EFEITO DA CONEXÃO DO CAPACITOR DE GRAMPEAMENTO SOBRE A CORRENTE DE ENTRADA NO CONVERSOR ALIMENTADO EM CORRENTE MEIA-PONTE ZVS COM GRAMPEAMENTO ATIVO

Silvio A. Teston¹, Emerson G. Carati², Rafael Cardoso², Jean P. da Costa², Carlos M. de O. Stein²

¹Universidade Comunitária da Região de Chapecó, Chapecó – SC, Brasil

²Universidade Tecnológica Federal do Paraná, Pato Branco – PR, Brasil

e-mail: silvioteston@gmail.com, emerson@utfpr.edu.br, rcardoso@utfpr.edu.br, jpcosta@utfpr.edu.br, cmstein@utfpr.edu.br

Resumo – A conexão de geração fotovoltaica (PV) à rede através de microinversores ou em topologia CC paralela, em geral, requer que o conversor CC-CC apresente um elevado ganho de tensão. O conversor CC-CC alimentado em corrente meia-ponte com grampeamento ativo (ACCFHB) tem essa característica. O capacitor de grampeamento pode ser conectado tanto ao nó positivo quanto ao nó negativo da fonte de alimentação. O ponto de conexão tem efeito sobre a corrente drenada da fonte. Em sistemas fotovoltaicos, a ondulação da corrente drenada do módulo é um importante parâmetro de projeto e, em geral, implica na adição de filtros para reduzi-la. Esse trabalho analisa os efeitos da forma de conexão do capacitor de grampeamento sobre a corrente de entrada, propõe que a conexão seja feita no nó negativo para reduzir a ondulação ou para reduzir os requisitos de filtro necessários e analisa o funcionamento de um filtro LC na entrada do conversor. O conversor foi simulado e experimentado em laboratório usando ambas as possibilidades de conexão, com e sem o filtro LC de entrada, para confirmar a proposição teórica.

Palavras-chave – Conversor Alimentado em Corrente, Grampeamento Ativo, Ondulação da Corrente de Entrada, Sistemas de Geração Fotovoltaica.

EFFECT OF THE CLAMP CAPACITOR CONNECTION CONCERNING THE INPUT CURRENT IN THE ACTIVE-CLAMPED ZVS CURRENT-FED HALF-BRIDGE CONVERTER

Abstract – Grid connected photovoltaic (PV) generation through microinverters or parallel DC topology, in some cases, requires the DC-DC converter to present a high voltage gain. The Active-Clamped ZVS Current-Fed Half-Bridge (ACCFHB) DC-DC converter has this feature. The clamp capacitor can be connected either to the positive node or to the negative node of the power supply. The connection type has effect on the current absorbed from the source. In PV systems, the module current ripple is an important design parameter and, generally, involves the addition of filters to reduce it. This paper analyzes the effects of the clamp capacitor connection on the input current, proposes that the connection must be made in the negative node to reduce the ripple or to reduce the filter requirements and analyzes the operation of a LC filter in the converter input. The converter was simulated and experimented in laboratory using both connection options, with and without the input LC filter, to confirm the theoretical proposition.

Keywords – Active-Clamping, Current-fed Converter, Input Current Ripple, Photovoltaic Generation Systems.

I. INTRODUÇÃO

Nas últimas décadas a geração de energia solar fotovoltaica cresceu significativamente, principalmente o segmento de sistemas conectados à rede. As topologias microinversor e CC paralelo, apresentadas na Figura 1, se apresentam como possibilidades interessantes para pequenas instalações e para instalações com problemas de sombreamento parcial. Para estas topologias, em geral é necessário que o conversor CC-CC apresente elevado ganho de tensão, da ordem de 10 a 20 vezes. Obter uma topologia que apresente ganho elevado aliado com rendimento elevado é um desafio. Considerando-se conversores CC-CC com isolação galvânica, os conversores alimentados em corrente apresentam boas características, tais como: elevado ganho de tensão com pequena relação de transformação, filtro de saída apenas capacitivo, não apresentam problemas de saturação do núcleo do transformador, facilidade de implementação de proteções contra sobrecorrente, entre outras. Essas são características desejáveis em aplicações como fotovoltaica, células a combustível, fontes de alimentação ininterrupta (UPS), veículos elétricos e similares.

O conversor CC-CC alimentado em corrente meia-ponte e com dois indutores (CFHB) foi inicialmente derivado através do princípio da dualidade do conversor meia-ponte alimentado em tensão (VFHB) [1]. Entretanto, conversores providos

Fig. 1. Sistemas de geração PV: (a) microinversor e (b) CC paralelo.

Artigo submetido em 21/12/2015. Primeira revisão em 13/04/2016. Aceito para publicação em 04/07/2016 por recomendação do Editor Convidado Leandro Michels.

de isolação galvânica geralmente apresentam problemas relacionados à indutância de dispersão do transformador. No caso do conversor CFHB essa indutância causa sobretensões severas nas chaves quando elas desligam. Para contornar este problema, em geral é necessário utilizar um circuito snubber para absorver a energia da indutância de dispersão e assim manter a tensão das chaves em níveis aceitáveis. Os snubbers dissipativos apresentam baixa complexidade e custo baixo, mas eles degradam a eficiência do conversor e em aplicações que requerem rendimento elevado isso pode ser inaceitável. Os snubbers não-dissipativos resultam em melhor eficiência do conversor, mas a operação e o projeto do snubber para uma topologia específica pode ser complexa de se obter. Além disso, alguns tipos de snubber não-dissipativo não conseguem alcançar comutação sob zero de tensão (ZVS) além da ação de snubber [2].

Os circuitos de grampeamento ativo foram aplicados em várias topologias, melhorando consideravelmente os índices de desempenho. Em [3] foi utilizado um circuito de grampeamento ativo em um conversor flyback, o qual permitiu reciclar a energia da indutância de dispersão do transformador, reduzir o estresse de tensão sobre as chaves, obter ZVS na chave principal e auxiliar a reduzir o ruído de comutação causado pela recuperação reversa do diodo retificador. Em [4] uma nova família de conversores CC-CC foi derivada, a qual utiliza grampeamento ativo, obtém ZVS para as chaves ativas e passivas, opera com PWM, frequência fixa e o conversor utilizado como exemplo alcançou eficiência superior a 98%. Os conversores CC-CC isolados e alimentados em corrente também receberam circuitos de grampeamento ativo, conforme pode ser visto em [5] para o conversor push-pull e em [6] para o conversor ponte-completa.

