Asymmetrical ZVS-PWM Half-Bridge-Type Switched-Capacitor DC-DC Converter Isolated with peak voltage equal to Vin/2 switch

Angélica Paula Caús, Ivo Barbi

Instituto Brasileiro de Eletrônica de Potência e Energias Renováveis - IBEPE - UFSC, Florianópolis - SC, Brasil e-mail: caus.angelica@gmail.com, ivobarbi@gmail.com

Abstract – This paper presents a new power converter topology generated by the integration of the asymmetrical ZVS-PWM dc-dc converter with a switched-capacitor ladder-type commutation cell. **Circuit** operation and theoretical analysis with emphasis on the softcommutation process are included in the paper. The main advantage of the proposed converter with respect to the conventional asymmetrical half-bridge dc-dc converter is the reduction of the voltage stress across the power switches to the half of the input dc bus voltage, enabling the utilization of lower voltage rating components. Experiments conducted on a laboratory prototype with 1.4 kW power-rating, 800 V input voltage, 48 V output voltage and 100 kHz switching frequency are included to verify the theoretical analysis and the design methodology. The maximum efficiency of the experimental non-optimized prototype was 93.6%.

Keywords – Asymmetrical Dc-Dc Converter, Isolated, Pulse-Width Modulation, Switched-Capacitor, Zero Voltage Switching.

I. INTRODUCTION

In recent years, the increasing demand for power sources with high voltage and efficiency and low electromagnetic interference, together with light weight and reduced size, has led to the need for designers to develop new techniques or improve existing ones. Thus, dc-dc converters, which process high levels of power and energy, are currently one of the main subjects of focus in power electronics research. The asymmetrical half-bridge dc-dc converter, initially presented by P. Imbertson and N. Mohan [1] and studied in [2]-[10], presents high gain and high efficiency, soft switching in the power semiconductors, small number of components and is one of the most promising topologies in low-to-medium power applications. However, the voltage stresses on the switches are the same as the voltage in its power source, which hinders its implementation in applications that require high input voltages. For this reason, in applications where the input stage is as high as 750-1000 V, this converter is not always a suitable choice, since it would require the use of semiconductors with rated voltages of 1200 V.

Three-level isolated dc-dc converters [11]–[14] may solve this issue and are the most commonly used solutions for isolated dc-dc converter designs with these specifications. However, they use a larger number of components in the power stage, in addition to the need, in many applications, to control the voltages across the input capacitors, as this equalization does not occur spontaneously. This control requires the use of voltage sensors and additional circuitry, contributing to the increase in equipment cost and complexity. In addition, these topologies are not suitable for asymmetric operation, as this type of operation does not allow the equalization of the voltages in the capacitors. Even for symmetrical topologies, the distribution of voltages across the capacitors is sensitive to the modulation employed or to the imperfections of the gate signals of the switches.

The series asymmetrical half-bridge converter with voltage autobalance is proposed to reduce the power semiconductors voltage stress to half of the input voltage [15]. Besides reducing the voltage across the switches, the proposed solution provides ZVS transition and natural voltage equalization across the input dividing voltage capacitors without control.

As a solution for the issue of high-voltage input, it is also possible to use commutation cells in a switchedcapacitor, such as the ladder cell [16]. However, the switched capacitor converter does not allow control of the load voltage by adjustments of the duty cycle D and this is its main disadvantage in relation to conventional converters.

Isolated dc-dc converters combining switched capacitor circuits and conventional isolated dc-dc topologies were proposed, aiming to reduce power switches voltage ratings and allow operation with wide voltage conversion range. The integration of the switched capacitor ladder cell with LLC resonant converters has been proposed in recent papers [17], [18], with the purpose of reducing the voltage stress of the the power semiconductors preserving the other desirable characteristics of the LLC converter, which includes low switching losses and operation with high switching frequencies without sacrificing efficiency. The converter presented in [18] features ZVS on the input switches, zero current switching (ZCS) on the output diodes, a small variation in the static gain with load variation, and all the advantages of the ladder cell. However, in the two proposed topologies, the power transfer between the power source and the load is controlled by frequency modulation (FM).

With the aim of combining the features of the asymmetrical half-bridge converter and the ladder-type commutation cell, this paper presents the asymmetrical half-bridge switched capacitor converter, as an alternative solution to the issue of high-voltage input, which preserves all the attributes of the original asymmetrical half-bridge converter, such as the output current and soft commutation, with a natural reduction in voltage stress of the components of the power stage to half the voltage value of the power source. In the proposed converter, as will be shown below, the voltages across the

Manuscript received 08/23/2021; first revision 09/13/2021; accepted for publication 12/06/2021, by recommendation of Editor Marcelo Lobo Heldwein. http://dx.doi.org/10.18618/REP.2022.1.0031

input capacitors are naturally balanced, without the need of a control loop, as usually occurs in isolated dc-dc converters based on multi-level topologies. In addition, the control is performed by conventional PWM modulation, with constant frequency, which in many applications has advantages over the FM modulation of resonant converters.

