissipated in the resistor R is the 
difference between the energy supplied by the voltage source 

  and the energy stored in the capacitor, and is defined by 
 

   (45) 
 
Substitution of (38) and (44) in (45), after appropriate 

algebraic manipulation, yields 
 

  (46) 

 
E. Ratio of Energy Dissipated in the Resistor and the Energy 
Stored in the Capacitor 

Let us define  as the ratio of the energy  dissipated in 
the resistor to the energy  stored in the capacitor. Thus, 

 

   (47) 

 
Substituting (38) and (46) in (47) and rearranging the 

terms, we find 
 

   (48) 

 
Substitution of (23) in (48) yields 

 

   (49) 

 

 
Fig. 6. Ratio of the energy dissipated in the resistor to the energy 
stored in the voltage-dependent capacitor, as function of . 

 
According to equation (49), the ratio of the energy 

dissipated in the resistor R to the energy stored in the 
capacitor is independent of the values of R and , being 

dependent only on the ratio of  .  

A plot of  versus , given by equation (49), is shown in 
Fig. 6, which shows that, in opposition of what occurs in the 
charging of a constant capacitance capacitor, the energy 
dissipated in the resistor is always larger than the energy 
stored in the capacitor. This phenomenon is attributed to the 
voltage-dependence of the capacitor. 
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IV. ANALYSIS OF THE DISCHARGING TRANSIENT 
OF THE VOLTAGE-DEPENDENT CAPACITOR 

 
Since we are dealing with nonlinear systems, the principle 

of superposition will not hold. Therefore, the time 
dependence of charging voltage will differ from that of the 
corresponding discharge voltage, and the two cases must be 
considered separately. 

The circuit that we shall consider is shown in Figure 7. 
 

 
Fig. 7. Circuit for discharging the voltage-dependent capacitor 
through a linear resistor. 
 
The current  is given by 
 

   (50) 

 
Substitution of (5) in (50) yields 
 

   (51) 

Hence, 
 

   (52) 

 
and 
 

   (53) 

 
where is the constant of integration. 

Integrating both terms of (53) we obtain 
 

  (54) 

 
Making and  in (54) we obtain the 

constant of integration  , which is given by 
 

  (55) 

 

Substituting (55) in (54) and rearranging the terms, we 
find 

 

   (56) 

 
Let us define the normalized quantities ,  and  as 
 

   (57) 

 

   (58) 

and 
 

   (59) 

 
Substitution of (57), (58) and (59) in (56) and appropriate 

algebraic manipulation yields 
 

  (60) 

 
where  is the normalized voltage across the voltage-
dependent capacitor, during the discharge transient. 

 

 
Fig. 8. Decay transient of the normalized voltage across the voltage-
dependent capacitor versus normalized time, for: (a) , 
(b)  and (c) . 
 

The plot of equation (60), as shown in Figure 8, indicates 
that the decay time of the voltage across the capacitor 

depends on the parameter . The higher the value of 

 , which means lower value of the initial voltage  across 
the capacitor, the longer the decay time. This characteristic is 
due to the voltage-dependence of the capacitance. It should 
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be noted that if the capacitance were independent of the 
capacitor voltage, the decay time would no longer be 
dependent on the capacitor initial voltage. 

 
A. Discharging Time 

 
From (60) we can write 
 

   (61) 

 
We can find an explicit expression for the normalized time 
 by solving (61) and replacing  by  which 

yields 
 

  (62) 

 
Equation (62) directly gives the normalized discharge time 
 as a function of the normalized voltage across the 

capacitor terminals, where  is the parameter of the 
equation. 

As follows from (62), the voltage  across the capacitor 
asymptotically approaches the steady-state value, which is 
equal to zero, and the transient duration is theoretically 
infinite. 

Let us define the fall time  as the time required for the 
capacitor voltage to fall from 90% to 10%  of its initial value, 
which is equal to . Hence, the normalized voltage  falls 

from 0.9 to 0.1 . The normalized fall time  is then 
 

   (63) 
 
Curves computed from (63) for several values of  are 

presented in Figure 9. 
 

