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Abstract - In this paper a direct power control strategy
for a doubly-fed induction generator by using an artificial
neural network controller with the multilayer perceptron
structure is presented. The control variables direct-
and quadrature-axis rotor voltage signals are directly
generated by proposed controller from both stator current
and voltage that are measured by Hall sensors. The input
variables of the control system are the rotor speed, the
active and reactive power references and their respective
errors. The proposed control strategy allows that the
converter connected to the rotor terminals operate with
constant switching frequency which simplifies the design
of the AC harmonic filter and also prevents their power
loss. To validate the proposed control strategy, digital
simulation and experimental tests are performed for a
2.25 kW doubly-fed induction generator. A TMS320F2812
DSP is used to implement the neural network controller.

Keywords – Direct power control, Doubly-fed induction
generator, Neural Network Controller, Multilayer
perceptron, Constant switching frequency.

LIST OF SYMBOLS

stator, rotor resistances.
stator self, rotor self, mutual inductances.
total leakage factor.
synchronous, slip, rotor angular frequency.
stator flux,slip, rotor angles.
active and reactive power.
voltage, current, flux space vectors.
voltage, current, flux components.

= space vector expressed in the general
reference frame .
stator and rotor, respectively.
direct- and quadrature-axis expressed in
the stationary reference frame.
direct- and quadrature-axis expressed in
the synchronous reference frame.
direct- and quadrature-axis expressed in
the rotor reference frame.
rotor coupling factor.

I. INTRODUCTION

The use of the Doubly-Fed Induction Generator (DFIG)
enables the control of its power flux from sources of
mechanical energy that have variable speed, such as in wind
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energy sources [1–3]. Another feature of the DFIG application
is the control of the stator power flux by rotor terminals as
shown in Figure 1, which makes it attractive for high power
applications, because the rotor power is usually 1/4 of the
rated power of machine [4]. A DFIG application to make

Fig. 1. Power flux in doubly fed induction generator.

better use of converters and improve the ability to control the
total reactive power grid is proposed by [5]. PI controllers
are also used for controlling the DFIG power flux to balanced
voltages [6]- [7] and to grid voltage dip conditions in [8].

To obtain high dynamic performance in the reactive and
active stator power control a direct power control (DPC)
was developed [9], similar to the direct torque control
(DTC) for the induction motor presented in [10]. The first
works with DPC applied to the DFIG configuration used the
hysteresis controller [11]. This entails a variable switching
frequency, a high computational effort, and the necessity
of stator side AC filters to eliminate broadband harmonics,
consequently increasing in size and power loss. To overcome
the disadvantage of working with variable switching frequency
some strategies were developed for the DPC, as verified in
[12], in which the acquisition of the rotor voltage components,
the rotor speed measurement, the calculations of the active and
reactive power and the stator flux estimation are all performed
in a constant sample time, as presented in [13].

The DPC for a DFIG configuration with neuro-fuzzy
inference system and a Takagi-Sugeno fuzzy logic controller
of first order are proposed to determine the control variables
d-axis and q-axis rotor voltages in [13]. In [14] an artificial
neural network (ANN) is used for estimating the wind speeds
and from these data one obtains the ideal rotor speed that
generates the maximum power. Aiming at increasing the
efficiency of three-phase induction motor drives over the entire
operation range, it is proposed by [15] the use of an ANN to
predict the optimal rotor flux reference. To find the maximum
power generation of a DFIG, a controller based on an ANN
is also proposed by [16] and the digital simulation exhibitedHenrique A. C. Braga.
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some advantages over a PI controller, such as lower picks
in the controlled variable during the transitory and faster
response. The inverse control logic applied to the stator
power control of a DFIG proposed by [17] uses simultaneously
a neural network and PI controllers to generate the control
variables.

In this paper a direct power control strategy for a 2.25 kW
DFIG is proposed and implemented using a controller based
on an ANN with the multilayer perceptron (MLP) structure,
which allows the control of the coupled and nonlinear system.
The MLP controller generates direct- and quadrature-axis
rotor voltage signals from the active and reactive power
references, the active and reactive power errors and the rotor
speed. The MLP was subject to an off-line training procedure
and the set of samples for the supervised learning process
was obtained from PI controllers. The single MLP controller
replaces the PI controllers and the estimation block of the
reference rotor currents reducing the number of blocks and
variables to be implemented in the control loop, and this is
its main advantage over the approaches mentioned earlier,
including those already based on neural networks. Digital
simulation and experimental tests for the DFIG operating at
sub-synchronous speeds are presented to validate the proposed
controller.