II. PROPOSED CONVERTER

The power stage of the proposed converter shown in Figure 1.a is comprised of four power semiconductors S_1 , S_2 , S_3 and S_4 , two fixed capacitors C_1 and C_2 , a floating capacitor C_S , a high frequency transformer T_1 , an output rectifier stage made up of diodes D_1 , D_2 , D_3 and D_4 , and an output filter comprised of L_0 and C_0 . The load is represented by the resistance R_0 . The inductances L_m and L_c represent, respectively, the magnetizing inductance of the transformer and the commutation inductance, usually formed by the leakage inductance of the transformer in addition to an external inductance.

Fig. 1. (a) DC-DC hybrid half-bridge converter. (b) Gate signals.

The capacitor C_d is used to block the dc component of the voltage V_{ab} , generated due to the asymmetry of the converter, as occurs in the conventional asymmetrical half bridge converter. Figure 1.b shows the gate signals of the ideal switches, without the dead time, which will be included later in Section 5, where the commutation analysis of the converter switches is made. The proposed converter operates with asymmetrical pulse-width modulation (PWM). The switches S_1 and S_3 are set to conduct during the time interval $(0 - DT_S)$ and S_2 and S_4 are set to conduct during the complementary time interval $(DT_S - T_S)$.

The voltages across the capacitors C_1 , C_2 and C_s and the switches S_1 , S_2 , S_3 and S_4 are equal to half the voltage of the input source designated by V_{in} , this being the additional characteristic of this converter in relation to the conventional asymmetrical half-bridge converter.

III. OPERATION PRINCIPLES OF THE PROPOSED CONVERTER

In order to simplify the description of the operation and the analysis of the proposed converter in the steady-state regime, the following simplifying hypotheses are adopted: 1) all power semiconductors, inductors and capacitors are considered ideal; 2) the voltages across the capacitors are considered constant during a period of operation; 3) the inductance of the output filter is considered sufficiently high so that its current can be considered constant during a period of operation; 4) a single resistance, associated in series with the floating capacitor, represents all the conduction losses of the power semiconductors; 5) the dead time between switching signals is disregarded.

During a period of operation, the ideal converter has six operation stages which are described as follows. The topological stages are shown in Figure 2.

A. First Stage Of Operation (t₂-t₃)

The first stage of operation, which is shown in Figure 2.a, starts at the moment when the current in the inductance L_c reaches a value equal to the output current reflected to the primary side of the transformer (I'_o) , thus enabling the switches S_1 and S_3 to conduct. In this operation stage, the voltage source V_{in} supplies energy to the converter and the load.

B. Second Stage Of Operation (t₃-t₄)

The second stage of operation, which is shown in Figure 2.b, starts at the moment when S_1 and S_3 are gated off. The current in the commutation inductance (i_{Lc}) does not reverse its direction instantly. Thus, the current is conducted through the intrinsic diodes of the switches S_2 and S_4 . All diodes of the output rectifier start to conduct and the voltage at its terminals becomes zero.

C. Third Stage Of Operation (t₄-t₅)

The third stage of operation, which is shown in Figure 2.c, starts at the moment when i_{Lc} reaches a null value, reversing its direction. Thus, i_{Lc} is conducted through the channels of S_2 and S_4 . All diodes of the output rectifier continue to conduct.

D. Fourth Stage Of Operation (t₅-t₆)

The fourth stage of operation, which is shown in Figure 2.d, starts at the moment when i_{Lc} reaches a value equal to $-I'_o$. In this time interval, the capacitor C_d supplies energy for the load. C_2 and C_S are connected in parallel, allowing the discharge of C_S . This stage is concluded at the moment when the switches S_2 and S_4 are gated off and S_1 and S_3 are gated on.

E. Fifth Stage Of Operation (t_0-t_1)

The fifth stage of operation, which is shown in Figure 2.e, starts at the moment when the switches S_2 and S_4 are gated off. As occurs in the second stage of operation, the current in the commutation inductance is not reversed instantly. Thus, all diodes of the output rectifier start to conduct and the converter does not provide energy transfer for the load.

F. Sixth Stage Of Operation (t_1-t_2)

The sixth stage of operation, which is shown in Figure 2.f, starts at the moment when i_{Lc} reaches a null value, therefore reversing its direction and enabling the current, which up to this point is conducted by the intrinsic diodes of the switches S_1 and S_3 , to flow through the channel of the MOSFETs. However, the load voltage remains equal to zero since i_{Lc} is lower than the absolute value of $-I'_o$.