No caso específico do conversor CFHB, o circuito de grampeamento ativo foi introduzido inicialmente por [7] em um conversor aplicado à correção de fator de potência. Com este circuito todas as tensões das chaves são grampeadas na tensão do capacitor e o problema de sobretensão que ocorria na comutação é superado. Essa topologia foi analisada em detalhes por [2] para operação com comutação suave ZVS, a qual permite aumentar a frequência de operação do conversor e reduzir o volume dos elementos reativos, resultando em um conversor mais compacto. Em [8] a faixa de ZVS foi analisada sob grandes variações de carga e tensão de entrada. As comutações das chaves auxiliares ocorrem em ZVS em toda a faixa de operação do conversor, mas as chaves principais tem uma faixa de ZVS mais limitada. As chaves principais utilizam a energia armazenada na indutância de dispersão do transformador para operar em ZVS [2], [9]. Em [10] é apresentada a análise do conversor, incluindo a operação ZVS, com o capacitor de grampeamento conectado ao nó negativo. O circuito de grampeamento ativo desempenha um importante papel para operação adequada em ZVS.

Na literatura são encontradas análises para operação em comutação suave, de estresse de tensão sobre as chaves, além de variações topológicas considerando o conversor em operação ressonante [11]. Em aplicações como PV, células de combustível, banco de baterias, entre outras, a corrente drenada da fonte de alimentação deve apresentar baixa ondulação. Este parâmetro é importante para a

Fig. 2. Conexão do capacitor de grampeamento: (a) no nó negativo e (b) no nó positivo.

operação adequada do sistema de geração, para maximizar a energia gerada e também para aumentar a vida útil destes sistemas, além de contribuir para que o conversor atenda regulamentações de interferência eletromagnética (EMI).

Este trabalho tem como objetivo mostrar que o ponto de conexão do capacitor de grampeamento interfere diretamente na forma de onda da corrente de entrada do conversor. Também é apresentada a análise e o projeto de um filtro LC para redução da ondulação da corrente de entrada. Um estudo inicial sobre o tema encontra-se em [12]. Este artigo traz uma análise teórica e discussões técnicas mais aprofundadas que complementam e corroboram os estudos prévios.

Este artigo está organizado como segue: a Seção II apresenta detalhes da operação do conversor no que diz respeito às duas possibilidades de conexão do capacitor de grampeamento e traz a análise quantitativa da corrente de entrada. Na Seção III o filtro de entrada e o estresse de corrente no capacitor de entrada são analisados. A Seção IV traz um projeto de exemplo do filtro de entrada. Na Seção V são apresentados os resultados de simulação e na Seção VI os resultados experimentais.

II. OPERAÇÃO DO CONVERSOR E ANÁLISE DO PROBLEMA

A topologia do conversor com o circuito de grampeamento conectado no nó negativo é apresentada na Figura 2(a) e, na Figura 2(b) com a conexão no nó positivo.

As chaves $S_1 \, e \, S_2$ são chamadas de chaves principais e as chaves $S_{a_1} \, e \, S_{a_2}$ formam, juntante com o capacitor C_a , o circuito de grampeamento ativo. As chaves são operadas de forma complementar e com o devido tempo morto, S_{a_1} complementar a $S_1 \, e \, S_{a_2}$ complementar a S_2 . As chaves principais são operadas em frequência fixa e razão cíclica variável, a qual deve ser maior que 0,5 com deslocamento de fase de 180° para a chave S_2 em relação à chave S_1 . A análise do funcionamento do conversor é feita assumindo que: (a) as chaves e os diodos são ideais; (b) a indutância de magnetização do transformador é grande o suficiente para ser desprezada; (c) a indutância L_s contém a indutância de dispersão do transformador; (d) o capacitor de grampeamento é grande o suficiente para manter a tensão V_{Ca} constante; (e) a corrente através das indutâncias $L_1 e L_2$ é considerada com pequena ondulação e valor médio constante; (f) a tensão de saída V_o é constante.

Na sequência é apresentada a análise completa das etapas de operação do conversor com o circuito de grampeamento conectado ao nó negativo. Para o caso de conexão do capacitor de grampeamento ao nó positivo são apenas apresentadas as etapas que diferem. Nesta primeira análise o capacitor do filtro de entrada (C_{in}) não é considerado. Na Seção III é apresentada a análise do impacto do filtro na ondulação da corrente de entrada.

A. Conexão no Nó Negativo

A operação do conversor é subdividida em quatorze etapas para um ciclo completo de alta frequência. As formas de onda de tensão e corrente nos principais elementos do circuito são apresentadas na Figura 3. Também estão identificados os intervalos de tempo mais importantes para auxiliar na análise. Devido à simetria de operação entre os semiciclos, na sequência é apresentada uma análise para o primeiro semiciclo, composto pelas primeiras sete etapas de operação.

Etapa 1 - Figura 4, $t_0 < t < t_1$: As chaves principais estão fechadas e os indutores *boost* $L_1 e L_2$ estão armazenando energia. A corrente através destas chaves é igual a corrente dos indutores *boost*: $i_{S_1} = i_{S_2} = I_{in}/2$. Não há fluxo de potência através do transformador de alta frequência (HF-TR). O capacitor C_o transfere energia à carga e portanto está em processo de descarga. Os diodos retificadores bloqueiam tensões $v_{Dr} = V_o/2$. A tensão através das chaves auxiliares é igual a tensão $V_{Ca,n}$, que pode ser calculada impondose o balanço tensão-segundo em um dos indutores *boost*, resultando em:

$$V_{Ca,n} = \frac{V_{in}}{1 - D} \tag{1}$$

onde:

 $D = t_{on}/T_s$ - é a razão cíclica das chaves principais;

*t*_{on} - é o tempo de condução das chaves principais;

 T_s - é o período de chaveamento;

V_{Ca,n} - tensão sobre o capacitor de grampeamento para conexão no nó negativo.