 
Fig. 9. Plot of the normalized fall time  versus . 

 
 

B. Ratio Between the Normalized Rise and Fall Times 
To compare the normalized times  and  , both are 

plotted in Figure 10, where we note that the fall time is 
always larger than the rise time. These curves show clearly 
how the nonlinearity due to the voltage-dependence of the 
capacitance results in strong differences between charging 
and discharging times. 

 

 
Fig. 10. Plot of the normalized fall times  and , and the 
ratio between them, versus . 
 

V. EXPERIMENTAL RESULTS  
 
In order to experimentally verify the validity of the 

theoretical analysis results, an experiment was carried out in 
the laboratory with the experimental circuit shown in Figure 
11. 

 

 
Fig. 11. Experimental RC circuit using the Schottky diode 
STPS10L25 as a voltage-dependent capacitor. 

 
The Schottky diode STPS10L25 from STMicroelectroncis 

was used as the voltage-dependent capacitor, which was 
associated in series with a resistor  . The parameters of the 
diode are  and  [7]. 

A rectangular voltage  with appropriate frequency, 
amplitude and duty-cycle was generated from the Tektronix 
AFG 1022 function generator, which internal impedance is 
equal to  . The voltages  and  were measured 
using the MDO 3014 Tektronix oscilloscope. 

The measured charging voltages  and  versus time, 
with   for  and  , are shown in 
Figures 12 and 13, respectively, and the corresponding 
discharging voltages are plotted in Figures 14 and 15. In the 
same figures, the theoretical voltage across the capacitance 
of the diode  is represented by solid black symbols. 
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As figures show, the experimental and theoretical results 
are nearly identical and the differences can be attributed to 
the internal impedance of the function generator and the 
diode parasitic parameters, such as leakage current and series 
resistance, not included in the analysis. 

It should be noted that, as predicted theoretically, the 
experimental charging and discharging times are sensitive to 
the value of the voltage . The time interval for the 
capacitor voltage to reach  is equal to  when 

 and  when  . The discharging times 
are  when  and for . 

 

 
Fig. 12. Experimental results during the capacitor charging when 

. (a) Voltage  generated by the function generator 
 . (b) Experimental voltage  across the Schottky diode 
. (c) Theoretical voltage  across the voltage-

dependent capacitor . 
 

 
Fig. 13. Experimental results during the capacitor charging when 

. (a) Voltage  generated by the function generator 
. (b) Experimental voltage  across the Schottky diode 
. (c) Theoretical voltage across the voltage-

dependent capacitor . 
 
 
 
 
 

 
Fig. 14. Experimental results during the capacitor discharging when 

. (a) Voltage  generated by the function generator  
. (b) Experimental voltage  across the Schottky diode 
. (c) Theoretical voltage  across the voltage-

dependent capacitor  
 

VI. CONCLUSIONS 
 
In this paper we have presented theoretical and 

experimental study on the step function charging and 
discharging of Schottky diode nonlinear voltage-dependent 
capacitors, through a linear resistance. The circuits are 
described by first-order nonlinear differential equations, 
which closed form exact solution are presented.  

From the performed study, we can draw the following 
conclusions: (a) the energy loss in the series resistor during 
charging is larger than the total energy transferred to and 
stored in the nonlinear capacitor, (b) the fall time is larger 
than the rise time, and (c) both the rise time and fall time are 
sensitive to the voltage value, decreasing with increasing 
voltage. These results indicate how the nonlinearity due to 
the voltage-dependence capacitances causes substantial 
differences between charging and discharging behavior. 

A similar analysis can be extended to other voltage-
dependent capacitors, such as ceramic capacitor, 
conventional P-N junction diodes capacitors and input and 
output capacitances of the MOSFET. The theoretical analysis 
results were verified by computer simulation and laboratory 
experimentation. 

The results obtained in this study can be directly applied 
to determine the time intervals of the gate source and drain 
source voltages of power semiconductors during the 
commutation in static converters. 

In the continuation of this research, parasitic inductances 
present in the switching loops of static converters will be 
included, which will allow the determination of the values of 
voltage peaks across the diodes at the moment they are 
turned off. 
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