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Abstract – This paper proposes an automatic procedure
for robust control design applicable to power converters
based on particle swarm optimization and Kharitonov’s
Theorem. The main benefit is to provide control gains
that have a theoretical certificate of robust stability
and also accomplish multiple performance criteria in
a design less dependent of human-machine interaction.
Regarding the particle swarm optimization, each particle
represents a controller candidate whose performance
is evaluated by means of an objective function, using
the vertices of a polytopic model of the plant and
the four polynomials of Kharitonov’s Theorem. The
effectiveness of the proposed procedure is illustrated by
means of a case study that considers the speed control
of a permanent magnet synchronous motor subject to
uncertain mechanical and electrical parameters. The
designed controllers, obtained in an offline way, yield
good trade-offs between performance and robustness, as
confirmed by simulation and experimental evaluations.
Analyses show superior results with the proposed strategy
compared to a genetic algorithm and to a design tool
specialized for PID tuning, indicating its viability as an
alternative for robust control design in power electronics.

Keywords – Kharitonov’s theorem, Particle swarm
optimization, Permanent magnet synchronous motors,
Power converters, Robust control.

I. INTRODUCTION

A common point in designing controllers for engineering
problems, particularly for control of power converters, is
the need to take into account trade-offs among different
objectives, such as fast dynamic responses, accurate reference
tracking, good disturbance rejection, control action limitation,
robustness against parametric uncertainties, etc [1]–[4]. An
alternative to deal with design problems with multiple
objectives and constraints that can be difficult to be expressed
analytically is to use intelligent algorithms, which can
evolve based on the evaluation of numerical simulations
or experimental data [5]. Among well-known intelligent
algorithms, it is possible to highlight the particle swarm
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optimization (PSO), proposed in [6], for reasons such as the
ability to evolve without relying on the objective function
derivative, the avoidance of local minima, the fast execution
time and simple computational implementation [7]. Since
its proposition, this algorithm has been used for optimization
in several applications, as in [8]. However, as pointed
out by [9], concerning control tuning for power converters,
few works with metaheuristics, including PSO, have been
produced, indicating a potential for further investigation with
this technique.

In the context of PSO applied to tune fixed gain controllers
for power converters, this strategy was used, for instance,
in [7], [10]–[13], mainly to design PI and PID controllers.
The optimization by PSO is guided by an objective function.
For instance, [10]–[12] aim on time domain specifications,
while [7], [13] aim on frequency domain specifications. A
common point in these works is not exploring simultaneously
time and frequency domain criteria for tuning controllers.
Although there exist correlation between specifications in
these domains (e.g., between overshoot and phase margin or
between steady state error and low frequency gain), these
correlations are based, for instance, in approximating the
plant as second order models, and may lead to inaccurate
results. Therefore, exploring time and frequency domain
specifications simultaneously can be interesting but, on the
other hand, the task becomes more challenging when the
system is subject to uncertain parameters and to limits in
the control action. These points are investigated here,
incorporating multiple practical constraints and robustness
against uncertain parameters during the controller design
stage, not requiring exhaustive analyses after the design to
certify robustness and performance.

Assuming that the plant is described by a model whose
coefficients are not precisely known, but belong to real
intervals, the robust stability under uncertain parameters can
be certified by the Kharitonov’s Theorem [4], [14], [15]. In the
context of power electronics, Kharitonov’s Theorem was used
to certify the robustness against uncertainties, for instance,
in Buck converters [16], microgrids [17]–[19], and PMSMs
[20]–[22]. Although Kharitonov’s Theorem has been applied
to define, a priori, regions of robust stability, employed for
choosing the control gains, the use of this tool during the
control tuning stage still demands further investigation. Then,
to the best of the authors’ knowledge, there is a lack of works
with Kharitonov’s Theorem combined with PSO strategy
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applied in robust control design procedures for controllers of
power converters.

The main contribution of the present work is an automatic
robust control design procedure that combines PSO and
Kharitonov’s Theorem to cope with multiple practical design
constraints and robustness against parametric uncertainties,
providing control gains that ensure suitable results for
power converters. As performance criteria, the proposed
procedure encompasses the deviation from reference values
for phase margin and crossover frequency and limits for
gain margin, overshoot, steady state error and control signal
saturation. To make the procedure computationally viable,
these performance criteria are evaluated at the vertices of a
polytopic model of the plant, which is a necessary condition
to assure performance for the whole polytope. The robust
stability for the entire domain of the uncertain parameters
is certified by Kharitonov’s Theorem, which is a sufficient
condition that can be tested in a fast way by evaluating the
stability of only four polynomials. This last feature makes
the proposed procedure novel with respect to previous works
dealing with PSO for control tuning in power converters, since
the synthesized controllers have a theoretical certificate of
robust stability for closed-loop systems.

The procedure, which is summarized in Section III-D, is
implemented offline, leading to simple fixed gain controllers
that can be applied for a large class of power converters
affected by interval parameters. To exemplify, a case study
is presented, focusing on the speed control of a permanent
magnet synchronous motor (PMSM) with uncertain electrical
and mechanical parameters. Differently from previous works
which apply PSO or Kharitonov’s Theorem to PMSMs, as for
instance, [20]–[23], here multiple design criteria are employed
to guide the PSO to find fixed control gains ensuring operation
under limited control signal, with a theoretical certificate
of stability under uncertain plant parameters being provided
for the designed gains. Experimental results are provided,
illustrating suitable responses, with superior performance
of the proposed design procedure when compared to other
control design alternatives.

II. PROBLEM DESCRIPTION

Consider the plant transfer function

G(s) =
f0(p)+ f1(p)s+ f2(p)s2 + · · ·+ fn(p)sn

g0(p)+g1(p)s+g2(p)s2 + · · ·+gn(p)sn . (1)

where the coefficients are function of uncertain physical
parameters, which are given by

p := [ p1 , p2 , · · · , pL ] , p� ∈
[
p�−, p�+

]
, �= 1 . . .L. (2)

This type of representation is suitable for averaging model
of power converters where the physical parameters (e.g.,
inductances, capacitances and resistances) are not precisely
known, but lie on known intervals [14].

In order to ensure stability and performance over the entire
domain of uncertain parameters, assume a controller

Gc(s) =
x0 + x1s+ x2s2 + · · ·+ xmsm

y0 + y1s+ y2s2 + · · ·+ ymsm . (3)

where the controller coefficients are defined by the vector

c = [x0 , x1 , · · · , xm , y0 , y1 , · · · , ym ] . (4)

The controller transfer function (3) is composed by fixed
coefficients to be computed offline. For example, for a
PI controller, x0 = KI , x1 = KP, y0 = 0, y1 = 1, and c =
[KI ,KP,0,1].