Etapa 2 - Figura 5, $\mathbf{t}_1 < \mathbf{t} < \mathbf{t}_2$: esta etapa inicia quando a chave S_1 é desligada. A corrente do indutor L_1 ($I_{in}/2$) carrega o capacitor C_1 e descarrega o capacitor C_{a1} linearmente. Os diodos D_{r1} e D_{r4} entram em condução e o capacitor C_o passa a ser carregado. Os diodos D_{r2} e D_{r3} ficam reversamente polarizados e bloqueiam tensão igual a V_o . A tensão sobre L_s , $V_{Ca,n} - V_o/n$, é positiva e a corrente através desse indutor (i_{Ls}) começa a crescer linearmente. A corrente no indutor L_s e na chave S_2 podem ser obtidas, respectivamente, através de:

$$i_{Ls} = \frac{V_{Ca,n} - V_o/n}{L_s} (t - t_1)$$
(2)

Fig. 3. Formas de onda nos principais elementos do conversor para um ciclo completo de operação.

Fig. 4. Primeira etapa de operação ($t_0 < t < t_1$).

Fig. 5. Segunda etapa de operação ($t_1 < t < t_2$).

$$i_{S_2} = (I_{in}/2) + i_{Ls}.$$
 (3)

Fig. 6. Terceira etapa de operação ($t_2 < t < t_3$).

Fig. 7. Quarta etapa de operação ($t_3 < t < t_4$).

Etapa 3 - Figura 6, $t_2 < t < t_3$: depois de carregar e descarregar os capacitores em paralelo com as chaves S_1 e S_{a1} , respectivamente, o diodo antiparalelo da chave S_{a1} entra em condução e a corrente no capacitor C_a atinge o valor de pico $I_{Ca,pk} = I_{in}/2 - i_{Ls}(t_2)$. Após, a corrente i_{Ca} começa a decrescer pois a corrente i_{Ls} está crescendo. As correntes através de L_s e S_2 continuam a crescer com a mesma derivada da etapa anterior.

Etapa 4 - Figura 7, $\mathbf{t}_3 < \mathbf{t} < \mathbf{t}_4$: essa etapa inicia quando a chave S_{a1} entra em condução. Essa comutação ocorre em ZVS, conforme pode ser observado em t_2 - t_3 na Figura 3. A corrente i_{Ca} continua decrescendo linearmente e atinge valor zero quando a corrente i_{Ls} atinge o valor $I_{in}/2$. A corrente i_{Ls} continua crescendo com inclinação dada por (2) e ao final dessa etapa as correntes dos componentes do circuito atingem seus valores de pico. Os valores de pico da corrente no indutor L_s e na chave S_2 são dados, respectivamente, por:

$$I_{Ls,pk} = \frac{I_{in}}{2} + I_{Ca,pk} \cong I_{in} \tag{4}$$

$$I_{S_2,pk} = I_{Ls,pk} + \frac{I_{in}}{2} = \frac{3I_{in}}{2}.$$
 (5)

É importante observar que é necessário um tempo morto entre a comutação da chave principal e da chave auxiliar para que ocorra a comutação em ZVS. Esse tempo morto deve ser de duração suficiente para permitir que o capacitor C_1 seja completamente carregado e o capacitor C_{a1} completamente descarregado pela corrente do indutor L_1 . Esse intervalo de tempo pode ser calculado por:

$$T_{dt1} = \frac{2(C_1 + C_{a1})V_{in}}{I_{in}(1 - D)}.$$
(6)

Etapa 5 - Figura 8, $t_4 < t < t_5$: esta etapa começa quando a chave S_{a1} é desligada. A corrente i_{Ls} começa a carregar C_{a1} e a descarregar C_1 de modo ressonante. Esse período

Fig. 8. Quinta etapa de operação ($t_4 < t < t_5$).

de ressonância é curto e assume-se que é praticamente linear, terminando quando o capacitor C_{a1} atinge a tensão $V_{Ca,n}$ e o capacitor C_1 é completamente descarregado. A frequência de ressonância é dada por:

$$\omega_r = \frac{1}{\sqrt{L_s \left(C_1 + C_{a1}\right)}}.$$
(7)

A tensão sobre a chave S_1 nesse período é dada por:

$$v_{S_1} = \left(\frac{V_{in}}{1-D}\right) - \left(I_{Ls,pk} - \frac{I_{in}}{2}\right)\sqrt{\frac{L_s}{C_1 + C_{a1}}}\operatorname{sen}\left[\omega_r\left(t - t_4\right)\right].$$
(8)

E a tensão sobre a chave S_{a1} é calculada por:

$$v_{S_{a1}} = \left(I_{Ls,pk} - \frac{I_{in}}{2}\right) \sqrt{\frac{L_s}{C_1 + C_{a1}}} \operatorname{sen}\left[\omega_r\left(t - t_4\right)\right]. \quad (9)$$

Portanto, a partir dessas equações pode-se estabelecer a condição para que as chaves S_1 e S_2 comutem sob ZVS. Essa condição é apresentada em [8]:

$$L_s \cdot I_{Ls,pk}^2 \ge (C_1 + C_{a1}) \left(\frac{V_{in}}{1 - D}\right)^2.$$

$$(10)$$

É importante notar que as chaves auxiliares atingem ZVS utilizando a energia dos indutores L_1 ou L_2 , os quais possuem valores relativamente altos de indutância e corrente. Assim, considera-se que as chaves auxiliares operam sempre em ZVS [2], [9]. As chaves principais atingem ZVS utilizando a energia armazenada na indutância L_s , a qual possui indutância relativamente baixa. Dessa forma, as chaves principais não conseguem atingir ZVS em uma ampla faixa de variação de carga, o que reduz a eficiência do conversor em baixa potência.