II. FUNDAMENT OF DIRECT POWER CONTROL TO
DOUBLY-FED INDUCTION GENERATOR

A. DFIG Model
Adopting stator flux orientation, the DFIG model should

be presented in the synchronous reference system. Supposing
, the following set of equations holds [18]:

Stator and rotor fluxes

(1)

(2)

Stator and rotor voltages

(3)

(4)

Stator active and reactive powers

(5)

(6)

By combining Equations (1) and (2) one obtains the stator and
rotor current expressions as a function of the flux:

(7)

(8)

where,

and

Replacing Equations (3) and (7) into Equations (5) and (6),
and after some algebraic manipulation, it follows that:

(9)

(10)

where, .
With the infinite bus hypothesis, and are constants,

and, consequently, the variation of the stator reactive and
active powers ( , ) will be expressed as changes in
direct- and quadrature-axis rotor flux given by:

(11)

(12)

B. Direct power control (DPC)
The stator active and reactive power are the controlled

variables in the DPC, while the control variables are the
direct- and quadrature-axis rotor voltages. Aiming at constant
switching frequency, a constant sampling period is adopted,
and if , Equation (4) can be written as:

(13)

(14)

By combining Equations (9), (10), (11) and (12), we obtain
the following expressions for the direct- and quadrature-axis
of the rotor voltage as a function of the stator flux:

(15)

(16)

Therefore, once the required , and is known, the
rotor voltages can be determined.

III. MLP CONTROLLER

Neural networks are flexible mathematical devices to
implement nonlinear controllers [19]. As the MLP with a
single hidden layer is sufficient to approximate any continuous
function inside a unit hypercube, it is convenient to normalize
the training data [20]. The possibility of learning from data
[21], the potential of preserving high levels of performance at
distinct operating points [22], and the existence of statistical
procedures aiming at promoting the maximization of the
generalization capability [23, 24] are the main motivation for
using neural networks controllers.

The number of neurons in the input and output layers is
respectively defined by the number of inputs and outputs



1040 Eletrôn. Potên., Campo Grande, v. 18, n.3, p.1038-1046, jun./ago.2013

required by the application. There are no general guidelines
for defining the best number of neuron in the hidden
layer. The choice of a high number of hidden neurons
might produce overfitting, thus reducing the generalization
capability. The choice of a low number of neurons may impair
the representation capability of the network, thus precluding
the reduction of the training error [24]. What we have adopted
here are twenty hidden neurons and what we considered
enough to provide a proper degree of flexibility to the neural
network and to avoid over training, 15% of the training data
was kept apart as the validation dataset and the learning
procedure stops when the neural network weights minimizes
the error produced by the validation dataset.

A. Training data
The training data of the MLP are acquired from the based

model control as presented in [25]. This control formulation
has the advantage of decreasing the number of PI controllers
from four to only two, as it is shown in Figure 2. The

Fig. 2. Control diagram to generate the training dataset.

training dataset should contain samples from diverse operating
conditions. This is a crucial requisite for the proper behavior
of the obtained MLP controller.

The control system illustrated in Figure 2 is simulated for
each of the speeds in the range of of the synchronous
speed (160, 175, 188, 201 and 216 rad/s): for each speed
the reference signals of the stator active and reactive power
have the rectangular profile, as shown in Figure 3. The input
data , , , and , and output data and

utilized for training are selected and normalized around
the transition of active and reactive powers, as highlighted in
Figure 3 (data not selected are discarded) and the sampling
frequency is 1 kHz. This selection avoids excess of redundant
data, which could impair the training quality and increase the
convergence time. The set of training data is normalized. It
must also be emphasized that the gains of the PI controllers
are set for each speed due to the nonlinearity that is inherent in
induction machines and the PI controllers were adjusted by
trial and error tuning method. This data acquisition policy
guides to 2489 input-output samples to compose the training
dataset. This training dataset is used as follows: for
adjusting the MLP weights, for validation and for
test.
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Fig. 3. Stator powers profiles to generate the training dataset.