A. Robust Stability based on Kharitonov’s Theorem
The transfer function G(s) in (1) can be represented by the

interval family of plants of degree n given by

Gk(s) =
a0 +a1s+a2s2 + · · ·+ansn

b0 +b1s+b2s2 + · · ·+bnsn . (5)

where the coefficients a� and b� are obtained from the
evaluation of f�(p) and g�(p), leading to bounded real
intervals given by

a� ∈
[
a�−,a�+

]
, b� ∈

[
b�−,b�+

]
, �= 0, · · · ,n. (6)

Given the controller (3) and the interval plant (5), the
characteristic polynomial D(s) of the closed-loop system can
be written in the interval form as

D(s) = d0 +d1s+d2s2 + · · ·+dn+msn+m. (7)

with bounded coefficients

d� ∈
[
d�−,d�+

]
, �= 0, · · · ,n+m. (8)

According to Kharitonov’s Theorem, one has that if the four
polynomials

K1(s) = do
−+d1

−s+d2
+s2 +d3

+s3 +d4
−s4 + · · · ,

K2(s) = do
−+d1

+s+d2
+s2 +d3

−s3 +d4
−s4 + · · · ,

K3(s) = do
++d1

−s+d2
−s2 +d3

+s3 +d4
+s4 + · · · ,

K4(s) = do
++d1

+s+d2
−s2 +d3

−s3 +d4
+s4 + · · · .

(9)

are Hurwitz, then D(s) in (7) is Hurwitz and thus the closed-
loop system is stable for all values of the interval coefficients.

The proof can be found in [4].

Definition 1. KT stable: If (9) is satisfied in the scenario
specified above, the uncertain closed-loop system will be
called from now on, in this paper, as KT stable, i.e., stable
based on Kharitonov’s Theorem.

When dealing with plants with coefficients that are not
independent, as can be the case of power converters, where
the physical parameters may affect more than one coefficient
of the transfer function (1) at the same time, Kharitonov’s
Theorem tested as in (9) is a sufficient condition for robust
stability of system (1) for a given controller (3). In these cases,
due to its computational simplicity, this condition is worth to
be used for a fast evaluation of stability [4], [24].

B. Performance Criteria based on Polytopic Representation
In classical control design procedures for power converters,

it is very common to specify performance in terms of
frequency domain criteria, such as crossover frequency (ωco),
phase margin (PM) and gain margin (GM) [3], [25], [26].
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Moreover, it is also desirable to shape the closed-loop
system step response based on time domain performance
constraints, such as overshoot (OV) and steady state error
(ess). A good trade-off among these specifications is a
challenge, becoming more difficult when uncertain parameters
and control saturation (i.e., a limit for the amplitude of the
control signal u) must be taken into account in the design.

One way to estimate the above performance measures for
plants affected by uncertain parameters, as (1), for a given
fixed gain controller (3), is from a polytopic representation of
the plant [27]. By combining all extreme values of the physical
parameters in (2), the resulting polytopic model has V = 2L

vertices, given by

G(s) =
V

∑
i=1

αiGi(s),
V

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,V. (10)

where Gi(s) are the vertices of the polytopic plant model. The
measures of PM, ωco, GM, OV, ess and the maximum of u can
be carried out evaluating a set of time and frequency domain
responses, only at the vertices of the polytopic model.

Notice that even though the worst case values of the
above measures may not be captured by only evaluating the
responses at the vertices of the polytopic plant, the proposed
procedure becomes appealing from a computational point of
view, leading to effective results in power electronics plants,
as illustrated by the case study in this paper. Nevertheless, in
order to include a theoretical certificate of robust stability valid
for the entire domain of uncertainties, Kharitonov’s Theorem
is then aggregate to the proposed approach.

C. Control Design Problem Definition
The problem to be solved in this paper is to find, in an

offline procedure, the control gain vector (4), such that:
• an objective function including performance

specifications in terms of the time and frequency
domain criteria PM, ωco, GM, OV, ess and the maximum
of u is optimized for the vertices of the polytopic model;

• the closed-loop uncertain system (1) with controller (3)
is KT stable.

III. PROPOSED CONTROL DESIGN PROCEDURE

In order to provide a systematic solution for the above
problem, this section presents the definition of the objective
function, the search space for the gains, the PSO algorithm
and summarizes the proposed design procedure.

A. Objective Function
For each controller vector candidate c in (4), the objective

function proposed here returns a real positive scalar computed
based on three terms, α(c), β (c) and γ(c), that measure the
quality of the system performance with a given controller.

The first term, α(c), is defined as

α(c) = max
j=1,···,V

(∣∣∣∣
PM∗ −PM j(c)

PM∗

∣∣∣∣+
∣∣∣∣
ωco

∗ −ωco j(c)
ωco∗

∣∣∣∣
)
.

(11)
and measures the worst case deviation of the phase margin and
crossover frequency provided by the controller candidate c,
from reference values PM∗ and ωco

∗, computed for all vertices

of the polytopic model, represented by the index j. Notice that
the values of PM j(c) and ωco j(c) can be easily computed by
means of a specialized function, as the function margin, from
MATLAB.

Note that minimizing only α(c) may not be sufficient
to ensure good time and frequency responses. Aiming at
improving the performance, a second term, β (c), is taken into
account, playing the role of a penalty factor in the objective
function, being computed as

β (c) =





1,
if GM j(c)≥ GM and OV j(c)≤ OV
and

∣∣ess j(c)
∣∣≤ ess and |u j(c)| ≤ u

for all j = 1, · · · ,V

106, otherwise.
(12)

β (c) returns an unitary value if all the conditions in (12)
are satisfied, i.e., if the controller candidate c ensures, for
each vertex, compliance with prescribed lower bound GM
and upper bounds OV, ess and u. Otherwise, β (c) returns
the value 106, in order to penalize the objective function for
this controller candidate. The indices in (12) can be easily
computed, for instance, by means of the functions margin and
step, from MATLAB.

Note that choosing the constraints in α(c) and β (c) is not
a difficult task, as typical values for these parameters can be
found in the literature or can be defined based on the converter
under investigation (e.g., PM of 60◦, GM from 2 to 5, etc.
[3], [28]).

The third term of the proposed objective function, γ(c),
also plays the role of a penalty factor, related with the robust
stability ensured by means of Kharitonov’s Theorem, and is
given by

γ(c) =
{

1, if the closed-loop system is KT stable
106, otherwise.

(13)
Recall that a positive evaluation of Kharitonov’s Theorem

is a theoretical guarantee of robust stability for the closed-
loop system under uncertain parameters. Notice that since the
approach here is based on computational functions to obtain
the measures of the time and frequency responses, and to
compute the roots of the Kharitonov’s polynomials, it can
be applied for plant and controller models of arbitrary order,
avoiding analytical formulation, which are progressively more
difficult to handle as the order of the transfer functions
increase.

Finally, the objective function can be expressed as

f (c) = α(c) β (c) γ(c). (14)

where, to summarize: α(c) is related to get controllers c
that lead to open-loop responses with phase margins and
crossover frequencies close to reference values; β (c) is related
to get controllers that comply with limitation for gain margin,
overshoot, steady state error and control saturation; γ(c) is
related to get controllers that ensure the KT stability of the
closed-loop system.

