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Abstract - The wind energy generation is the huge
driver behind the push for supergrids and cross-border
infrastructure for renewable energy systems. To improve
the energy system and reduce deployment costs, the
wireless communications can arise as a powerful tool
in this new scenario. However, the wireless technology
for transmitting control information to wind generator
requires special attention to avoid any damage to
the generator and to the energetic plant caused by
transmission errors. In this context, this work proposes
a wireless coded power control system for variable speed
wind doubly-fed induction generators. The proposed
controller is based on the adaptive neuro-fuzzy inference
system and it uses the vector control technique to
independently control the active and reactive power. The
wireless communication system employs QPSK digital
modulation and LDPC coding scheme to reduce the
transmission errors and the overall system latency. In
addition, it is presented its feasibility analysis and
impact to the overall system by investigating the control
performance in operational conditions at AWGN and flat
fading propagation channels.

Keywords – DFIG, Wind energy, Smart grid, Neuro-
fuzzy control, Wireless communication, LDPC

I. INTRODUCTION

A modern power generation controlling in smart grid
requires a complex telecommunications system infrastructure
to a fully efficient operation [1]. The smart grids are an
evolution of the energy grid and are based on a more efficient
employment of the infrastructure for generation, transmission,
and distribution, in order to manage the relationship between
power supply and demand in the electrical system to
avoid contingencies [2]. For a optimized operation, the
fully complete smart energy system needs a set with a
strong interaction formed by communication networks, data
management, and monitoring applications in real time [3].

Wireless technologies utilization for transmitting power
control signals may cause apprehension, due to errors
generated in the recovered control signal which can cause
serious problems to the generators, and consequentially, to
the energy system. Such behavior is different from what
usually happens in telecommunications systems designed to
conversation and data transmission, where small errors can
be detected, initiate requests for retransmission (generating

Artigo submetido em 19/12/2011. Revisado em 17/08/2013. Aceito para
publicação em 17/08/2013 por recomendação do editor João Onofre Pereira
Pinto.

delays) or even in some cases be ignored without any
significant impact to the network.

Comparing and looking through a modern renewable energy
system, the wind energy is the huge driver [4] and the Doubly-
Fed Induction Generator (DFIG) is widely used with this
purpose [5]. Wind energy systems using a DFIG have some
advantages due to variable speed operation and four quadrant
active and reactive power capabilities compared with fixed
speed squirrel cage induction generators [6–8].

In this context, this paper proposes a wireless neuro-fuzzy
power control system, to improve robustness and reliability,
for a variable speed wind DFIG employing LowDensity Parity
Check (LDPC) coding [9] in smart grid applications.

The paper is organized as follows. DFIG neuro-fuzzy
power control is shown in section II; the wireless coded
communication is presented in section III; main results are
considered in section IV; and section V concludes the work.

II. DFIG NEURO-FUZZY POWER CONTROL

A. Machine model and rotor current vector control
The doubly-fed induction generator model in synchronous
reference frame is given by [10]:

(1)

(2)

and the relationships between fluxes and currents are:

(3)

(4)

so, the active and reactive powers are given by:

(5)

(6)

The subscripts and represent the stator and rotor
parameters, respectively; represents the synchronous
speed, represents machine speed, represents winding
per phase electrical resistance, and represent the proper
and the mutual inductances of windings, represents voltage
vector, represents current vector, represents flux vector and

represents the machine number of pair of poles.
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The DFIG power control aims independent stator active
and reactive power control by means of a rotor current
regulation. For this purpose, and are represented as
functions of each individual rotor current. Using stator flux
orientation, that decouples the dq axis, it has that

, thus, the equation (3) becomes:

(7)

(8)

Where is direct axis component and is quadrature axis
component of the current vector in axis.

Similarly, using stator flux oriented, the stator voltage
becomes and . Hence, the active
(5) and reactive (6) power can be calculated by using equations
(7) and (8):

(9)

(10)

Thus, rotor currents will reflect on stator current and on
stator active and reactive powers, respectively. Consequently,
this principle can be used on stator active and reactive power
control of the DFIG.

B. Neuro-Fuzzy System
The Adaptive Neuro-Fuzzy Inference System (ANFIS),

shown in Figure 1, is a network structure whose overall input-
output behavior is determined by the values of a collection of
modifiable parameters. More specifically, the configuration of
an adaptive network is composed of a set of nodes connected
through directed links, where each node is a process unit
that performs a static node function on its incoming signals
to generate a single node output and each link specifies the
direction of signal flow from one node to another.