Etapa 6 - Figura 9, $t_5 < t < t_6$: após o processo de carga e descarga dos capacitores exposto na etapa anterior, o diodo D_1 começa a conduzir. Após este momento a chave S_1 pode ser comutada sob ZVS, conforme pode ser observado em t_5 - t_6 na Figura 3. Sobre o indutor L_s é aplicada a tensão $-V_o/(nL_s)$, que faz com que a corrente i_{L_s} decresça. A corrente no indutor L_s e no diodo D_1 são dadas, respectivamente, por:

$$i_{Ls} = I_{Ls,pk} - \frac{V_o}{nL_s} (t - t_4)$$
 (11)

$$i_{D_1} = i_{Ls} - I_{in}/2.$$
 (12)

Etapa 7 - Figura 10, $t_6 < t < t_7$: esta etapa inicia quando a chave S_1 entra condução, o que ocorre em ZVS. A corrente

Fig. 9. Sexta etapa de operação ($t_5 < t < t_6$).

Fig. 10. Sétima etapa de operação ($t_6 < t < t_7$).

 i_{Ls} continua decrescendo com a mesma derivada da etapa anterior e a corrente na chave S_1 cresce. Este intervalo termina quando a corrente na indutância L_s atinge zero e a corrente nas chaves S_1 e S_2 é igual a $I_{in}/2$. A corrente nas chaves principais durante essa etapa é dada por:

$$i_{S_1} = \frac{I_{in}}{2} - i_{Ls}; \quad i_{S_2} = \frac{I_{in}}{2} + i_{Ls}.$$
 (13)

As etapas 1 à 7 mostram a corrente sendo transferida da chave S_1 para a chave S_2 e depois de voltando a ser assumida por S_1 . Nas próximas etapas (8-14) as chaves S_2 e S_{a2} comutam e a corrente em L_s é negativa. Ao final completase um ciclo do sinal alternado de alta frequência aplicado ao transformador.

Observa-se que o capacitor de grampeamento funciona como um caminho alternativo para a corrente do indutor L_1 durante a transferência dessa corrente da chave S_1 para o enrolamento primário do transformador (o mesmo vale para o indutor L_2 e chave S_2). A Figura 6 destaca o caminho da corrente imediatamente após a chave S_1 desligar. A corrente no capacitor de grampeamento é positiva. Na Figura 7 é apresentado o caminho da corrente i_{Ca} quando esta é negativa.

Com o capacitor de grampeamento conectado ao nó negativo, a corrente drenada da fonte de alimentação (i_{in}) é a soma das correntes i_{L_1} e i_{L_2} , conforme apresentado na Figura 11. Se os indutores *boost* possuírem o mesmo valor de indutância $(L_1 = L_2 = L)$, a ondulação da corrente de entrada pode ser calculada por:

$$\Delta I_{in,n} = \frac{V_{in} \left(2D - 1\right)}{f_s L} \tag{14}$$

onde:

 $\Delta I_{in,n}$ - ondulação da corrente de entrada para conexão no nó negativo;

 $f_s = 1/T_s$ - frequência de chaveamento [Hz];

L - indutância dos indutores *boost* [H].

Fig. 11. (a) Circuito equivalente da corrente de entrada. (b) Formas de onda nos indutores *boost* e corrente de entrada resultante.

Fig. 12. Operação do circuito de grampeamento ativo com o capacitor conectado ao nó positivo: (a) para i_{Ca} positiva e (b) para i_{Ca} negativa.

B. Conexão no Nó Positivo

Quando o capacitor de grampeamento é conectado ao nó positivo (subscrito p), o circuito opera de modo similar ao anterior, mas os caminhos das correntes são alterados. Quando a chave S_1 desliga, a corrente i_{L_1} força o diodo D_{a1} a entrar em condução e a corrente é desviada ao capacitor de grampeamento. A Figura 12(a) destaca o caminho da corrente imediatamente após a chave S_1 desligar (as correntes através dos demais elementos foram suprimidas). A corrente i_{L_1} é subtraída da fonte de alimentação, causando uma variação brusca na corrente i_{in} . A corrente no indutor L_s cresce com derivada $(V_{in} + V_{Ca,p} - V_o/n)/L_s$ e a corrente i_{Ca} decresce. Na Figura 12(b) é apresentado o caminho da corrente i_{Ca} quando esta é negativa (as correntes através dos demais elementos foram suprimidas). Imediatamente antes da chave S_{a1} desligar, ica atinge seu valor de pico. Outra variação brusca na corrente i_{in} ocorre quando a chave S_{a1} desliga, interrompendo a corrente através do capacitor C_a .

No nó positivo da fonte de alimentação há três conexões: os indutores L_1 e L_2 e o capacitor C_a , vide Figura 13(a). A corrente do capacitor de grampeamento aparece somada com a corrente dos indutores *boost*, introduzindo uma ondulação

Fig. 13. (a) Circuito equivalente da corrente de entrada. (b) Formas de onda nos indutores *boost*, no capacitor C_a e corrente de entrada resultante.

com amplitude significativa na fonte. As correntes nestes elementos são apresentadas na Figura 13(b), a qual também traz a forma de onda resultante para a corrente de entrada.

A corrente através de C_a possui picos positivo e negativo aproximadamente iguais à corrente de pico dos indutores *boost* $(I_{L,pk})$ e valor médio igual a zero. O pico positivo da corrente i_{Ca} ocorre no valor mínimo de $i_{L_1} + i_{L_2}$ e o pico negativo de i_{Ca} ocorre no valor máximo de $i_{L_1} + i_{L_2}$. Com essas considerações, a ondulação na corrente de entrada pode ser calculada como segue:

$$\Delta I_{in,p} = \left(I_{L,pk} + I_{(i_{L_1} + i_{L_2}),min}\right) - \left(-I_{L,pk} + I_{(i_{L_1} + i_{L_2}),pk}\right)$$
(15)

$$\Delta I_{in,p} = 2I_{L,pk} - \Delta(i_{L_1} + i_{L_2})$$
(16)

$$\Delta I_{in,p} = 2I_{L,pk} - \frac{V_{in}\left(2D-1\right)}{f_s L} \tag{17}$$

onde:

 $\Delta I_{in,p}$ - ondulação da corrente de entrada para conexão no nó positivo;

 $I_{L,pk}$ - valor de pico da corrente nos indutores *boost*; $I_{(i_{L_1}+i_{L_2}),pk}$ - valor de pico da soma das correntes nos indutores *boost*;

 $I_{(i_{L_1}+i_{L_2}),min}$ - valor mínimo da soma das correntes nos indutores *boost*.