IV. THEORETICAL ANALYSIS OF THE PROPOSED CONVERTER

The average value of the load voltage V_o can be determined by analyzing the waveform of the voltage at the terminals of

Fig. 2. Topological stages for the proposed converter: (a) First stage $(t_2 - t_3)$. (b) Second stage $(t_3 - t_4)$. (c) Third stage $(t_4 - t_5)$. (d) Fourth stage $(t_5 - t_0)$. (e) Fifth stage $(t_0 - t_1)$. (f) Sixth stage of operation $(t_1 - t_2)$.

the output rectifier v_{ret} . Its waveform is represented in Figure 3.

On analyzing the topological stages presented in Figure 2, the equations which define the voltages in the primary side of the transformer are determined. These are presented for the first and fourth stages of operation by expressions (1) and (2), respectively. For the other operating stages the voltage is null, as described in the previous section.

$$v_{ret}(t_1, t_2) = (1 - D) \cdot \frac{V_{in}}{2}$$
 (1)

$$v_{ret}(t_3, t_4) = D \cdot \frac{V_{in}}{2} \,. \tag{2}$$

In Figure 3 it can be noted that, for the time intervals represented by t_a and t_b , v_{ret} is null, which leads to a reduction in the static gain of the converter. Thus, in order to determine the static gain of the converter it is necessary to determine the time intervals and t_b .

On analyzing the waveforms of the voltage and the current

on the commutation inductance (v_{Lc} and i_{Lc}), in Figure 3, it can be observed that there is a voltage across L_c only during the time intervals represented by t_a and t_b . Thus, the duration of these time intervals can be defined through determining v_{Lc} .

Based on the analysis of the stages of operation, the values for v_{Lc} during the time intervals represented by t_a and t_b are defined by(3) and (4), respectively.

$$v_{Lc,ta} = (1-D) \cdot \frac{V_{in}}{2} \tag{3}$$

$$v_{Lc,ta} = D \cdot \frac{V_{in}}{2} \,. \tag{4}$$

As previously defined, at the moment that i_{Lc} reaches the output current value reflected to the primary side of the transformer, the converter once again supplies energy to the load. Thus, the current in L_c at the moment when the third

Fig. 3. Typical waveforms of the proposed converter.

stage of operation is concluded is equal to $-I'_o$. Then:

$$t_a = \frac{4 \cdot L_c \cdot I'_o}{(1-D) \cdot V_{in}} \tag{5}$$

$$t_b = \frac{4 \cdot L_c \cdot I'_o}{D \cdot V_{in}}.$$
 (6)

Having defined the values for t_a and t_b , the average value for the output voltage is obtained through the following equation

$$V_o = \frac{1}{T_S} \left[\int_{t_a}^{D \cdot T_S} (1 - D) \cdot \frac{V_{in}}{2n} + \int_{D \cdot T_S + t_b}^{T_S} D \cdot \frac{V_{in}}{2n} \right].$$
(7)

Evaluating (8), the static gain is defined by

$$q = \frac{V_{in}}{V_o} = \frac{D \cdot (1 - D)}{n} - \frac{4 \cdot f_S \cdot L_c \cdot I'_o}{n \cdot V_{in}}$$
(8)

where *n* is the transformer turns ratio.

Figure 5 shows the converter static gain for different values of D as function of the normalized load current reflected to the transformer primary side, given by

$$\bar{I'}_o = \frac{4 \cdot f_S \cdot L_c \cdot {I'}_o}{V_{in}}.$$
(9)

To determine the current stresses in the capacitors of the switched-capacitor stage, the non-idealities of the transformer are neglected. Thus, it is considered that the current through commutation inductance is instantly reversed and the proposed converter operates in only two stages.

Fig. 4. Static gain of the proposed converter as a function of $\bar{I'}_o$ for different values of the duty cycle *D*.

To simplify the analysis of the switched capacitor stage formed by $S_1 - S_4$, C_1 , C_2 , C_5 , R_5 , and V_{in} , a current source with a current equal to I'_{a} is connected at the terminals *ab*.

During the first stage of operation, shown in Figure 5, the instantaneous currents in the capacitors C_1 , C_2 and C_S are given by (10), (11) and (12), respectively. The current in the capacitors are defined as shown in [19].