The best controller associated to the objective function (14)
is the vector c, given in (4), which minimizes f (c) in a search

applied in robust control design procedures for controllers of
power converters.

The main contribution of the present work is an automatic
robust control design procedure that combines PSO and
Kharitonov’s Theorem to cope with multiple practical design
constraints and robustness against parametric uncertainties,
providing control gains that ensure suitable results for
power converters. As performance criteria, the proposed
procedure encompasses the deviation from reference values
for phase margin and crossover frequency and limits for
gain margin, overshoot, steady state error and control signal
saturation. To make the procedure computationally viable,
these performance criteria are evaluated at the vertices of a
polytopic model of the plant, which is a necessary condition
to assure performance for the whole polytope. The robust
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is certified by Kharitonov’s Theorem, which is a sufficient
condition that can be tested in a fast way by evaluating the
stability of only four polynomials. This last feature makes
the proposed procedure novel with respect to previous works
dealing with PSO for control tuning in power converters, since
the synthesized controllers have a theoretical certificate of
robust stability for closed-loop systems.

The procedure, which is summarized in Section III-D, is
implemented offline, leading to simple fixed gain controllers
that can be applied for a large class of power converters
affected by interval parameters. To exemplify, a case study
is presented, focusing on the speed control of a permanent
magnet synchronous motor (PMSM) with uncertain electrical
and mechanical parameters. Differently from previous works
which apply PSO or Kharitonov’s Theorem to PMSMs, as for
instance, [20]–[23], here multiple design criteria are employed
to guide the PSO to find fixed control gains ensuring operation
under limited control signal, with a theoretical certificate
of stability under uncertain plant parameters being provided
for the designed gains. Experimental results are provided,
illustrating suitable responses, with superior performance
of the proposed design procedure when compared to other
control design alternatives.

II. PROBLEM DESCRIPTION

Consider the plant transfer function

G(s) =
f0(p)+ f1(p)s+ f2(p)s2 + · · ·+ fn(p)sn

g0(p)+g1(p)s+g2(p)s2 + · · ·+gn(p)sn . (1)

where the coefficients are function of uncertain physical
parameters, which are given by

p := [ p1 , p2 , · · · , pL ] , p� ∈
[
p�−, p�+

]
, �= 1 . . .L. (2)

This type of representation is suitable for averaging model
of power converters where the physical parameters (e.g.,
inductances, capacitances and resistances) are not precisely
known, but lie on known intervals [14].

In order to ensure stability and performance over the entire
domain of uncertain parameters, assume a controller

Gc(s) =
x0 + x1s+ x2s2 + · · ·+ xmsm

y0 + y1s+ y2s2 + · · ·+ ymsm . (3)

where the controller coefficients are defined by the vector

c = [x0 , x1 , · · · , xm , y0 , y1 , · · · , ym ] . (4)

The controller transfer function (3) is composed by fixed
coefficients to be computed offline. For example, for a
PI controller, x0 = KI , x1 = KP, y0 = 0, y1 = 1, and c =
[KI ,KP,0,1].

A. Robust Stability based on Kharitonov’s Theorem
The transfer function G(s) in (1) can be represented by the

interval family of plants of degree n given by

Gk(s) =
a0 +a1s+a2s2 + · · ·+ansn

b0 +b1s+b2s2 + · · ·+bnsn . (5)

where the coefficients a� and b� are obtained from the
evaluation of f�(p) and g�(p), leading to bounded real
intervals given by

a� ∈
[
a�−,a�+

]
, b� ∈

[
b�−,b�+

]
, �= 0, · · · ,n. (6)

Given the controller (3) and the interval plant (5), the
characteristic polynomial D(s) of the closed-loop system can
be written in the interval form as

D(s) = d0 +d1s+d2s2 + · · ·+dn+msn+m. (7)

with bounded coefficients

d� ∈
[
d�−,d�+

]
, �= 0, · · · ,n+m. (8)

According to Kharitonov’s Theorem, one has that if the four
polynomials

K1(s) = do
−+d1

−s+d2
+s2 +d3

+s3 +d4
−s4 + · · · ,

K2(s) = do
−+d1

+s+d2
+s2 +d3

−s3 +d4
−s4 + · · · ,

K3(s) = do
++d1

−s+d2
−s2 +d3

+s3 +d4
+s4 + · · · ,

K4(s) = do
++d1

+s+d2
−s2 +d3

−s3 +d4
+s4 + · · · .

(9)

are Hurwitz, then D(s) in (7) is Hurwitz and thus the closed-
loop system is stable for all values of the interval coefficients.

The proof can be found in [4].

Definition 1. KT stable: If (9) is satisfied in the scenario
specified above, the uncertain closed-loop system will be
called from now on, in this paper, as KT stable, i.e., stable
based on Kharitonov’s Theorem.

When dealing with plants with coefficients that are not
independent, as can be the case of power converters, where
the physical parameters may affect more than one coefficient
of the transfer function (1) at the same time, Kharitonov’s
Theorem tested as in (9) is a sufficient condition for robust
stability of system (1) for a given controller (3). In these cases,
due to its computational simplicity, this condition is worth to
be used for a fast evaluation of stability [4], [24].

B. Performance Criteria based on Polytopic Representation
In classical control design procedures for power converters,

it is very common to specify performance in terms of
frequency domain criteria, such as crossover frequency (ωco),
phase margin (PM) and gain margin (GM) [3], [25], [26].
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space. Thus, the control design problem can be expressed by
the optimization problem

c� = arg min
c∈C

f (c). (15)

where C is the search space defined in the next subsection.
It is worth to mention that different objective functions

could be defined to guide the control design task, as those
used in [7], [10], [29]. The specifications in (14) were
chosen here considering traditional performance constrains
used in practice in power electronics (e.g., PM, GM, ωco).
As an original aspect, (14) includes in the control design
stage the robust stability assessment (i.e., KT stability) and
actuator saturation evaluation. These last constraints make the
design more difficult, but able to cope with real challenges of
parametric uncertainties and limited control signal.

B. Search Space
The space for searching the control gains is defined here as

C =

{
(x0 , x1 , · · · , xm , y0 , y1, · · · , ym ) ∈ R2m+2

xh̄
− ≤ xh̄ ≤ xh̄

+, yh̄
− ≤ yh̄ ≤ yh̄

+, h̄ = 0, . . . ,m.
(16)

and is based on the positivity of the coefficients of polynomial
(7), for all possible combinations of uncertain parameters p.
This choice is based on the well-known necessary condition
for Hurwitz stability, that tends to produce a large search
space. The advantage is that this space can be systematically
obtained in a fast way from a set of linear inequalities, by
solving a linear programming problem, and then, including
the resulting region in a hyperrectangle, as describe in (16).
More accurate search spaces could be obtained applying, for
instance, the complete Routh-Hurwitz criterion [28], but at
the price of more time-consuming and complex calculations
to define the search space.