B. Training process
The supervised learning (training process) is responsible for

adjusting the weights of the MLP by means of the following
iterative rule:

(17)

where is the vector composed by current values of
the weights, by incremental weight adjustment and

by the subsequent values of the weights. The
incremental weight adjustment is performed so that the mean
square error between the desired outputs and the obtained
ones is minimized for the validation dataset, though only the
training dataset is used to adjust the weights. In other words,
the adjustment of the weights employs the training dataset, and
the stopping condition is checked considering the validation
dataset.

The supervised training process is generally performed off-
line and is characterized by a nonlinear optimization problem.
As it is well-known in the context of nonlinear optimization,
the iterative process may get stuck in local minima, depending
on the initial value of the weights. To reduce the chance of
converging to a poor local minimum, here we have adopted
multiple restarting and we have also initialized the weights
in a small interval around zero, e.g. . We
have adopted here a scaled conjugate gradient second-order
method [26], used both for recurrent and nonrecurrent neural
networks. This method is numerically stable, has a fast
convergence and a low computational cost [27].

The maximum number of training epochs is limited to .
If the MSE associated with the validation dataset is still being
reduced after epochs, then the algorithm will run for
additional epochs. The computational demand can be
considered low, with less than one minute to conclude
epochs on conventional desktop.

C. Proposed MLP controller
The proposed MLP controller has five inputs ( , ,
, and ), twenty neurons in the hidden layer and two

neurons in the output layer ( and ), as it is illustrated
in Figure 4. The MLP directly generates the rotor voltages

and without PI controllers and without the estimation
block for the reference rotor currents, as shown in Figure 5.
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Fig. 4. Proposed MLP controller.

The weights associated with the synaptic connections
between the input and the hidden layers are represented by
matrix , and the weights between the hidden and the output
layers, by matrix . The adopted activation function for
the hidden layer neurons is the hyperbolic tangent and for the
output layer neurons, the identity function. Hence, the output
of the MLP is given by

(18)

where is the row vector with neural network outputs ( ,
), is the row vector with all the input data ( , , ,
and ) and , are the transpose of matrices and
.

Fig. 5. Control Diagram with MLP Controller.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The simulation and experimental tests were performed with
a 2.25 kW, 220 V, 60 Hz, 4 poles. The control system block
diagram is illustrated in Figure 6 and the description of each
block is as follows:

- Transformations abc- and - block

Fig. 6. System block diagram.

(19)

(20)

(21)

(22)

- estimation

(23)

(24)

- and calculations are done by Equations (5) and (6)

- MLP controller

The MLP controller determines the control signals and
from and references, and error, and .

- and calculations

The control signals and are expressed in the rotor
reference frame by

(25)

- Space vector modulation (SVM)

To generate the pulse width modulation (PWM) switching
patterns the Space vector modulation (SVM) is utilized. To
maintain it in the linear zone of operation, the rotor voltages
are limited by following functions:

(26)

(27)

if then

where is the maximum voltage of the converter.
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The test bench is composed of a DSP Tms320F2812,
interface circuits, an incremental encoder of 1500 pulses, a
power converter of six IGBTs (10 kW), a personal computer
and an oscilloscope. The DFIG rotor and stator terminals
are connected to the power converter and to the infinite bus,
respectively. A squirrel cage induction motor connected
directly to the power grid was mechanically coupled to the
DFIG to provide mechanical energy, i. e., the induction motor
has no speed control. As hyperbolic tangent is not available
in the mathematical library of the adopted DSP, the activation
function of the hidden neurons in the MLP was implemented
with an arc-tangent function [28]. In the DSP programming,
two interruptions were implemented:

1) Interruption of - This time interval corresponds
to the inverter switching period of 1/5 kHz and the function
performed are

- Calculation of the position and speed rotor from the
encoder pulses.

- The MLP algorithm implementation to generate the
output control signals and .

- Generation of the command signals of the SVM.