Usually, a node function is a parameterized function with
modifiable parameters. By changing these parameters, we are
actually changing the node function, as well as the overall
behavior of the adaptive network [11].

Fig. 1. ANFIS structure.

The parameters of an adaptive network are distributed into
the network nodes, so each node has a local parameter set.

The union of these local parameter sets is the network overall
parameter set. If a node parameter set is nonempty, then its
node function depends on the parameter values; we use a
square to represent this kind of adaptive node. On the other
hand, if a node has an empty parameter set, then its function is
fixed; we use a circle to denote this type of fixed node [11].

The ANFIS network uses two sets of parameters and .
The first one represents the fuzzy partitions used in the rules
and the second one represents the coefficients of the linear
functions in the rules.

(11)

(12)

The ANFIS uses a two-pass learning cycle, in the forward
pass: S1 is fixed and S2 is computed using a Least Squares
(LS) algorithm (Off-line Learning), and in the backward pass:
S2 is fixed and S1 is computed using a Gradient Descent (GD)
algorithm (usually Back-propagation [12]).

C. Design of ANFIS Controllers

The ANFIS controller [11, 13] was designed with the input
and output data set collected from the DFIG operating at
different conditions with the deadbeat controller [14].

In the Figure 2, it is shown graphically the substitution that
was made, it should be mentioned that this is a simplified
representation of the deadbeat controller with the purpose
of illustrating that the ANFIS has the same function as the
deadbeat controller. The proposed ANFIS controller has only
the rotor current error as input different than presented in the
literature [15]. The final neuro-fuzzy power control for DFIG
is shown in Figure 3.

ANFIS

ANFIS

Deadbeat

Deadbeat

Fig. 2. ANFIS Controller.

The tests used in this work to collect data set training are
similar to the ones used for Singh [15]:

Operation at different wind speed profiles;
Operation at different ramp increments in wind speed;
Operation at different step increments in wind speed;
Operation during voltage sag conditions.
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Fig. 3. Neuro-Fuzzy DFIG power control.

The grid partition method is chosen to design the fuzzy
controller structure, which usually involves only several state
variables as the inputs to the controller. For input and output,
a generalized bell Membership Function (MF or bell MF) has
been considered and the MF is specified by three parameters

, besides the input :

(13)

where, the parameter is usually positive.
A desired generalized bell MF can be obtained by a proper

selection of the parameter set . Specifically, we can
adjust and to vary, respectively, the center and width of
the MF and then use to control the slopes at the crossover
points [11].

The ANFIS structure was trained with the hybrid method,
this one combines the least squared error algorithm and back-
propagation method. The ANFIS was trained considering
maximum 5000 epochs and an error tolerance of 0.0001.
To calculate the numerical value resulting from the activated
rules, it was used the weighted average method for
defuzzification.

Thus, if the d and q axis voltage components are calculated
according to the ANFIS controller and are applied to the
generator, then the active and reactive power convergence
to their respective commanded values will occur in a few
samplings intervals. The desired rotor voltage in the rotor
reference frame generates switching signals for the
rotor side using either space vector modulation.

D. Estimation
The stator flux estimation in stationary reference

frame is given by:

(14)

and the stator flux position by using equation (14) as:

(15)

The angle between stator and rotor flux is given by:

(16)

III. WIRELESS CODED COMMUNICATION

The proposed wireless control system, shown in Figure 4,
uses LDPC codes [9, 16, 17] to improve system performance
and reliability. The LDPC are ( ) binary linear block
codes that have a sparse parity-check matrix that can be
described in terms of a Tanner graph [18], where each bit in
the codeword corresponds to a variable node and each parity-
check equation corresponds to a check node. A check node
is connected to a variable node whenever the element in

is equal to 1 [16, 18].
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Fig. 4. Wireless Coded Communication Diagram.

Extended Irregular Repeat Accumulate (eIRA) codes [19–
23] are a special subclass of LDPC codes that improve
the systematic encoding process and generate good irregular
LDPC codes for high code rate applications. The eIRA parity-
check matrix can be represented by , where

is a sparse ( ) by ( ) matrix, that can be constructed
irregularly by density evolution according to optimal weight
distribution [22], and is the ( ) by ( ) dual-diagonal
square matrix given by:

. . .

. . .

(17)

where is the number of control bits, is the number of
coded bits and is the number of parity bits.