Since C defined as above can be a large search space,
exhaustive grid techniques are usually unviable for a high
resolution discretization. In this scenario, metaheuristics such
as the PSO algorithm has proven to be useful, even for
objective functions with discontinuities [30].

C. Particle Swarm Optimization
PSO is a bio-inspired algorithm proposed in [6], based

on intelligent swarms, where the collective behavior of non-
sophisticated agents creates global functional patterns, and it
has already been used in control of power converters [7],[10]–
[13].

In the sense of the design problem in this paper, the control
gain vector (4) can be associated with the position of a particle
i in the search space, given by

si = [ x0i , x1i , · · · , xmi , y0i , y1i , · · · , ymi ] . (17)

The swarm has a size of N particles and must be sufficiently
large to cover the search space.

The particles i are randomly initialized on the search space
C , and in a given epoch k, for each particle position sk

i , a real
positive value is associated. This value is generated through
the evaluation of the objective function (14), and it is called
fitness. The particles positions in the search space are updated

from one epoch k to the next epoch k+ 1, until reaching the
stop criterion, for instance, the limit of M epochs for evolution.
Each particle moves from the position sk

i to the next position
sk+1

i with a velocity vk
i , based on the equations

sk+1
i = sk

i + vk+1
i . (18)

vk+1
i = λvk

i +φ1 r1(Pi.best − sk
i )+φ2 r2(Gbest − sk

i ). (19)

The velocity of a given particle is influenced by the best
position that it got (Pi.best ), and also by the best position among
all particles (Gbest ). φ1 is the cognitive coefficient, φ2 is the
social coefficient, λ is the inertia factor and r1 and r2 are
random values between [0,1]. It is also noted that the velocity
of each particle, similarly to the position, is represented by a
vector with the same dimension of (17) [6], [31].

The PSO algorithm used here can be summarized as
follows:
a) configure the PSO parameters;
b) initialize the particles randomly in the search space;
c) calculate the objective function for each particle;
d) update Pi.best and Gbest ;
e) update position and velocity of each particle;
f) if the stop criteria is reached, continue. If not, increase

the epoch number and return to c);
g) return the best particle (Gbest ) and end the execution.

The number of particles N, the number of epochs M, and the
coefficients φ1 and φ2 are set in order to ensure convergence
of the objective function with viable computational effort,
and guidelines to setup these parameters can be found in
[32], [33]. The algorithm stop criterion can be based on
reaching M or on stalling of the objective function. For
instance, using MATLAB, this algorithm can be executed
using the particleswarm function.

D. Summary of the Proposed Procedure
The proposed design procedure, encompassing the features

presented in the previous sections, is summarized by the
flowchart depicted in Figure 1.

The first step is to inform the plant model and the uncertain
parameters, as shown in (1) and (2). In the sequence, the
structure of the controller is chosen, defining coefficients
vector (4). Then, the specifications in (11) and (12) are chosen
by the control designer for evaluation of the objective function
(14). The next step is to determine the search space (16), based
on the closed-loop characteristic polynomial (7). Then, the
setup parameters of the PSO are chosen and the optimization
is carried out. In this step, it is worth to mention that, in
each iteration of the PSO, each particle (candidate controller)
is evaluated based on the objective function (14), including the
assessment of robust stability using Kharitonov’s Theorem.

The PSO algorithm described in Subsection 3.C runs until
reaching the stop criterion. If the algorithm converges to a
controller c� (best particle of the swarm) for which the closed-
loop system is not KT stable, the procedure must be executed
again, relaxing the limits of the uncertain plant parameters.
Finally, if the algorithm converges to a controller c� , for
which the closed-loop robust stability is successfully accessed
by the Kharitonov’s Theorem, and the constraints in (12) are
satisfied, the procedure ends, providing c� as a viable robust
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Choose the controller

Choose the objective function
specifications

Determine the search space

β(c★)=1?

Start

Yes

Yes

No

No

c★=Gbest

Inform the plant parameters

Configure and execute PSO

End

γ(c★)=1? KT stability test

Fig. 1. Flowchart of the proposed design procedure.

controller. If the algorithm converges to a KT stable controller,
but the constraints in (12) are not satisfied, the objective
function specifications must be relaxed, and the procedure
executed again.

It is worth to emphasize that the contribution here is
the combination of the PSO and a novel objective function,
including the Kharitonov’s Theorem. Therefore, the proposed
procedure can cope with multiple practical design constraints,
leading to fixed control gains that ensure operation under
limited control signal and include a theoretical certificate of
stability under uncertain plant parameters.

In order to illustrate the effectiveness of the proposed
procedure in the design of robust controllers for plants relevant
in power electronics, in the next section, a case study is
presented, given by the speed control of permanent magnet
synchronous motor, with uncertain electrical and mechanical
parameters.

IV. CASE STUDY: PERMANENT MAGNET
SYNCHRONOUS MOTOR

For an internal PMSM, consider a rotor field oriented
control (FOC) strategy [34]. The FOC methods are usually
employed to ensure high performance of the drive. This
method results in a cascade control structure with two inner
current control loops and an outer speed control loop, as given
in Figure 2a. This structure decouples torque and flux using
the dq reference frame. The speed compensator generates the
current reference i∗q processing the error between the speed
reference ω∗

m and the actual speed ωm.
In order to implement a linear torque control, the constant

torque angle strategy is adopted. Thus, i∗d = 0, and the torque
generated depends only on the i∗q current component. For the
current control loops, the phase currents iabc are measured by
Hall effect sensors, and then, based on the angular position
θr, are converted to the synchronous reference frame, using
the Park transformations [35]. From the error between these
currents and their references, the controllers PId and PIq
provide the voltages vd and vq, which are then transformed to
abc voltages. To drive the PMSM, these voltages are converted
to pulse-width modulation (PWM) signals.

The model of the PMSM in synchronous reference frame is
given by [36]

did
dt

=−Rs

Ld
id +

Lq

Ld
ωeiq +

1
Ld

vd (20)

diq
dt

=−Rs

Lq
iq −

Ld

Lq
ωeid −

φsrm

Lq
ωe +

1
Lq

vq (21)

where the subscription d and q indicate the direct and
quadrature axes. The stator inductances referred to the
synchronous reference frame are given by Ld and Lq, with
different values for each axis due to the internal magnet motor
configuration. The stator resistance is given by Rs, φsrm is the
magnetic flux of the permanent magnet and ωe is the electrical
angular speed.