Fig. 5. (a) Simplified representation of the converter. (b) Equivalent circuit for the first stage of operation. (c) Equivalent circuit for the second stage of operation.

$$i_{C1} = \frac{D \cdot i_{Lc,p}}{12 \cdot f_S \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{D}{f_S \cdot \tau}}\right)} e^{-\frac{t}{\tau}} + \frac{i_{Lc,p}}{3}$$
(10)

$$i_{C2} = -\frac{D \cdot i_{Lc,p}}{12 \cdot f_S \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{D}{f_S \cdot \tau}}\right)} e^{-\frac{t}{\tau}} - \frac{i_{Lc,p}}{3} \qquad (11)$$

$$i_{Cs} = \frac{D \cdot i_{Lc,p}}{6 \cdot f_S \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{D}{f_S \cdot \tau}}\right)} e^{-\frac{t}{\tau}} + \frac{i_{Lc,p}}{3}.$$
 (12)

During the second stage of operation, the above mentioned currents are given by (13), (14) and (15), respectively.

$$\dot{a}_{C1} = -\frac{D \cdot \dot{a}_{Lc,n}}{4 \cdot f_S \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{(1-D)}{f_S \cdot \tau}}\right)} e^{-\frac{t}{\tau}}$$
(13)

$$i_{C2} = \frac{D \cdot I'_o}{4 \cdot f_S \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{(1-D)}{f_S \cdot \tau}}\right)} e^{-\frac{t}{\tau}}$$
(14)

$$i_{Cs} = -\frac{D \cdot I'_o}{2 \cdot f_S \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{(1-D)}{f_S \cdot \tau}}\right)} e^{-\frac{t}{\tau}}.$$
 (15)

Assuming $C_1 = C_2 = C_S = C$. Thus, the time constant τ is given by

$$\tau = \frac{4 \cdot C_S \cdot R_{dson}}{3}.$$
 (16)

The resistance R_S is equal to twice the R_{dson} resistance of one of the switches, defined in the manufacturer's data sheet, for the junction temperature provided in the dimensioning of the converter's power stage.

Using (10)-(15) the effective values of the normalized currents in C_1 , C_2 and C_S are found and represented Figure 6 as a function of the product $f_S \tau$, for D = 0.45.

Fig. 6. Graphic representation of effective values of the currents in C_1 , C_2 and C_S , normalized in relation to I'_o as a function of $f_S \tau$, for D = 0.45.

On analyzing the curves shown in Figure 6, it can be noted that the effective value of the current in C_s is higher than those in C_1 and C_2 , regardless of the value of $f_S\tau$. It can also be observed that for values of $f_S\tau$ higher than 0.2, the effective values for the currents in the capacitators practically remain constant and close to their minimum values. However, for values of below 0.2, the effective values of the currents increase exponentially, contributing to the elevation of the conduction loss.

Inspection of the curves shown in Figure 6, reveals that the currents become independent of the frequency when $f_S \tau \ge 0.2$. Adopting $f_S \tau = 0.4$, C_s is defined as presented in (17).

$$C_S > \frac{3}{10 \cdot R_{dson} \cdot f_s} \,. \tag{17}$$

It is important that the capacitance value of the capacitor C_S meets the voltage ripple specification of the project. Thus,

$$C_{S} \geq \frac{2D \cdot \left(\frac{D \cdot i_{Lc,p}}{6 \cdot f_{S} \cdot \tau} \cdot \frac{1}{\left(1 - e^{-\frac{D}{f_{S} \cdot \tau}}\right)} e^{-\frac{t}{\tau}} + \frac{i_{Lc,p}}{3}\right)}{V_{in} \cdot f_{s} \cdot \Delta_{Vc}} \,. \tag{18}$$

Knowing the values of the currents in the capacitors for each stage of operation, the average and effective values of the currents in the switches can be obtained by means of the integral of the current waveform area in the switches shown in Figure 3.

V. COMMUTATION ANALYSIS

The commutation of the power semiconductors in the Asymmetrical ZVS-PWM Half-Bridge-Type Switched-Capacitor DC-DC Converter is similar to that of the conventional half-bridge converter. The current that provides energy for charging and discharging the commutation capacitors and ensuring soft switching is formed by the sum of the current in the commutation inductance i_{Lc} with the current in the magnetizing inductance of the transformer i_{Lm} . If the magnetization inductance is low, the magnetization current has large ripple and peak value, significantly influencing the commutation process. Therefore, it should be included in the switching analysis. Since the amplitude of current in L_m is not sufficient to provide the complete charging and discharging of the commutation capacitors and ensure soft is, an external inductor switching included and associated in series with the leakage inductance to store the sufficient amount of energy to accomplish the soft switching.

Due to the asymmetry of the converter, the currents in inductor L_c at the instant S_2 and S_4 are turned off are different from the instant S_1 and S_3 are turned off. These currents are given by (19) and (20), respectively.

$$i_{Lc(2,4)} = I'_{o} + I'_{o} \cdot (1 - 2D) \cdot \left[1 - \frac{4 \cdot f_{s} \cdot L_{c} \cdot I'_{o}}{D \cdot (1 - D) \cdot V_{in}}\right] - \frac{D \cdot (1 - D) \cdot n \cdot V_{in}}{4 \cdot L_{m} \cdot f_{s}}$$
(19)

$$i_{Lc(1,3)} = I'_{o} + I'_{o} \cdot (1 - 2D) \cdot \left[1 - \frac{4 \cdot f_{s} \cdot L_{c} \cdot I'_{o}}{D \cdot (1 - D) \cdot V_{in}} \right] + \frac{D \cdot (1 - D) \cdot n \cdot V_{in}}{4 \cdot L_{m} \cdot f_{s}}.$$
(20)

The ZVS range depends on the energy stored in the inductor L_c at the instant of the commutation, to charge and discharge the commutation capacitors associated in parallel with the switches. Thus, the ZVS is not achieved if the necessary energy is not stored in L_c before the beginning of the commutation. Consequently, the limit load range with ZVS is imposed by the smallest current in L_c , that occurs at the instant the switches S_2 and S_4 are turned off.