O primeiro termo, $I_{L,pk}$, pode ser calculado por:

$$I_{L,pk} = I_L + \frac{\Delta I_L}{2} = I_L + \frac{DV_{in}}{2f_s L}.$$
 (18)

Assim, (17) pode ser reescrita como:

$$\Delta I_{in,p} = I_{in} + \frac{V_{in}(2D-1)}{f_s L}.$$
(19)

Fica evidente em (19) uma ondulação de corrente elevada, maior do que o valor médio da corrente de entrada.

Da mesma forma que foi feito para o caso da conexão no nó negativo, a tensão no capacitor C_a é calculada impondo a regra do balanço de volt segundo nos indutores *boost*, sendo dada por:

$$V_{Ca,p} = \frac{D}{1 - D} V_{in} \tag{20}$$

onde V_{Ca,p} é a tensão sobre o capacitor de grampeamento para

Fig. 14. (a) Circuito do filtro LC de entrada. (b) Circuito equivalente do filtro de entrada considerando os elementos parasitas do capacitor C_{in} e a ondulação de corrente gerada pelo conversor (ΔI_r).

conexão no nó positivo.

Em (20) é possível observar que a tensão grampeada é V_{in} menor do que aquela calculada por: (1). O estresse de tensão sobre as chaves semicondutoras é o mesmo do caso anterior.

III. ANÁLISE DO FILTRO DE ENTRADA

No caso da conexão do capacitor ao nó negativo, a ondulação da corrente de entrada depende apenas dos valores dos indutores *boost*. Assim, quando a ondulação da corrente de entrada não for um parâmetro muito restritivo, o uso de um filtro LC de entrada não é necessário. Para aplicações que se deseja ondulações de corrente muito baixas, os indutores *boost* podem se tornar demasiadamente grandes e não resultar em uma solução prática (alto custo, peso e volume), sendo mais viável o uso de um filtro LC na entrada do conversor.

Para o caso de conexão do capacitor de grampeamento no nó positivo essa abordagem não tem o mesmo efeito, pois a ondulação da corrente de entrada é uma função de I_{in} . Neste caso, mesmo que a ondulação da corrente de entrada não seja um parâmetro muito restritivo de projeto, recomenda-se no mínimo utilizar o capacitor C_{in} . Esse capacitor absorve a ondulação de corrente adicional inserida pela conexão do capacitor de grampeamento no nó positivo. Com a adição do capacitor C_{in} , a ondulação da corrente de entrada fica equivalente ao caso de conexão do capacitor de grampeamento no nó negativo.

Na sequência é analisado o uso do filtro LC na entrada do conversor para atender especificações mais restritivas para a ondulação da corrente. Na Figura 14(a) é apresentado o filtro inserido na entrada do conversor.

O conversor possui característica de entrada de fonte de corrente devido à presença dos indutores *boost* na entrada do conversor. Se uma indutância é inserida entre a fonte de tensão V_{in} e o capacitor C_{in} , a ondulação de corrente de alta frequência enxerga um caminho de menor impedância para fechar a malha através do capacitor C_{in} . Considerando que a ondulação de corrente é gerada pelo conversor, o circuito equivalente do filtro de entrada é apresentado na Figura 14(b). Este é um filtro passa-baixas e apresenta a função de transferência representada por: (21).

$$\frac{\Delta I_{in}(s)}{\Delta I_r(s)} = \frac{s^2 + \frac{R_{se}}{L_{se}}s + \frac{1}{C_{in}L_{se}}}{\left(1 + \frac{L_{in}}{L_{se}}\right)s^2 + \left(\frac{R_{in} + R_{se}}{L_{se}}\right)s + \frac{1}{C_{in}L_{se}}}.$$
(21)

As correntes nos indutores *boost* apresentam uma defasagem de 180 graus. Dessa forma, ao se somarem,

2

Fig. 15. Diagrama de Bode do filtro de entrada para alguns valores de R_{se} . Os outros elementos são: $C_{in} = 220 \ \mu\text{F}, L_{se} = 26 \ \text{nH}, L_{in} = 1 \ \mu\text{H}$ e $R_{in} = 10 \ \text{m}\Omega$.

a corrente de entrada apresenta ondulação na frequência Para que a filtragem seja adequada, o filtro LC $2f_s$. deve apresentar elevada atenuação nessa frequência e seus harmônicos. Os elementos parasitas do filtro LC perturbam o seu funcionamento, alterando a resposta de magnitude e fase. A indutância parasita depende principalmente das dimensões do capacitor, sendo que para capacitores eletrolíticos comuns de alumínio este valor é pequeno, afetando o corte do filtro em altas frequências. Os valores de Lse estão no intervalo de 20 nH a 34 nH para a família TDK B41858 [13], por exemplo. Neste caso, a R_{se} do capacitor é mais significativa e altera a banda de transição do filtro. Os valores de Rse são encontrados em uma ampla faixa de valores, de décimos de miliohm até alguns ohms. O aumento da Rse do capacitor reduz a máxima corrente RMS que ele suporta e a ondulação de tensão sobre o capacitor aumenta. A Figura 15 mostra o digrama de Bode para alguns valores de Rse onde fica evidente o deslocamento da banda de transição do filtro conforme a R_{se} aumenta.

Caso o conversor tenha sido projetado sem o filtro LC, a inserção destes elementos irá afetar a resposta dinâmica do conversor. Portanto, o sistema de controle poderá se tornar instável [14]. Esse problema pode ser contornado adicionando-se um circuito de amortecimento do filtro. O projeto deste circuito não é tratado neste trabalho.