From (20) and (21), considering the terms depending on
ωe as disturbances, the following decoupled linear transfer
functions can be obtained

Gd(s) =
Id(s)
Vd(s)

=

1
Ld

s+ Rs
Ld

, Gq(s) =
Iq(s)
Vq(s)

=

1
Lq

s+ Rs
Lq

. (22)

The mechanical behavior can be described by the following
dynamic model [36]

dwm

dt
=

1
J
(τm −Bwm)+δ (wm). (23)

where J represents the inertia of the rotor, B is the viscous
friction coefficient, δ (wm) is a nonlinear term of bounded
norm, and τm is the difference between the electromechanical
torque, given by 3

2 P [(Ld −Lq) id +φsrm] iq, and the load
torque. P is the number of pairs of poles of the motor.

Assuming the mechanical torque as an input and the rotor
speed as an output, the transfer function from the linear part of
(23) is written as

Gn(s) =
Wm(s)
Tm(s)

=
1
J

s+ B
J

. (24)

The system parameters for this case study are summarized
in Table I, including the uncertainties on the electrical and
mechanical parameters. It is important to mention that, the
interval of uncertainties must be provided by the control
designer and is given, in this case study, from the expected
uncertainty around the PMSM rated parameters. Nevertheless,
the proposed procedure can handle with different intervals.

Note that (22) and (24) are first order linear plant models as
presented in (1) that, based on the rated parameters shown in
Table I, can be used to describe a PMSM subject to uncertain

space. Thus, the control design problem can be expressed by
the optimization problem

c� = arg min
c∈C

f (c). (15)

where C is the search space defined in the next subsection.
It is worth to mention that different objective functions

could be defined to guide the control design task, as those
used in [7], [10], [29]. The specifications in (14) were
chosen here considering traditional performance constrains
used in practice in power electronics (e.g., PM, GM, ωco).
As an original aspect, (14) includes in the control design
stage the robust stability assessment (i.e., KT stability) and
actuator saturation evaluation. These last constraints make the
design more difficult, but able to cope with real challenges of
parametric uncertainties and limited control signal.

B. Search Space
The space for searching the control gains is defined here as

C =

{
(x0 , x1 , · · · , xm , y0 , y1, · · · , ym ) ∈ R2m+2

xh̄
− ≤ xh̄ ≤ xh̄

+, yh̄
− ≤ yh̄ ≤ yh̄

+, h̄ = 0, . . . ,m.
(16)

and is based on the positivity of the coefficients of polynomial
(7), for all possible combinations of uncertain parameters p.
This choice is based on the well-known necessary condition
for Hurwitz stability, that tends to produce a large search
space. The advantage is that this space can be systematically
obtained in a fast way from a set of linear inequalities, by
solving a linear programming problem, and then, including
the resulting region in a hyperrectangle, as describe in (16).
More accurate search spaces could be obtained applying, for
instance, the complete Routh-Hurwitz criterion [28], but at
the price of more time-consuming and complex calculations
to define the search space.

Since C defined as above can be a large search space,
exhaustive grid techniques are usually unviable for a high
resolution discretization. In this scenario, metaheuristics such
as the PSO algorithm has proven to be useful, even for
objective functions with discontinuities [30].

C. Particle Swarm Optimization
PSO is a bio-inspired algorithm proposed in [6], based

on intelligent swarms, where the collective behavior of non-
sophisticated agents creates global functional patterns, and it
has already been used in control of power converters [7],[10]–
[13].

In the sense of the design problem in this paper, the control
gain vector (4) can be associated with the position of a particle
i in the search space, given by

si = [ x0i , x1i , · · · , xmi , y0i , y1i , · · · , ymi ] . (17)

The swarm has a size of N particles and must be sufficiently
large to cover the search space.

The particles i are randomly initialized on the search space
C , and in a given epoch k, for each particle position sk

i , a real
positive value is associated. This value is generated through
the evaluation of the objective function (14), and it is called
fitness. The particles positions in the search space are updated

from one epoch k to the next epoch k+ 1, until reaching the
stop criterion, for instance, the limit of M epochs for evolution.
Each particle moves from the position sk

i to the next position
sk+1

i with a velocity vk
i , based on the equations

sk+1
i = sk

i + vk+1
i . (18)

vk+1
i = λvk

i +φ1 r1(Pi.best − sk
i )+φ2 r2(Gbest − sk

i ). (19)

The velocity of a given particle is influenced by the best
position that it got (Pi.best ), and also by the best position among
all particles (Gbest ). φ1 is the cognitive coefficient, φ2 is the
social coefficient, λ is the inertia factor and r1 and r2 are
random values between [0,1]. It is also noted that the velocity
of each particle, similarly to the position, is represented by a
vector with the same dimension of (17) [6], [31].

The PSO algorithm used here can be summarized as
follows:
a) configure the PSO parameters;
b) initialize the particles randomly in the search space;
c) calculate the objective function for each particle;
d) update Pi.best and Gbest ;
e) update position and velocity of each particle;
f) if the stop criteria is reached, continue. If not, increase

the epoch number and return to c);
g) return the best particle (Gbest ) and end the execution.

The number of particles N, the number of epochs M, and the
coefficients φ1 and φ2 are set in order to ensure convergence
of the objective function with viable computational effort,
and guidelines to setup these parameters can be found in
[32], [33]. The algorithm stop criterion can be based on
reaching M or on stalling of the objective function. For
instance, using MATLAB, this algorithm can be executed
using the particleswarm function.

D. Summary of the Proposed Procedure
The proposed design procedure, encompassing the features

presented in the previous sections, is summarized by the
flowchart depicted in Figure 1.

The first step is to inform the plant model and the uncertain
parameters, as shown in (1) and (2). In the sequence, the
structure of the controller is chosen, defining coefficients
vector (4). Then, the specifications in (11) and (12) are chosen
by the control designer for evaluation of the objective function
(14). The next step is to determine the search space (16), based
on the closed-loop characteristic polynomial (7). Then, the
setup parameters of the PSO are chosen and the optimization
is carried out. In this step, it is worth to mention that, in
each iteration of the PSO, each particle (candidate controller)
is evaluated based on the objective function (14), including the
assessment of robust stability using Kharitonov’s Theorem.

The PSO algorithm described in Subsection 3.C runs until
reaching the stop criterion. If the algorithm converges to a
controller c� (best particle of the swarm) for which the closed-
loop system is not KT stable, the procedure must be executed
again, relaxing the limits of the uncertain plant parameters.
Finally, if the algorithm converges to a controller c� , for
which the closed-loop robust stability is successfully accessed
by the Kharitonov’s Theorem, and the constraints in (12) are
satisfied, the procedure ends, providing c� as a viable robust
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Fig. 2. Permanent magnet synchronous motor: (a) block diagram of the control system, comprised by three PI controllers; (b) prototype.