Due to similarity in the analysis of the two commutations, in this study only the analysis for the commutation of switches S_2 and S_4 is described, since it is the more critical of the two. Before the start of the commutation, the current i_{Lc} circulates through switches S_2 and S_4 and the corresponding topological stage is given in Figure 7, where $V_{Cs2} = V_{Cs4} = 0$ and $V_{Cs1} = V_{Cs3} = V_{in}/2$.

A. Linear Stage $(t_0 - t_{0a})$

At time $t = t_0$ the semiconductors S_2 and S_4 are gated off and the linear stage of commutation begins. The capacitors C_{S2} and C_{S4} charge while C_{S1} and C_{S3} discharge with constant current and the respective voltages evolve linearly. This stage ends at time $t = t_{0a}$ when the voltage V_{CS4} becomes equal to V_{Cd} , that is the voltage across the capacitor C_d . This commutation stage is represented in Figure 7.b.

Fig. 7. Topological stages during commutation. (a) Before S_2 and S_4 turn off $(t_0 - t_6)$. (b) Linear stage $(t_0 - t_{0a})$. (c) Resonant stage $(t_{0a} - t_{0b})$. (d) End of commutation $(t_{0b} - t_{0c})$.

B. Resonant Stage $(t_{0a} - t_{0b})$

At time $t = t_{0a}$ the resonant stage of commutation starts, represented by the topological stage shown in Figure 7.c. During this time interval the voltage across the inductance L_m is null and there is some resonance between the inductance L_c and the commutation capacitance. This stage of commutation ends when $V_{CS2} = V_{CS4} = V_{in}/2$ and $V_{CS1} = V_{CS3} = 0$.

After time $t = t_{0b}$ the diodes arranged in antiparallel with S_1 and S_3 start to conduct the current i_{Lc} . The corresponding topological stage is shown in Figure 7.d.

In the time $t = t_{0c}$ the semiconductors are enabled to conduct before the current i_{Lc} is reversed, so that ZVS is achieved. The dead time t_{d2} must be longer than the commutation time t_{c2} . In Figure 8 the main waveforms for turn off of S_2 and S_4 are shown.

Fig. 8. Typical waveforms for the commutation initiated at time $t = t_6$.

C. Duration Of Commutation

As follows from Figure 8, the current i_{Lc} is divided equally between the commutation capacitors, during the dead time interval. Therefore, the time duration of the linear charging and discharging of the capacitors is given by

$$t_{l2} = 2 \cdot Cc \cdot \frac{(1-D) \cdot V_{in}}{I_{Lc}}.$$
(21)

The duration of the resonant time interval is determined through the analysis of the state plane shown in Figure 9. To define it, it is necessary to know the equations that describe the voltage and current in the switching capacitors, which are obtained through the analysis of the equivalent circuits shown in shown in Figure 8.

Fig. 9. State plane trajectory for the resonant stage of soft commutation.

The duration of the resonant transition is defined by multiplying the angle θ_2 by the inverse of the angular resonance frequency ω . Thus:

$$t_{r2} = \frac{1}{\omega} \cdot \left[\frac{\pi}{2} - \cos^{-1} \left(\frac{D \cdot V_{in}}{2\sqrt{\left(\frac{D \cdot V_{in}}{2}\right)^2 + \left(Z \cdot \frac{I_{Lc}}{4}\right)^2}} \right) \right], \quad (22)$$

where,

$$Z = \sqrt{\frac{L_c}{4Cc}} \tag{23}$$

and

$$\omega = \frac{1}{\sqrt{\frac{L_c \cdot Cc}{2}}}.$$
(24)

The duration of the commutation is the sum of the time intervals t_{l2} and t_{r2} and is given by

$$t_{C2} = t_{l2} + t_{r2}. \tag{25}$$

As previously mentioned, the dead time t_{d2} must be longer than the time t_{c2} . Thus,

$$t_{d2} > t_{C2}.$$
 (26)

VI. EXPERIMENTAL RESULTS

In order to validate the theoretical analysis of the proposed topology, an experimental prototype was designed and built, as shown in Figure 10, and its specifications are given in Table I.