A. Corrente RMS no Capacitor de Filtro

Se o filtro for corretamente projetado, o capacitor C_{in} absorve a maior parte da ondulação de corrente gerada pelo conversor. Entretanto, a corrente que flui através deste capacitor precisa ser conhecida, de forma a se dimensioná-lo adequadamente. Para o caso de conexão do capacitor C_a no nó negativo a corrente RMS através de C_{in} é dada por:

$$I_{Cin,n,rms} = \frac{V_{in} (2D-1)}{2f_s L} \sqrt{D - \frac{1}{3}}.$$
 (22)

Componente	Detalhes
Transformador	Prim.: 8 espiras 10x#26 AWG
	Sec: 40 espiras 2x#26 AWG
	Núcleo: EE42/21/15 Thornton
Indutor série	4 µH - 7 espiras 10x#26 AWG
	Núcleo: EE30/15/7 Thornton
Indutores boost	82 μH Würth Elektronik
	Código: 74435588200
Chaves principais	IRFP260N
Chaves auxiliares	IRFP250N
Capacitor de grampeamento	2x1 µF x 250 V poliéster
Diodos retificadores	16ETH06
Capacitores de saída	$2x220 \ \mu F x 250 V$ eletrol. al.
Driver	IR2010

Quando o capacitor de grampeamento é conectado ao nó positivo, a corrente RMS através do capacitor C_{in} é aproximadamente igual à corrente RMS através de C_a e é dada por:

$$I_{Cin,p,rms} \cong I_{in} \sqrt{\frac{1-D}{6}}.$$
 (23)

IV. EXEMPLO DE PROJETO

Para uma melhor compreensão de como a corrente de entrada é afetada considerando ambas as possibilidades de conexão do capacitor de grampeamento e como o filtro de entrada é projetado, um protótipo de conversor foi projetado, simulado, construído e experimentado em laboratório. As especificações do conversor são:

- Potência de saída $(P_o) = 250$ W;
- Tensão de entrada $(V_{in}) = 20$ V a 40 V;
- Tensão de saída $(V_o) = 400$ V;
- Frequência de chaveamento $(f_s) = 100 \text{ kHz};$
- Ondulação máxima de corrente na entrada (ΔI_{in}) = 0,1 A;
- Ondulação máxima de tensão sobre C_{in} (ΔV_{Cin}) = 2% de V_{in}.

A etapa de potência do conversor foi projetada seguindo a metodologia proposta por [2], [8] e [10]. A Tabela I resume as especificações dos componentes usados na simulação e nos experimentos.

Primeiramente foi projetado o filtro de entrada para o caso de conexão no nó negativo. A ondulação da corrente de entrada é máxima para a condição de mínima tensão de entrada (20 V) e potência nominal (250 W). Neste ponto de operação a razão cíclica D é 0,815. Sem o filtro de entrada o conversor exibe ondulação de corrente de entrada de 1,54 A. Usando (22) a corrente RMS no capacitor C_{in} é calculada como:

$$I_{Cin,n,rms} = \frac{20(2 \cdot 0,815 - 1)}{2 \cdot 100k \cdot 82\mu} \sqrt{0,815 - \frac{1}{3}} = 533 \text{ mA.} \quad (24)$$

Para acomodar essa corrente foi escolhido um arranjo de dois capacitores eletrolíticos de 100 μ F em paralelo. Para capacitores eletrolíticos comuns de alumínio, a queda de tensão na R_{se} é a parte dominante, assim, $\Delta V_{Cin} \approx R_{se} \Delta I_r$.

O capacitor usado nos experimentos possui $R_{se} = 0,3 \Omega$, portanto, $\Delta V_{Cin} \approx 0,3/2 \cdot 1,54 = 0,23$ V, o que satisfaz a especificação. O indutor L_{in} pode ser calculado usando:

$$L_{in,n} \geqslant \frac{2\Delta V_{Cin}}{\pi^3 f_s \Delta I_{in}} \tag{25}$$

$$L_{in,n} \geqslant \frac{2 \cdot 0,23}{\pi^3 \cdot 100k \cdot 0,1} = 1,5 \ \mu \text{H.}$$
 (26)

Para C_a conectado ao nó positivo, o pior caso para a corrente através de C_{in} ocorre na mínima tensão de entrada e potência nominal. Usando (23), calcula-se a corrente RMS através de C_{in} como segue:

$$I_{Cin,p,rms} \simeq 12, 5\sqrt{\frac{1-0,815}{6}} = 2,16 \text{ A.}$$
 (27)

Quatro capacitores de 100 μ F em paralelo foram utilizados para acomodar essa corrente. O pior caso para a ondulação da corrente de entrada ocorre para tensão máxima de entrada (40 V) e potência nominal. Neste ponto de operação a razão cíclica *D* é 0,54. Sem o filtro de entrada o conversor exibe uma ondulação na corrente de entrada de 8,45 A. A ondulação de tensão sobre o capacitor $C_{in} \in \Delta V_{Cin} \approx 0,3/4 \cdot 8,45 = 0,63$ V e satisfaz a especificação. O indutor L_{in} pode ser calculado usando:

$$L_{in,p} \geqslant \frac{\beta \Delta V_{Cin}}{\pi^2 f_s \Delta I_{in}}$$
(28)

onde:

$$\beta = \frac{\operatorname{sen}(\pi D)}{\pi (1 - D)} + \cos(\pi D) \tag{29}$$

$$L_{in,p} \ge \frac{0,56 \cdot 0,64}{\pi^2 \cdot 100k \cdot 0,1} = 3,6 \ \mu\text{H}.$$
 (30)

Com todos os componentes projetados, as próximas seções apresentam resultados de simulação e experimentais da operação do conversor.

V. RESULTADOS DE SIMULAÇÃO

Esta seção apresenta algumas formas de onda de simulação do conversor projetado na Seção IV. A Figura 16 apresenta as formas de onda da corrente de entrada para o capacitor de grampeamento conectado ao nó negativo, com alimentação em tensão mínima de entrada e potência nominal de saída. Na Figura 16(a) o conversor foi simulado sem o filtro de entrada e a ondulação de corrente foi de 1,53 A. Já na Figura 16(b) o filtro LC foi inserido e o conversor foi simulado novamente, resultando em ondulação na corrente de entrada de 95 mA, em concordância com a especificação.

A Figura 17 mostra as formas de onda da corrente de entrada para o capacitor de grampeamento conectado ao nó positivo, com alimentação em tensão máxima de entrada e potência nominal de saída. Na Figura 17(a) o conversor foi simulado sem o filtro de entrada e a ondulação de corrente foi de 8,70 A. Já na Figura 17(b) o filtro LC foi inserido, resultando em ondulação na corrente de entrada de 103 mA, que é muito próxima da especificação.