TABLE I
PMSM Parameters

Parameter Value
Rated Power 11 kW

Rated Current 19.2 A
Rated Torque 58.4 Nm

Poles (P) 6
Stator Resistance (Rs) 0.475 Ω ±40%

Inductance of d-axis (Ld ) 20.1 mH ±10%
Inductance of q-axis (Lq) 40.9 mH ±10%

Rotor Inertia (J) 0.03877 kgm2 ±10%
Friction Coefficient (B) 0.0194 Nms ±40%

PM flux linkage 0.5126 V/rad/s

parameters, given, respectively, by

Gd(s) =
1

Ld

s+ Rs
Ld

=
f0(p1)

s+g0(p1, p2)
. (25)

where p1 = Ld , p2 = Rs, f0 =
1

Ld
and g0 =

Rs
Ld

,

Gq(s) =
1

Lq

s+ Rs
Lq

=
f0(p1)

s+g0(p1, p2)
. (26)

where p1 = Lq, p2 = Rs, f0 =
1

Lq
and g0 =

Rs
Lq

,

Gn(s) =
1
J

s+ B
J

=
f0(p1)

s+g0(p1, p2)
. (27)

where p1 = J, p2 = B, f0 =
1
J and g0 =

B
J .

Once the plant parameters are defined, the next step is to
choose the controller structure. In this context, the control
problem to be solved for this case study is to synthesize
PI controllers with fixed gains for three control loops (d-
axis current, q-axis current and mechanical speed) ensuring
stability and proper dynamic performance for the entire set of
parameters given in Table I.

The third step in the proposed procedure is to choose
the objective function specifications. For the mechanical
speed plant, the reference values for system performance and
stability margins are specified as

ωco
∗ = 60 rad/s PM∗ = 60◦ GM = 5 (14 dB).

OV = 10% ess = 1% u = 1
(28)

Following the procedure, a two-dimensional search space
for the gains KP (x1) and KI (x0) is defined based on the
positivity of the coefficients of the characteristic polynomial
(7). Therefore, considering the speed plant Gn(s) in (27)
and a generic PI controller, the closed-loop characteristic
polynomial is given by

D(s) = d2s2 +d1s+d0 = s2 +(
B
J
+

1
J

KPn)s+(
1
J

KIn). (29)

where the inequalities that define the search space are given by

KIn > 0 KPn >−B. (30)

The value of 104 is chosen as an upper bound for KP and KI
to have a large region for searching the control gains.

The fifth step in the design procedure is to setup the PSO
parameters. Here, after some trial, one configuration that lead
to good results was

N = 200 particles M = 50 epochs φ1 = 0.5 φ2 = 0.5. (31)

The algorithm was executed several times, all of them in
an offline way and independent from each other, leading to
viable controllers. A typical execution for the speed control
loop provided the PI control gains

c�n = [KIn KPn] = [ 4.0169356855 0.9814291921 ]. (32)

For this execution, the evolution of the objective function
over the epochs is given in Figure 3a, from which can be
concluded that β (c�) = 1 (indicating compliance with bounds
in (12)) and γ(c�) = 1 (indicating the KT stability). Figure 3b
shows the evaluation of the objective function for different
values of KPn and KIn, for a fine grid in the search space.
Figure 3c is the top view of Figure 3b, where the minimum
region is evidenced. It is important to note that the region of
the Figure 3b was depicted with 10000 points and corresponds
to about 0.01% of the search space area investigated by
the PSO, requiring about 2 hours to be obtained with this
exhaustive gridding. In this sense, the search provided by the
PSO in 9 minutes is advantageous, justifying the choice of the
algorithm for large search spaces.

To validate the results, the speed control loop was simulated
with the control gains in (32). The frequency response of the
open-loop transfer function Gc(s)Gn(s) is shown in Figure 4a,
for the vertices of the parametric uncertainty range given
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Fig. 3. Speed control loop: (a) fitness value on each epoch; (b) part of the region in the search space that involves the provided gain; (c) contour
plot of (b).

in Table I. The worst case values of phase margin and
crossover frequency were given by PMmin = 80.6◦, ωcomin =
23.12 rad/s. The control signal for the vertices of the system
with gains (32) are shown in Figure 4b, where it is possible to
confirm the compliance with the maximum value of the control
signal, given in (28). The step responses of the closed-loop
system for the vertices are shown in Figure 4c-top, from which
it is possible to verify compliance with the design constraints.

In order to have a comparison between the gains obtained
with the proposed procedure and the ones obtained with
another tuning technique, Figure 4c-bottom shows the
responses of a PI controller designed using pidtune, from
MATLAB. In this case, the controller was designed for the
minimum values of the coefficients in Table I, and considering
the same specifications used for the PSO: ωco

∗ = 60 rad/s and
PM∗ = 60◦. Comparing the results, it is possible to verify
superior performance of the closed-loop system with the PSO-
based PI controller, which presented a lower overshoot and a
faster settling time. A more detailed performance comparison
between the responses with these controllers will be presented
in Section VI.

The proposed procedure is repeated for the control design
of d-axis and q-axis current plants. For these, the reference
values for crossover frequency is specified as ωco

∗ = 400 rad/s
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and the bound for control signal saturation is specified as
u = 17. This value is one limit that ensures the operation
of the closed-loop system without control saturation. The
other specifications for system performance and stability are
assumed as the same as in (28) and the PSO configuration the
same as in (31). For the current plants Gd(s) and Gq(s), the
procedure provided, respectively, the control gains

c�d = [KId KPd ] = [ 508.3281745213 7.8272985293 ]. (33)

c�q = [KIq KPq] = [ 1001.4258263209 15.9945084426 ]. (34)

V. EXPERIMENTAL RESULTS

To obtain the experimental results, a platform based on
a commercial PMSM (WEG’s WMagnet), with parameters
described in Table I, was used. The digital signal processor
(DSP) model TMS320F28335, from Texas Instruments, is
used to digitally implement the controllers. The three-phase
voltage source inverter (VSI) is based on IGBT switches.
A 10 kW (500 V - 20 A) DC power supply is used on
the DC bus. Hall effect sensors LV 25-P and LA 55-
P, manufactured by LEM, are used for voltage and current
measurements, respectively. An absolute encoder TRD-
NA256NWD provides the actual rotor position. A geometric
PWM modulation is used [37]. The switching frequency
used was 10 kHz, the sampling period is 100 ms, and the
PI controllers are discretized using Tustin method. Figure 2b
shows the experimental platform, where an induction machine
(IM) is coupled to the axis of the PMSM. The electrical load
shown in Figure 2b is connected to the IM to produce a
mechanical load disturbance of approximately 25 Nm for the
PMSM.

Figure 5 shows the experimental results for a reference
tracking test, with the robust PSO-based PI controllers
and also with the PI controllers designed using pidtune.
Figure 5a-top shows the system start-up in ramp, followed
by variations of speed setpoint. These variations are better
detailed in Figure 5a-bottom, where is possible to notice
a good tracking of the reference, with superior dynamic
performance of the PSO-based PI controller. Figure 5b-
top shows the d-axis current responses, while Figure 5b-
bottom shows the q-axis current responses, highlighting the
superior performance of the PSO-based controllers in all
control loops. The deterioration of performance in practice
for the pidtune controllers, are due the interaction between
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Fig. 2. Permanent magnet synchronous motor: (a) block diagram of the control system, comprised by three PI controllers; (b) prototype.