Fig. 10. Experimental prototype of the ZVS-PWM-SC asymmetrical half- bridge dc-dc converter.

TABLE I Converter Specifications

Specifications	Symbol	Value
Output power	P_o	1.4 kW
Input voltage	Vin	800 V
Output voltage	V_o	48 V
Switching frequency	f_S	100 kHz

The gate signals of the switches, with a dead time of 300 ns between them, generated by a DPS TMS320F28069, are shown in Figure 11.

Fig. 11. (a) Gate signals of S_1 and S_2 . (b) Gate signals of S_3 and S_4 .

In the experimental prototype a voltage clamping circuit was included, comprised of a fast diode (D_g) , a resistor (R_g) and a capacitor (C_g) , as shown in Figure 12. This clamping circuit is employed to limit the peaks in the voltages across the diodes D_1 , D_2 , D_3 and D_4 of the output rectifier, caused by the reverse recovery currents during the commutations.

The voltage clamping circuit allows part of the energy stored in the commutation inductor L_c to be transferred to the output filter capacitor C_O , which contributes to increasing the efficiency of the converter.

Fig. 12. Voltage clamping circuit to limit the voltage across diodes D_1 , D_2 , D_3 and D_4 , included in the experimental prototype.

The components employed in the clamping circuit, along with the other components used in the prototype, are given in Table II. The semiconductor used was a (SiC) MOSFET, with a rated drain-source voltage of 650 V.

 TABLE II

 Parameters Of Experimental Prototype

Component	Value
Input capacitor $(C_1 - C_2)$	25 µF
Floating capacitor (C_S)	25 µF
DC blocking capacitor (C_d)	4.7 μF
Output capacitor (C_O)	1000 µF
Clamp capacitor (C_g)	4.5 μF
Total commutation inductance (L_c)	9.62 μH
Output inductor (L_O)	25.2 μΗ
Clamp resistor (R_g)	2.2 kΩ
Diode clamp (D_g)	MUR4100
Secondary side diodes $(D_1 - D_4)$	MBR40250TG
Main switches $(S_1 - S_4)$	SCT3120AL / 650 V
R_{dson} for $T_j [100^\circ C] e V_{GS} = 18 V$	150 mΩ
$f_S \tau$	0.4
Transformer turns ratio (<i>n</i>)	2.25
Magnetizing inductance (L_m)	183 µH
Leakage inductance (L_k)	1.62 μH
Dead time (t_d)	30 ns

Figure 13 shows the experimental waveforms of the currents in the primary and secondary windings of the high frequency transformer of the converter, operating with a power of 1.4 kW and rated input and output voltages.

Fig. 13. Current waveforms in the transformer primary and secondary windings.

Figure 14 shows the experimental waveforms of voltages across the switches S_1 , S_2 , S_3 and S_4 . It can be observed that the voltages across them are equal to 400 V, that is, half the value of the input voltage, which is 800 V. The main attribute of this converter in relation to the conventional asymmetrical half-bridge converter, which is the reduction in the voltage stresses on the components of the power stage, is then verified

experimentally. It is also verified that the equalization of the voltages across the capacitors occurs naturally, without any action of control. However, there is a difference of about 3.7% between the voltage across the switches S_1 and S_2 and about 1% between the voltage across the switches S_3 and S_4 , which are attributed to the non-idealities of the power semiconductors.

Fig. 14. (a) Voltages across semiconductors S_1 and S_2 . (b) Voltages across semiconductors S_3 and S_4 .

The switching capacitance and inductance are designed for the converter to operate with ZVS for the power range between 25% and 100% of the rated output power. The inductance value is defined according to two criteria: 1) the maximum loss of the duty cycle, defined by the second term of (8), where I'_o it is replaced by the value of the output current considering that the converter operates with 25% of its load nominal; 2) energy flow between the capacitor and the inductor: the energy stored in the inductor must be sufficient to discharge the switching capacitors during the dead time.

Figure 15 shows the gate signals and the voltages across the switches S_1 and S_2 during turning off for the converter operating at 80% of the rated power. It can be observed that both switches turn off with ZVS. The gate signals and the voltages across the switches S_3 and S_4 presented in Figure 16 show that both switches also turn off with ZVS.

These waveforms show that in the proposed converter, as in the conventional asymmetrical half-bridge converter, the switches operate with soft switching. The minimum value for the processed power with soft switching is dependent on the

Fig. 15. Gate signals and voltage stress of semiconductors S_1 and S_2 .

Fig. 16. Gate signals and voltage stress of semiconductors S_3 and S_4 .

parameters of the converter design, as is the case for all other PWM converters with soft commutation.

Figure 17 present the waveforms of the voltage on the bus capacitors, a small difference between the voltage values on the capacitors is observed, this occurs due to the internal resistance of the capacitors and the trails resistense present on the PCB. However, this 8 V variation (2%) is not large enough to interfere with the voltage equalization between the capacitors.