Fig. 16. Corrente de entrada para C_a conectado ao nó negativo: (a) sem o filtro e (b) com o filtro LC.

Fig. 17. Corrente de entrada para C_a conectado ao nó positivo: (a) sem o filtro e (b) com o filtro LC.

VI. RESULTADOS EXPERIMENTAIS

O conversor foi construído e testado em laboratório para confirmar a proposição teórica e para validar os resultados de simulação. Primeiro o conversor foi experimentado com C_a conectado ao nó negativo, com mínima tensão de entrada e potência nominal de saída. A Figura 18(a) mostra a ondulação na corrente de entrada sem o filtro LC, cujo valor pico-apico é $\Delta I_{in,n} = 1,56$ A. Com a conexão do filtro LC obtémse ondulação medida de 79 mA e que é apresentada na Figura 18(b).

As mesmas medições foram feitas para o caso em que C_a é conectado ao nó positivo, mas com máxima tensão de entrada e potência nominal de saída (pior caso - $\Delta I_{in,p}$ é máxima). A Figura 19(a) mostra a ondulação na corrente de entrada sem o filtro LC, cujo valor pico-a-pico é $\Delta I_{in,p} = 5,68$ A e a Figura 19(b) mostra a ondulação após a inserção do filtro, medindo-se $\Delta I_{in,p} = 86$ mA. Na Figura 20 é apresentada uma medição, da corrente de entrada, com tensão mínima de entrada e potência nominal de saída sem o filtro LC. A ondulação medida foi de 10,8 A.

De forma a tentar minimizar a interferência da impedância de saída da fonte de alimentação, um capacitor foi inserido o mais próximo possível da entrada do conversor. Pequenas indutâncias parasitas interferem nas medições e a corrente de entrada apresentou menor ondulação do que o calculado na teoria para o caso da conexão no nó positivo. Apesar dessas diferenças, nas medições da Figura 19(a) e Figura 20 é evidente a maior ondulação da corrente de entrada para o caso em que C_a está conectado ao nó positivo.

Se a indutância equivalente da fonte de alimentação somada com a indutância dos cabos de conexão for levada em

Fig. 18. Ondulações na corrente de entrada para C_a conectado ao nó negativo, com $V_{in} = 20$ V e $P_o = 250$ W: (a) sem o filtro de entrada e (b) com o filtro.

Fig. 19. Ondulações na corrente de entrada para C_a conectado ao nó positivo, com $V_{in} = 40$ V e $P_o = 250$ W: (a) sem o filtro de entrada e (b) com o filtro.

Fig. 20. Forma de onda da corrente de entrada para C_a conectado ao nó positivo, sem filtro LC na entrada, $V_{in} = 20$ V e $P_o = 250$ W.

consideração, em alguns casos essa indutância pode ser suficiente para dispensar o uso de um indutor específico na placa de circuito impresso.

Desconsiderando o filtro LC e com exceção da tensão

Fig. 21. Forma de medição do rendimento do conversor.

Fig. 22. Curvas de eficiência para as duas possibilidades de conexão do capacitor de grampeamento para tensão de entrada de 30 V, tensão nominal de saída e com variação na carga.

sobre o capacitor C_a , o estresse de tensão e corrente sobre todos os demais componentes do conversor é o mesmo para ambos os casos, resultando em eficiências similares. Não foi objetivo deste trabalho maximizar a eficiência dos conversores, mas a comparação de rendimento entre as duas opções. É importante notar que a eficiência medida inclui todas as perdas dos circuitos de *driver* e fontes auxiliares. Somente o microcontrolador foi alimentado por uma fonte separada (porta USB de um computador). Na Figura 21 é apresentada a forma de medição do rendimento do conversor. As medições foram realizadas com o analisador de potência de precisão Yokogawa Modelo WT1800. A Figura 22 mostra as curvas de eficiência incluindo o filtro LC para ambas as possibilidades de conexão do capacitor de grampeamento.

VII. CONCLUSÕES

Este trabalho revisou os princípios de operação do conversor alimentado em corrente meia-ponte ZVS com grampeamento ativo. Mostrou que o nó de conexão do capacitor de grampeamento influencia consideravelmente na ondulação da corrente de entrada. A conexão no nó negativo resulta em menor ondulação na corrente de entrada, menor estresse de corrente no capacitor do filtro LC e este filtro ocupa aproximadamente metade do volume comparado com aquele da conexão no nó positivo. A conexão no nó positivo apresenta menor estresse de tensão sobre o capacitor C_a , mas a corrente de entrada exibe elevada ondulação com elevada di/dt e resulta em um filtro de entrada mais volumoso e caro. Os rendimentos do conversor considerando-se as duas possibilidades de conexão do capacitor de grampeamento são parecidos. O filtro de entrada apresenta estresse de corrente mais elevado para o caso de conexão no nó positivo e,

portanto, reduz um pouco o rendimento do conversor.

Com essas considerações, a conexão do capacitor de grampeamento no nó negativo deve ser a opção preferida quando há preocupação com a ondulação da corrente de entrada e suas especificações são mais restritivas. A conexão no nó positivo pode ser uma opção para aplicações com elevada tensão de entrada, quando o estresse de tensão sobre o capacitor C_a é alto e o uso de um capacitor de grampeamento de menor tensão compensa o custo total de filtro de entrada.

AGRADECIMENTOS

Os autores agradecem a Universidade Tecnológica Federal do Paraná, FUNTEF, CNPq, CAPES, Fundação Araucária, SETI e FINEP pelo suporte financeiro.