Given the constraint imposed on the matrix, the generator
matrix can be represented in the systematic form by the ( )
by ( ) matrix:

(18)

where is the identity matrix, and is
the upper triangular matrix given by:
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. . .
...

...
(19)

The encoding process can be accomplished by
first multiplying the control information vector

by the sparse matrix
and then differentially encoding this partial result to

obtain the parity bits. The systematic codeword vector
can be simply obtained by

combining the control information and the parity bits.
In the transmission process, the codeword vector is then

interleaved and Quaternary Phase Shift Keying (QPSK)
mapped using Gray code [24], resulting in the symbol vector

, where is the number of
transmitted coded control symbols. Afterward, the coded
symbols are filtered, upconverted and transmitted by the
wireless fading channel.

Assuming that the channel variations are slow enough that
intersymbol interferences (ISI) can be neglect, the fading
channel can be modeled as a sequence of zero-mean complex
Gaussian random variables with autocorrelation function [24,
25]:

(20)

where is the zero-th order Bessel function, is the
signaling time and is the Doppler spread.

Thus, in the receive process, the complex low-pass
equivalent discrete-time received signal can be represented
by [24]:

(21)

where is the received

signal vector, is the
vector of complex coefficients of the channel and

is the Additive White
Gaussian Noise (AWGN) vector. Note that the above vector
multiplication is performed element by element.

Once the transmitted vector is estimated, considering
perfect channel estimation, the transmitted control bits
can be recovered by performing symbol demapping, code
deinterleaving and bit decoding.

Decoding can be accomplished by a message passing
algorithm [26–29] based on theMaximumA Posteriori (MAP)
criterion [16], that exchanges soft-information iteratively
between the variable and check nodes. The exchanged
messages can be represented by the following Log-Likelihood
Ratio (LLR):

(22)

where is the probability of the codeword vector to
be equal to 0 or 1.

The LLR message from the check node to the
variable node is given by:

(23)

The set contains the variable nodes connected to the
check node and the set contains the check nodes connected
to the variable node. is the set without the
element, and is the set without the element. The
LLRmessage from the variable node to the check node
is obtained by:

(24)

and the LLR for the code bit is given by:

(25)

At the end of each iteration, provides an updated
estimate of the a posteriori LLR of the transmitted coded bit

. If , then , else .

IV. CONTROL SYSTEM PERFORMANCE

The proposed wireless control for the DFIG connected
to the grid was simulated in the MATLAB-Simulink using
the SimPowerSystems, Fuzzy logic, and Communications
toolboxes. The system has a sampling time of s and
the DFIG parameters are shown in the Appendix. The active
and reactive power references were step changed, respectively,
from -100 to -120 kW and from 60 to 0 kVAR at 1.25 s. At
1.5 s, the references also were step changed from -120 to -60
kW and from 0 to -40 kVAR. Again, at 1.75 s, the references
were step changed from -60 to -100 kW and from -40 to -60
kVAR. These references are the inputs of the wireless coded
power control, shown in Figure 4, which is analyzed for two
different scenarios: an AWGN channel and a more realistic
flat fading correlated Rayleigh channel.

The system is evaluated for a frequency flat fading Rayleigh
channel with a Doppler spread of Hz. The LDPC coding
scheme uses the (64,800 and 32,400) eIRA code specified
in [30] and an ordinary Convolution Coding (CC) scheme with
a (171, 133) generator polynomial with constrain length of 7
is used as reference of performance [16]. Both schemes have
code rate of 1/2 and employ a random interleaving of length
64,800. For simplicity, the number of iterations in the LDPC
decoding is limited to 25. The bit duration is
s and each transmitted frame is composed by 32,400 QPSK
coded symbols.

In Figures 5 and 6, the final responses of the wireless power
control system employing CC are presented for an of
10 dB. The spikes presented in the responses of the system
occur due to the errors in the wireless communication, even
with the use of a very efficient error correction scheme.
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Fig. 5. Step Response of Active and Reactive Powers Using CC
Coding in a Flat Fading Channel.
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Fig. 6. Step Response of Rotor Current Using CC Coding in a
Flat Fading Channel.

It can be observed that several of these spikes, presented in
the reference signals, are followed by the controller and not
others due to the fact that the time response of the controller
is not sufficient to follow quick changes caused by destructive
effects of the channel in the transmitted signal. In this way, the
problem would be aggravated in a controller with faster time
response.