Fig. 17. Efficiency of the experimental prototype of the proposed converter.

The efficiency of the experimental prototype, for different power values, was measured with the aid of a Tektronix power analyzer (PA3000), and the resulting curve is shown in Figure 18. The maximum efficiency obtained is equal to 93.6% for a power load of 1 kW. The aim of building the prototype was to demonstrate its functioning and validate the theoretical analysis and it was not optimized to reduce losses.

The theoretical distribution of the losses, defined through the equation of losses of each component that delivers the prototype is shown in Figure 19, where it is noted that half of these losses occur in the diodes of the output rectifier stage. Therefore, the replacement of the full bridge rectifier with four diodes, by a midpoint rectifier with two diodes, should contribute to reduce losses and increase efficiency. It is also observed that these losses can be reduced with the use of a

Fig. 18. Efficiency of the experimental prototype of the proposed converter.

better material in the design and construction of the magnetic devices.

Fig. 19. Theoretical distribution of losses in the converter power stage.

VII. CONCLUSIONS

A new isolated dc-dc converter topology, generated by the integration of the asymmetrical half-bridge dc-dc converter and the switched-capacitor ladder cell, for high input voltage operation with soft switching has been proposed. The advantage of the proposed converter with respect to the conventional asymmetrical half-bridge dc-dc converter is the reduction of the voltage stress across the power switches to the half of the input dc bus voltage, enabling the utilization of lower voltage rating power semiconductors. Moreover, in contrast to the isolated three-level dc-dc converters, there is a natural balance of the voltages across the input voltage dividing capacitors, without the need for An experimental prototype has been designed, control. constructed and tested in the laboratory to verify the converter operation principle and the theoretical analysis results. The authors believe that the proposed converter, like the series asymmetrical half-bridge converter with voltage autobalance for high input-voltage introduced in [15], can be a competitive candidate for low-to-medium power and high input voltage applications.

ACKNOWLEDGEMENTS

Angélica Paula Caús and Ivo Barbi acknowledge ANEEL and ENGIE Brasil Energia for financial support under project PE-00403-0042/2017 entitled "Um investimento = múltiplas funções: Desenvolvimento e avaliação técnica, regulatória e econômica de sistemas de armazenamento de energia aplicados a sistemas de geração centralizada e distribuída".

REFERENCES

- [1] P. Imbertson, N. Mohan, "Asymmetrical duty cycle permits zero switching loss in PWM circuits with no conduction loss penalty", *IEEE Transactions on Industry Applications*, vol. 29, no. 1, pp. 121–125, January/February 1993, doi:10.1109/28.195897.
- [2] J.-I. Baek, J. Choi, Y. Jeong, Y. Jang, G.-W. Moon, C.-H. Yu, "Asymmetrical half-bridge converter with reduced DC-offset current in transformer", *in IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)*, pp. 2249–2253, May 2016, doi:10.1109/IPEMC.2016.7512648.
- [3] L. Kun, F. Caiyun, H. Kun, X. Kepeng, Q. Wenlong, W. Shuaiqing, "Research on ZVS Half-Bridge DC/DC Transformer", in International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 134– 138, November 2017, doi:10.1109/ICSGEA.2017.31.
- [4] M. Tissières, I. Askarian, M. Pahlevani, A. Rotzetta, A. Knight, I. Preda, "A digital robust control scheme for dual Half-Bridge DC-DC converters", *in IEEE Applied Power Electronics Conference and Exposition (APEC)*, pp. 311–315, April 2018, doi: 10.1109/APEC.2018.8341028.
- [5] H. Wen, Y. Zhang, D. Jiao, J.-S. Lai, "A New Method of Switching Loss Evaluation for GaN HEMTs in Half-Bridge Configuration", in IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 647–651, June 2020, doi: 10.1109/APEC39645.2020.9124190.
- [6] S.-K. Han, G.-W. Moon, M.-J. Youn, "A high efficiency ZVS PWM asymmetrical half bridge converter for plasma display panel sustaining power module", in IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004.
- [7] B. Kohlhepp, M. Barwig, T. Duerbaum, "Influence of the Rectifier's Output Capacitance on the ZVS Transition in Asymmetrical Half-Bridge PWM Converters", in 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 -ECCE Asia), pp. 1107–1114, August 2019, doi: 10.23919/ICPE2019-ECCEAsia42246.2019.8796886.
- [8] S.-H. Choi, J.-K. Han, M.-S. Lee, S.-H. Ha, G.-W. Moon, "A New APWM Half-Bridge Converter with Enhanced Zero-Voltage-Switching Range in Wide Input Voltage Range", in 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), pp. 1933–1938, August 2019, doi:10.23919/ICPE2019-ECCEAsia42246.2019.8796849.
- [9] J.-K. Han, J.-W. Kim, B.-H. Lee, J.-S. Lai, G.-W. Moon, "High-Efficiency Asymmetrical Half-Bridge Converter With a New Coupled Inductor Rectifier (CIR)", *IEEE Transactions on Power Electronics*,

vol. 34, no. 12, pp. 11541–11552, March 2019, doi: 10.1109/TPEL.2019.2906722.