REFERÊNCIAS

- P. Wolfs, "A current-sourced DC-DC converter derived via the duality principle from the halfbridge converter", *IEEE Transactions on Industrial Electronics*, vol. 40, no. 1, pp. 139–144, Feb 1993.
- [2] S.-K. Han, H.-K. Yoon, G.-W. Moon, M.-J. Youn, Y.-H. Kim, K.-H. Lee, "A new active clamping zero-voltage switching PWM current-fed half-bridge converter", *IEEE Transactions on Power Electronics*, vol. 20, no. 6, pp. 1271–1279, Nov 2005.
- [3] R. Watson, F. C. Lee, G. C. Hua, "Utilization of an active-clamp circuit to achieve soft switching in flyback converters", *IEEE Transactions on Power Electronics*, vol. 11, no. 1, pp. 162–169, 1996.
- [4] C. M. C. Duarte, I. Barbi, "An improved family of ZVS-PWM active-clamping DC-to-DC converters", *IEEE Transactions on Power Electronics*, vol. 17, no. 1, pp. 1–7, Jan 2002.
- [5] F. J. Nome, I. Barbi, "A ZVS clamping mode-currentfed push-pull DC-DC converter", in Proc. of IEEE International Symposium on Industrial Electronics (ISIE), pp. 617–621, 1998.
- [6] V. Yakushev, V. Meleshin, S. Fraidlin, "Full-bridge isolated current fed converter with active clamp", in Proc. of IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 560–566, 1999.
- [7] M. Johnston, R. Erickson, "Reduction of voltage stress in the full bridge BIBRED by duty ratio and phase shift control", *in Proc. of IEEE Applied Power Electronics Conference and Exposition (APEC)*, pp. 849–855, 1994.
- [8] A. Rathore, A. Bhat, R. Oruganti, "Analysis and design of active clamped ZVS current-fed DC-DC converter for fuel-cell to utility-interface application", *in Proc. of International Conference on Industrial and Information Systems (ICIIS)*, pp. 503–508, 2007.
- [9] A. Rathore, X. Li, "Comparison of zero-voltageswitching current-fed full-bridge and half-bridge isolated Dc/Dc converters with active-clamp", in Proc. of IEEE International Conference on Power Electronics and Drive Systems (PEDS), pp. 133–138, 2011.

- [10] S. Teston, C. Oliveira Stein, J. Patric da Costa, E. Carati, R. Cardoso, G. Weber Denardin, "Comparison of diode full-bridge rectifier and voltage-doubling diode rectifier in the output stage of active-clamping current-fed half-bridge isolated DC-DC converter", *in Proc. of IEEE International Symposium on Industrial Electronics (ISIE)*, pp. 251–256, 2015.
- [11] J.-M. Kwon, B.-H. Kwon, "High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems", *IEEE Transactions on Power Electronics*, vol. 24, no. 1, pp. 108–115, Jan 2009.
- [12] S. A. Teston, E. G. Carati, J. P. da Costa, R. Cardoso, C. M. d. O. Stein, "Comparison of two connection possibilities of the clamp capacitor in the Active-Clamped ZVS Current-Fed Half-Bridge converter", *in Proc. of IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference(COBEP/SPEC)*, pp. 1–6, 2015.
- [13] TDK Europe, "Aluminum electrolytic capacitors

 Series B41858", 2014. [Online]. Disponível: http://en.tdk.eu/inf/20/30/db/aec_2015/B41858.pdf.
- [14] R. W. Erickson, D. Maksimović, *Fundamentals of Power Electronics*, Kluwer Academic Publishers, 2004.

DADOS BIOGRÁFICOS

Silvio Antonio Teston recebeu o título de Engenheiro Eletricista (2009) pela Universidade do Estado de Santa Catarina, Joinville-SC e atualmente é mestrando no Programa de Pós-Graduação da Universidade Tecnológica Federal do Paraná (UTFPR), câmpus Pato Branco-PR. Suas áreas de interesse são: eletrônica de potência, qualidade do processamento da energia elétrica, sistemas de controle eletrônicos e energias renováveis.

Emerson Giovani Carati recebeu os títulos de Engenheiro Eletricista (1997), mestre em Engenharia Elétrica (1999) e doutor em Engenharia Elétrica (2003) pela Universidade Federal de Santa Maria (UFSM), Santa Maria-RS. Desde 2003 atua como professor nos cursos de Graduação e Pós-Graduação em Engenharia Elétrica na Universidade Tecnológica Federal do Paraná (UTFPR) câmpus Pato Branco-PR. Atualmente desenvolve pesquisas relacionadas a controle digital e processamento de sinais com aplicação em acionamentos de máquinas elétricas, geração distribuída e sistemas de conversores estáticos.

Rafael Cardoso recebeu o título de Engenheiro Eletricista (2001) pela Universidade Federal de Santa Maria (UFSM), Santa Maria-RS, de Mestre em Ciência em Engenharia Eletrônica e Computação (2003) pelo Instituto Tecnológico de Aeronáutica, São José dos Campos-SP e de Doutor em Engenharia Elétrica (2008) pela UFSM. Desde 2006 atua como professor nos cursos de Graduação e Pós-Graduação em Engenharia Elétrica na Universidade Tecnológica Federal do Paraná (UTFPR) câmpus Pato Branco-PR. Seus interesses de pesquisa incluem aplicações de sistemas de controle, controle

discreto, processamento de sinais, filtros ativos de potência e controle de conversores estáticos. O Dr. Cardoso é membro do Institute of Electrical and Electronics Engineers (IEEE) e da Sociedade Brasileira de Automática (SBA).

Jean Patric da Costa recebeu os títulos de Engenheiro Eletricista (2004), mestre (2006) e doutor em Engenharia Elétrica (2010) pela Universidade Federal de Santa Maria (UFSM), Santa Maria-RS. Desde 2013 atua como professor nos cursos de Graduação e Pós-Graduação em Engenharia Elétrica na Universidade Tecnológica Federal do Paraná (UTFPR) câmpus Pato Branco-PR. Suas áreas de interesse são: geração de energia eólica e controle de conversores estáticos.

Carlos Marcelo de Oliveira Stein recebeu os títulos de Engenheiro Eletricista (1996), mestre (1997) e doutor em Engenharia Elétrica (2003) pela Universidade Federal de Santa Maria (UFSM), Santa Maria-RS. Desde 2003 atua como professor nos cursos de Graduação e Pós-Graduação em Engenharia Elétrica na Universidade Tecnológica Federal do Paraná (UTFPR) câmpus Pato Branco-PR. Suas áreas de interesse incluem sistemas de geração distribuída, fontes renováveis de energia, conversores estáticos e técnicas de comutação suave. Dr. Stein é membro da SOBRAEP.