These errors in the control system can permanently damage
the aerogenerator, the wind generation, or even, cause a loss
of system efficiency, since the machine will not generate its
maximum power track at that moment, and additionally, they
generate undesirable harmonic components to the power grid.
The damage related to wind generation occurs due to the fact
that high values of , as shown in Figure 7, can completely
deteriorate the Insulated Gate Bipolar Transistors (IGBTs)
and, consequently, through the power converter, it can cause

short circuits in rotor and/or stator of the generator.
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Fig. 7. Stator and Rotor Currents Using CC Coding in a Flat Fading
Channel.

Thus, it is necessary to use a wireless control system
capable of minimizing the occurrence of these spikes arising
from errors caused by the channel distortions. With this
finality, it is highlighted the proposal of using a more robust
wireless control system based on LDPC coding. Figures 8
and 9 show the response of the wireless controller employing
the LDPC coding scheme for an of 10 dB and the
same step reference signals described at the beginning of this
section.
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Fig. 8. Step Response of Active and Reactive Powers Using LDPC
Coding in a Flat Fading Channel.

The satisfactory performance of the wireless control
system can be seen due to the fact the references were
perfectly followed by the controller and the inexistence of
destructive spikes caused by errors in the wireless transmission
system. Additionally, these good functionalities are shown
in Figure 10, where the stator currents present expected
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waveforms. It is important to emphasize that the errors
generated in the wireless transmission are independent of the
power control technique and they cannot be easily removed
without using advanced FEC coding technique as the LDPC
employed in this work.
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Fig. 9. Step Response of Rotor Current Using LDPC Coding in
a Flat Fading Channel.

To complete the analysis, it is evaluated the performance
of the proposed wireless coded neuro-fuzzy power control
system for different values of and different propagation
scenarios to show its robustness and functionality.
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Fig. 10. Stator and Rotor Currents Using LDPC Coding in a Flat
Fading Channel.

In Figures 11 and 12 comparisons of performance for No
Coding, CC, and LDPC schemes are presented. As expected,
the performance of LDPC is significantly superior than CC
for both propagation scenarios. As pointed out in Figure 11,
the performance improvement of LDPC over CC in AWGN
channels for a BER of is approximately 5.3 dB while, as
shown in Figure 12 for flat fading channels, the improvement
is approximately 26.8 dB for the same BER (Bit Error Rate).

Fig. 11. Performance Comparison for Different Coding Schemes in
AWGN Channel.

Tables I and II show the number and percentage of
phase inversions, correspondent to and references,
presented in the recovered control signal for both scenarios.
It can be seen that LDPC coding requires a significant lower

to present the same order of phase inversions as CC.
For a low BER as , there are some changes in the active
and reactive power references that can cause serious problems
in the generator, and consequentially, in the energy plant.

Fig. 12. Performance Comparison for Different Coding Schemes in
Flat Fading Channel (180 Hz - QPSK).

However, the use of LDPC coding can reduce notably this
number for a typical in real systems and can improve
considerably system robustness to the channel impairments.
For example, a system operating with a typical of 10
dB employing CC will fail dramatically, while a system using
LDPC coding will be free of errors.
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TABLE I
Control Inversion in an AWGN Channel.

Coding Bit Error Eb/No Number of
Scheme Rate (dB) Inversions

CC 4.80 225 (0.12%)
CC 5.65 21 (0.01%)
CC 6.40 2 (0.001%)

LDPC 0.98 204 (0.11%)
LDPC 1.06 21 (0.01%)
LDPC 1.13 2 (0.001%)

TABLE II
Control Inversion in a Flat Fading Channel.

Coding Bit Error Eb/No Number of
Scheme Rate (dB) Inversions

CC 20.0 167 (0.087%)
CC 25.5 21 (0.01%)
CC 31.5 4 (0.002%)

LDPC 3.20 188 (0.098%)
LDPC 3.80 26 (0.013%)
LDPC 4.70 1 (0.0005%)

V. CONCLUSION

In this paper, it was proposed a wireless coded control
system using a neuro-fuzzy controller applied to a doubly-
fed induction aerogenerator. An analysis for different coding
schemes shows that, even for a relatively low BER, the power
reference changes can occur and it can be very dangerous for
the generator and the energy plant.

However, the use of LDPC coding improves significantly
the robustness of the system in severe noise and fading channel
situations, eliminating the occurrence of errors in the active
and reactive power references for operational conditions.
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Appendix

Doubly-fed induction generator parameters [31]:
; ; ;

; ; ; ;
and .
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