- [10] J.-K. Han, J.-W. Kim, S.-H. Choi, J.-S. Lai, G.-W. Moon, "Asymmetrical Half-Bridge Converter With Zero DC-offset Current in Transformer Using New Rectifier Structure", *in International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)*, pp. 4049–4053, October 2018, doi: 10.23919/IPEC.2018.8507457.
- [11] J. Pinheiro, I. Barbi, "The three-level ZVS-PWM DC-to-DC converter", *IEEE Transactions on Power Electronics*, October 1993.
- [12] V. Dargahi, K. A. Corzine, A. K. Sadigh, "A New Three-Level Active Neutral-Point-Clamped (A-NPC) Multilevel Converter Topology", in IECON - 45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 3499–3504, December 2019, doi: 10.1109/IECON.2019.8927513.
- [13] A. Ganjavi, H. Ghoreishy, A. A. Ahmad, "A Novel Single-Input Dual-Output Three-Level DC–DC Converter", *IEEE Transactions on Industrial Electronics*, vol. 65, no. 10, pp. 8101–8111, February 2018, doi:10.1109/TIE.2018.2807384.
- [14] D. H. Do, A. Anuchin, "An Improved SVPWM Strategy for Three-Level Neutral Point Clamped Converter Capacitor Voltage Balancing", in 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), pp. 1–6, April 2020, doi: 10.1109/IWED48848.2020.9069550.
- [15] W. Li, Y. He, X. He, Y. Sun, F. Wang, L. Ma, "Series Asymmetrical Half-Bridge Converters With Voltage Autobalance for High Input-Voltage Applications", *IEEE Transactions on Power Electronics*, vol. 28, no. 8, pp. 3665–3674, November 2013, doi: 10.1109/TPEL.2012.2227807.
- [16] H. Setiadi, H. Fujita, "Reduction of Switching Power Losses for ZVS Operation in Switched-Capacitor-Based Resonant Converters", *IEEE Transactions on Power Electronics*, vol. 36, no. 1, pp. 1104–1115, June 2021, doi:10.1109/TPEL.2020.3001956.
- [17] M. Schramm Dall'Asta, I. Barbi, T. B. Lazzarin, "AC-AC Hybrid Boost Switched-Capacitor

Converter", *IEEE Transactions on Power Electronics*, vol. 35, no. 12, pp. 13115–13125, May 2020, doi:10.1109/TPEL.2020.2992490.

- [18] G. M. Leandro, I. Barbi, "Switched-Capacitor LLC Resonant DC-DC Converter With Switch Peak Voltage of Vin/2", *IEEE Access*, vol. 8, pp. 111504–111513, June 2020, doi:10.1109/ACCESS.2020.3001834.
- [19] W. Li, Q. Luo, Y. Mei, S. Zong, X. He, C. Xia, "Flying-Capacitor-Based Hybrid LLC Converters With Input Voltage Autobalance Ability for High Voltage Applications", *IEEE Transactions on Power Electronics*, vol. 31, no. 3, pp. 1908–1920, May 2016, doi:10.1109/TPEL.2015.2434839.

BIOGRAPHIES

Angélica Paula Caús was born in Rondinha, Brazil, She received the B.S. degree in electrical engineering from the University of Passo Fundo (UPF), Passo Fundo, Brazil, in 2018, and the M.S. degree in electrical engineering from the Federal University of Santa Catarina (UFSC), Florianópolis, Brazil, in 2020. She is currently a PhD student in Electrical Engineering at UFSC, in the Power Electronics and Electrical Drives area.

Ivo Barbi (Life Fellow, IEEE) was born in Gaspar, Brazil. He received the B.S. and M.S. degrees in electrical engineering from the Federal University of Santa Catarina (UFSC), Florianópolis, Brazil, in 1973 and 1976, respectively, degree in electrical engineering from and the Dr.Ing. the Institut National Polytechnique de Toulouse (INPT), Toulouse, France, in 1979. He founded the Brazilian Power Electronics Society (SOBRAEP), the Brazilian Power Electronics Conference (COBEP), in 1990, and the Brazilian Power Electronics and Renewable Energy Institute (IBEPE), He is currently a Researcher with the Solar in 2016. Energy Research Center and a Professor Emeritus in electrical engineering with UFSC. Prof. Barbi received the 2020 IEEE William E. Newell Power Electronics Award. He serves as an Associate Editor for the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS and the IEEE TRANSACTIONS ON POWER ELECTRONICS for several years.