TABLE I
PMSM Parameters

Parameter Value
Rated Power 11 kW

Rated Current 19.2 A
Rated Torque 58.4 Nm

Poles (P) 6
Stator Resistance (Rs) 0.475 Ω ±40%

Inductance of d-axis (Ld ) 20.1 mH ±10%
Inductance of q-axis (Lq) 40.9 mH ±10%

Rotor Inertia (J) 0.03877 kgm2 ±10%
Friction Coefficient (B) 0.0194 Nms ±40%

PM flux linkage 0.5126 V/rad/s

parameters, given, respectively, by

Gd(s) =
1

Ld

s+ Rs
Ld

=
f0(p1)

s+g0(p1, p2)
. (25)

where p1 = Ld , p2 = Rs, f0 =
1

Ld
and g0 =

Rs
Ld

,

Gq(s) =
1

Lq

s+ Rs
Lq

=
f0(p1)

s+g0(p1, p2)
. (26)

where p1 = Lq, p2 = Rs, f0 =
1

Lq
and g0 =

Rs
Lq

,

Gn(s) =
1
J

s+ B
J

=
f0(p1)

s+g0(p1, p2)
. (27)

where p1 = J, p2 = B, f0 =
1
J and g0 =

B
J .

Once the plant parameters are defined, the next step is to
choose the controller structure. In this context, the control
problem to be solved for this case study is to synthesize
PI controllers with fixed gains for three control loops (d-
axis current, q-axis current and mechanical speed) ensuring
stability and proper dynamic performance for the entire set of
parameters given in Table I.

The third step in the proposed procedure is to choose
the objective function specifications. For the mechanical
speed plant, the reference values for system performance and
stability margins are specified as

ωco
∗ = 60 rad/s PM∗ = 60◦ GM = 5 (14 dB).

OV = 10% ess = 1% u = 1
(28)

Following the procedure, a two-dimensional search space
for the gains KP (x1) and KI (x0) is defined based on the
positivity of the coefficients of the characteristic polynomial
(7). Therefore, considering the speed plant Gn(s) in (27)
and a generic PI controller, the closed-loop characteristic
polynomial is given by

D(s) = d2s2 +d1s+d0 = s2 +(
B
J
+

1
J

KPn)s+(
1
J

KIn). (29)

where the inequalities that define the search space are given by

KIn > 0 KPn >−B. (30)

The value of 104 is chosen as an upper bound for KP and KI
to have a large region for searching the control gains.

The fifth step in the design procedure is to setup the PSO
parameters. Here, after some trial, one configuration that lead
to good results was

N = 200 particles M = 50 epochs φ1 = 0.5 φ2 = 0.5. (31)

The algorithm was executed several times, all of them in
an offline way and independent from each other, leading to
viable controllers. A typical execution for the speed control
loop provided the PI control gains

c�n = [KIn KPn] = [ 4.0169356855 0.9814291921 ]. (32)

For this execution, the evolution of the objective function
over the epochs is given in Figure 3a, from which can be
concluded that β (c�) = 1 (indicating compliance with bounds
in (12)) and γ(c�) = 1 (indicating the KT stability). Figure 3b
shows the evaluation of the objective function for different
values of KPn and KIn, for a fine grid in the search space.
Figure 3c is the top view of Figure 3b, where the minimum
region is evidenced. It is important to note that the region of
the Figure 3b was depicted with 10000 points and corresponds
to about 0.01% of the search space area investigated by
the PSO, requiring about 2 hours to be obtained with this
exhaustive gridding. In this sense, the search provided by the
PSO in 9 minutes is advantageous, justifying the choice of the
algorithm for large search spaces.

To validate the results, the speed control loop was simulated
with the control gains in (32). The frequency response of the
open-loop transfer function Gc(s)Gn(s) is shown in Figure 4a,
for the vertices of the parametric uncertainty range given
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the three control loops, which are all affected by uncertain
parameters, reinforcing one advantage of the robust controllers
designed by means of the proposed procedure.

Figure 6 shows experimental results for rejection of a
mechanical load disturbance, imposed by means of the IM
coupled to the PMSM axis, as shown in Figure 2b. The system
starts with a ramp of speed reference and, after reaching the
setpoint (110 rad/s), step load disturbances of approximately
25 Nm are applied. Figure 6a-top shows the speed responses,
with transients zoomed in Figure 6a-bottom. It is possible
to notice good disturbance rejection with the PSO-based PI
controllers, with a superior performance when compared to the
controllers obtained with the pidtune. Figure 6b-top shows the
d-axis current responses, while Figure 6b-bottom shows the q-
axis current responses, highlighting the superior performance
of the PSO-based controllers in all control loops.

Finally, Figure 7 shows a comparison between the
experimental and the simulation responses obtained for the
four vertices of the with the PSO-based controllers. One
can confirm the good correspondence between the average
behavior of the experimental results and the simulations,
indicating the suitability of the simple models to guide the
proposed procedure for this application. The oscillations
observed in the experimental results are due to mechanical
vibrations in the coupling between the PMSM shaft and the
encoder, as well as due to the nonideal construction of the
machine, which produces torque oscillations.
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Fig. 5. Experimental results for reference tracking with the PI
controllers under speed reference variations: (a) speed control loop
responses (top) with detailed transients (bottom); (b) current control
loop responses in d-axis (top) and q-axis (bottom).
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Fig. 6. Experimental results for reference tracking with the PI
controllers under load variations: (a) speed control loop responses
(top) with detailed transients (bottom); (b) current control loop
responses in d-axis (top) and q-axis (bottom).
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models for the four vertices of the polytope and the experimental
result.

VI. COMPARATIVE ANALYSES

This section presents a comparison between the controllers
designed using the proposed procedure (called in this section,
for simplicity, only as PSO) and controllers obtained by three
other techniques.

For the three control loops, the comparisons are presented
in Table II, where the measures are the worst case values for
each design specification, obtained based on the responses for
the vertices of the plant polytopic model.

Firstly, the responses with the PSO-based controllers are
compared with the responses obtained by controllers designed
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TABLE II
Design Comparisons

Speed control loop Current control loop in d-axis Current control loop in q-axis
PSO pidtune PSO-ITAE GA PSO pidtune PSO-ITAE GA PSO pidtune PSO-ITAE GA

PM (deg) 80.6 60 90 82.7 81.6 60 90 89.1 81.04 60 90 84.15
ωc (rad/s) 23.05 9.55 2.83×105 22.09 354.38 398.78 4.47×105 399.99 356.95 399.7 2.2×105 358.54
GM (dB) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
OV (%) 9.96 23.4 0.0 8.14 8.44 23.3 0.0 0.0 9.42 23.8 0.0 6.71
ess zero zero zero zero zero zero zero zero zero zero zero zero
Saturation no no yes no no no yes no no no yes no
KT stable yes no no yes yes yes no yes yes yes no yes
KP 0.981 0.351 9999.9 0.942 7.827 7.596 9999.9 8.966 15.99 15.6 9999.9 16.19
KI 4.017 2.05 9980.2 2.894 508.3 1882.7 9988.9 169.3 1001.4 3732.6 9996.2 695.19

using pidtune (same controllers used for the comparisons in
Sections IV and V), which is a well-established control tuning
function from MATLAB. In Table II, it can be noticed that
the pidtune controllers lead to higher overshoot (as confirmed
in Figure 4), due to the fact that the pidtune design is
carried out based only in the phase margin and the crossover
frequency. Moreover, the pidtune design consider only a
nominal plant, and do not encompass a theoretical certificate
of robust stability. Thus, the design may not ensure the KT
stability, as seen for the speed control loop.