2) Interruption of - In this period four updates of
stator variables are permitted and the function performed are

- Voltages and current measurement of the stator line and
the transformation of these variables to the stationary
coordinate system.

- Estimation of the stator angular flux.
- Calculation of and .

A. Simulation results for the variable speed operation
The aim here is to verify the generalization capability of

the trained MLP. So, all the operating range of the stator
power and rotor speed were considered. The simulations were
performed with reference values ( , , and ) distinct
from the ones considered in the training phase of the MLP,
as shown in Figure 7.

In Figure 7(a) it is shown the imposed speed profile.
Observe that the speed varies around synchronous speed,
which is the usual operating range for DFIGs . The stator
active and reactive power profiles (reference and obtained) are
shown in Figure 7(b).

In Figure 7(c) , during the period where the power is null, it
is observed that the stator currents are next to zero and respond
immediately to the power variations, following the intended
profiles.

In Figure 7(d), it is observed that the amplitude
and the phase sequence of the rotor currents change
with respect to the stator power references and the
subsynchronous/supersynchronous rotor speeds.

B. Simulation and experimental results for constant speed
operation

The results presented in Figure 8 (simulation) and Figure 9
(experimental), with rad/s, are shown side by side
for favoring the comparative analysis. Observe that and
are zero, before the first step in power reference.
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(c) Three-phase stator current waveforms.
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Fig. 7. Simulated results with variable speed.
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(a) Active and reactive power profiles.

(b) Instantaneous values of the three-phase stator
currents.

(c) Instantaneous values of the three-phase rotor currents.

(d) Instantaneous current and voltage of one phase of the
stator.

Fig. 8. Simulated results with sub-synchronous speed.

(a) Active ( ) and reactive
( ) power profiles.

(b) Instantaneous values of the three-phase
stator currents ( ).

(c) Instantaneous values of the three-phase rotor
currents ( ).

(d) Instantaneous current ( ) and
voltage ( ) of one phase of the stator.

Fig. 9. Experimental results with sub-synchronous speed.
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Fig. 10. Details of the variation in power factor: (a) simulation and
(b) experimental.

During the period that the power is zero, the stator
currents are next to zero and respond immediately to the
required power, following the intended profiles, as shown
in Figures 8(b) - 8(d) (simulation) and Figures 9(b) - 9(d)
(experimental).

Furthermore, the phase angle of current regarding to the
voltage, as shown in Figures 8(d) and 9(d), is radians,
when the active power is not zero, and this is in accordance
with the load convention. Regarding the reactive power, it is
observed that the phase angle of current Is modified due to the
changes in the power factor, i.e., leading (capacitive load) or
lagging (inductive load) power factor. This effect is presented
in details in Figure 10.

In Figures 8(c) -simulated results- and 9(c) -experimental
results- it has been observed a small difference between the
rotor currents waveforms because the digital simulation was
performed with a constant speed of rad/s and in the
experimental test, the generator is driven by squirrel cage
motor without speed control.

Thus, it is possible to conclude that the dynamic- and
steady-state responses of the experimental results (Figure 9)
are very close to the reference values and consistent with the
simulation.

V. CONCLUSION

This paper has shown the experimental application of a
direct power control of a doubly-fed induction generator
under oriented stator flux using a controller based on an
ANN. All the PI controllers and rotor current estimation
block, that generated the set of samples for training process
were replaced with success by a single MLP controller with
twenty hidden neurons. The results have shown that the
DPC approach combined with the MLP controller maintain
the features of the DPC and adds the inherent characteristic
of an ANN controller, more specifically the capability of
controlling the coupled and nonlinear system and to generalize
the performance to the whole range of operation considered in
the training data. Furthermore, the execution and application
of this controller are conceptually and computational simple,
besides presenting a good performance. The experimental
results have shown the effectiveness of the controller when
attending changes in reactive and active power under sub-
synchronous speed, being these results consistent with those
obtained by simulations.

APPENDIX

TABLE I
Nominal values of the 2.25 kW DFIG

Parameters Value

Power, Voltage 2.25 kW, 220 V
Frequency, Poles 60 Hz, 4

, 1.2, 1.24 [ ]
, , 98.14, 98.14, 91.96 [mH]
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