The proposed PSO-based controllers are also compared
with the execution of the PSO with an alternative objective
function, the ITAE (integral time weighted absolute error)
criterion, as presented in [29]. It can be noticed that the
controllers provided by PSO-ITAE are not KT stable and
lead to control saturation, since this method does not take
into account these control input constraints in the design,
optimizing only the time responses. Therefore, although
the PSO-ITAE design may increase the crossover frequency,
which leads to controllers with faster responses under
unconstrained control signals, the practical implementation
in power converters becomes infeasible due to bandwidth
limitations. This conclusion reinforces the benefits
of a suitable objective function encompassing multiple
specifications, such as (14), in order to obtain controllers that
can be implemented in practice.

Finally, the proposed PSO-based controllers are compared
with designs where a genetic algorithm (GA), which is
another well-established metaheuristic, is used to optimize the
proposed objective function (14). The results with the PSO
and the GA designs presented in Table II are very similar,
for the speed and current control loops. Since both designs
are based on the objective function (14), they ensure the KT
stability and do not exhibit saturation of the control signal.
However, PSO leads to the control gains, in average, in half
of the time demanded by the GA, for similar conditions (e.g.,
same number of particles for PSO and chromosomes for GA,
epochs for PSO and generations for GA).

Moreover, defining success as a case where the algorithm
leads to a controller c� that has β (c�) = 1 and γ(c�) = 1, when
repeating 20 times the execution of PSO and GA, the success
rate with PSO is significantly higher than with the GA, as
shown in Table III. In these 20 executions, the results with
the PSO present a lower dispersion than the design based on
the GA. The dispersion is defined as the standard deviation of

the value of f (c�) divided by its average value, as presented
in Table III. These results confirm that the PSO is a suitable
optimization algorithm for the proposed procedure.

TABLE III
Statistics Comparison between GA and PSO Algorithms

for the Speed Control Loop

PSO GA
Success rate 95% 40%
Dispersion 1.29% 4.52%

VII. CONCLUSIONS

This paper proposed a design procedure for robust
controllers applicable to power converters. The procedure
is based on a PSO algorithm, that optimizes a multi-criteria
objective function on the vertices of a polytope of plants
and Kharitonov’s Theorem that guarantees the closed-loop
system is robustly stable for the entire domain of uncertainties.
To cope with multiple practical design specifications in the
proposed objective function can be a difficult task for known
design tools, possibly leading to a time-consuming design
stage, specially considering robustness against uncertain
parameters and control signal limitation. This scenario
reinforces the contribution of the paper, which is the
combination of the PSO algorithm and the Kharithonov’s
Theorem in an automatic procedure for controllers design,
including a robust stability certification. The proposed
procedure was validated for an important application in power
electronics, given by a PMSM speed controller, leading to
viable controllers in practice. The comparisons demonstrate
robustness under parametric uncertainties and confirm the
good quality of the controllers, showing superiority over
other control design methods. The proposed procedure is
also applicable to high order plants and controllers, being an
alternative that allows to reduce the trial and error stages for
design of fixed gain controllers for power converters.
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the three control loops, which are all affected by uncertain
parameters, reinforcing one advantage of the robust controllers
designed by means of the proposed procedure.

Figure 6 shows experimental results for rejection of a
mechanical load disturbance, imposed by means of the IM
coupled to the PMSM axis, as shown in Figure 2b. The system
starts with a ramp of speed reference and, after reaching the
setpoint (110 rad/s), step load disturbances of approximately
25 Nm are applied. Figure 6a-top shows the speed responses,
with transients zoomed in Figure 6a-bottom. It is possible
to notice good disturbance rejection with the PSO-based PI
controllers, with a superior performance when compared to the
controllers obtained with the pidtune. Figure 6b-top shows the
d-axis current responses, while Figure 6b-bottom shows the q-
axis current responses, highlighting the superior performance
of the PSO-based controllers in all control loops.

Finally, Figure 7 shows a comparison between the
experimental and the simulation responses obtained for the
four vertices of the with the PSO-based controllers. One
can confirm the good correspondence between the average
behavior of the experimental results and the simulations,
indicating the suitability of the simple models to guide the
proposed procedure for this application. The oscillations
observed in the experimental results are due to mechanical
vibrations in the coupling between the PMSM shaft and the
encoder, as well as due to the nonideal construction of the
machine, which produces torque oscillations.

0 5 10  15 20 25

Time(s)

0

20

40

60

80

100

120

w
m

(r
ad

/s
)

17 19 21 23 25
Time(s)

100

105

110

115

w
m

(r
ad

/s
)

w   pidtune

wm
*

m

w   PSOm

(a)

-8

-4

0

4

8

d
a
x
is

(A
)

0 5 10  15 20 25
Time(s)

-8

-4

0

4

8

q
a
x
is

(A
)

pidtune

ref

PSO

(b)

Fig. 5. Experimental results for reference tracking with the PI
controllers under speed reference variations: (a) speed control loop
responses (top) with detailed transients (bottom); (b) current control
loop responses in d-axis (top) and q-axis (bottom).

0 5  10 15 20 25

Time(s)

0

20

40

60

80

100

120

140

w
m

(r
ad

/s
)

17 19  21 23 25
Time(s)

90

100

110

120

130

w
m

(r
ad

/s
)

w   pidtune

wm
*

m

w   PSOm

(a)

-10

-5

0

5

10

15

d
a
x
is
(A

)

0 5 10 15 20 25
Time(s)

-10

-5

0

5

10

15

q a
x
is
(A

)

pidtune

ref

PSO

(b)

Fig. 6. Experimental results for reference tracking with the PI
controllers under load variations: (a) speed control loop responses
(top) with detailed transients (bottom); (b) current control loop
responses in d-axis (top) and q-axis (bottom).
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VI. COMPARATIVE ANALYSES

This section presents a comparison between the controllers
designed using the proposed procedure (called in this section,
for simplicity, only as PSO) and controllers obtained by three
other techniques.

For the three control loops, the comparisons are presented
in Table II, where the measures are the worst case values for
each design specification, obtained based on the responses for
the vertices of the plant polytopic model.

Firstly, the responses with the PSO-based controllers are
compared with the responses obtained by controllers designed
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