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Abstract - In spite of the advantages of the use of the 

induction motor in a large number industrial 

applications, various stresses natures like thermal, 

electrical, mechanical or environmental could affect the 

life span of this induction motor drive. In recent years, 

monitoring and fault detection of electrical machines 
have moved from traditional techniques to artificial 

intelligence techniques. This paper gives examples of 

application of nine AI techniques already applied to 

induction motor fault diagnosis:   neural networks, fuzzy 

logic, neural-fuzzy, genetic algorithms, vector support 

machine, particle swarm optimization, artificial immune 

system and gaussian bootstrap process.  Functions that 

can be accomplished by them are highlighted.  
1
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I. INTRODUCTION 

Due to its reputation of robustness and its low cost of 

manufacture, the induction motor has been increasingly used 
in industry. In spite its advantages, various faults due to 

different reasons may occurs not only at the machine but also 

at the power converter stage in case of motor drive system, 

largely used in many industrial applications.  

Among all defects, a three-phase induction motor drive 

could generate three kinds of problems: rotor faults (broken 

rotor bar or broken end rings, eccentricity), bearing faults, 

stator failure (inter-turn short-circuits or disconnection of one 

phase). In the converter could occur: short-circuit or open-

circuit in one or more switches, intermittent misfiring [1]. 

In order to avoid costly unplanned maintenance schedule, 

due to faults, the reliability and the safe operating system 

have to be considered. Along the years, many diagnostic 

procedures have been proposed. Main steps of a diagnostic 

procedure can be classified as signature extraction, fault 
identification, and fault severity evaluation and have been 

focused on for some decades. Different techniques have been 

developed to accomplish the required tasks for the converter 

or motor diagnosis, based on the key fault types normally 

verified in the industry applications.  

Considering only monitoring and fault detection of 

asynchronous machines, it is important to note that line 

                                                        
1Manuscript received 25/08/10; first review 26/04/11; second review 

27/08/11. Accepted for publication 27/08/11 recommended for the 

specialsection by the editor in charge Antonio J. Marques Cardoso. 

current signature has been widely used to deal with faults 

occurring in its stator and the rotor and that the frequency 

components feature can be associated with different rotor 

faults. One can find in the motor theory that broken bar 

faults, as well as eccentricity, rotor asymmetry or shaft speed 

oscillation, show sideband frequencies [2]. However, in 
recent years, the monitoring and fault detection of electrical 

machines have moved from these conventional techniques to 

artificial intelligence techniques [3-6].  

There are many types of AI-based techniques applied to a 

wide area of applications. Some of these techniques applied 

to motor diagnosis: Expert Systems (ES), Artificial Neural 

Networks (ANNs), Fuzzy Logic System (FLS), Genetic 

Algorithms (GAs), Support Vector Machines (SVM) [5] 

have been well cited in survey papers. However, other 

techniques, less employed, include possibilities for 

optimization and/or classification in the automation of the 

motor diagnostic procedures: Artificial Immune System 

(AIS), Particle Swarm Optimization (PSO), Bootstrap 
Gaussian Process. Besides giving improved performance, 

these techniques are easy to extend, modify, and can be made 

adaptive by the incorporation of new data or information [7]. 

In addition, they can combine with each other and also with 

traditional techniques.  

This paper gives examples on the application of some of 

the mentioned AI techniques, or their combination, making 

brief comments and highlighting functions that can be 

accomplished by their use.  

II. AI-BASED TECHNIQUES 

Among many AI techniques applied to induction motor 

fault diagnosis nine techniques have been chosen to be 

discussed in the following. 

 

A. Expert Systems (ES) 

The expert system is basically a computer program 

embodying knowledge about a narrow domain for the 

solution of problems related to that domain. An ES mainly 

consist of a knowledge base (containing domain knowledge, 
which may be expressed as any combination of "IF-THEN" 

rules, factual statements, objects, procedures and cases) and 

inference mechanism that manipulates the stored knowledge 

for producing solutions.  

The system can determine a fault situation doing the 

signals extraction and fault identification from the combined 

derived information from behavior of various harmonic 

components and the machine operating conditions [8]. A 
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demerit of ordinary rule-based ES is that they can not handle 

new situation not covered explicitly in their knowledge 

bases. However, they can be improved when used in 

combination with other techniques.  

 

B. Artificial Neural Network (ANN) 

An ANN is a computational model of the brain. It assumes 

that computation is distributed over several simple units 

called neurons, which are interconnected and operate in 

parallel, thus known as parallel distributed processing 

systems. Implicit knowledge is built into a neural network by 
training it. ANN can be trained by typical input patterns and 

corresponding expected output patterns. The error between 

the actual and expected output is used to strengthen the 

weights of the connections between the neurons.  

Awadallah and Morcos [4] remind that ANNs have been 

densely applied in the area of motor condition monitoring 

and fault diagnosis performing one or more of the following 

tasks:  pattern recognition, parameter estimation, and 

nonlinear mapping applied to condition monitoring; training 

based on both time and frequency domain signals obtained 

via simulation and/or experimental results; real time, online 

unsupervised diagnosis; dynamic updating of the structure 

with no need to retrain the whole network; filtering out 
transients, disturbances, and noise; fault prediction in 

incipient stages due to operation anomalies; operating 

conditions clustering based on fault types. 

Example 

In the following an example of pattern recognition is 

described: ANN is applied to vibration signals in order to 

detect mechanical faults. Unbalance, shaft misalignment, and 

mechanical looseness have been compared with the 

“healthy” operation for two different ANN techniques: 

Global Multilayer Perceptron (MLP-global) and Perceptron 

Linear Predictive (PLP) [9]. A multi-objective method has 

been used to improve the generalization capacity of the 
global MLP network. For investigation, a random choice of 

training and validation groups was done taking into account 

the sets dimension: 67% for training patterns and 33% for 

validation. Deterministic frequencies (fr, 2fr, 3fr, 4fr) and 

measurement with sensors in six different positions for four 

cases (healthy, unbalance, misalignment, and mechanical 

looseness) have been considered, in a total of 978 training 

and 312 validation patterns.  

The bed test that undergoes the experiments consists of a  

5 HP, 220/380 V, 60 Hz, four poles, 1730 rpm, squirrel cage. 

The mechanical load was provided by a separate DC 

generator feeding a variable resistor. The mechanical 

structure, in which the motors are settled, offers the 
possibility to move the two machines, in a way that the 

system can be either aligned or misaligned at different 

degrees, for test. An accelerometer was used for vibration 

spectra acquisition. The signals were taken from the 

accelerometer fixed at vertical, horizontal and axial positions 

at either the fan cooling side or the motor coupling side (six 

positions), that is: P1- Vertical position over the cooling fan 

(VCF); P2 - Axial position in the front of the cooling fan 

(ACF); P3 - Horizontal position by the cooling fan (HCF); 

P4- Vertical position over the motor coupling (VMC); P5 - 

Axial position in the front side of the motor coupling 

(AMC); P6 - Horizontal position by the motor coupling 

(HMC). The signals were filtered and only the multiple 

rotation frequencies were chosen: fr, 2fr, 3fr and 4fr . 

B1. Global MLP Network 

The Global MLP network, Figure 1, has two binary 

outputs for four situations: 00 – healthy; 01 - misalignment; 

10 -unbalance; 11 - mechanical looseness. The layers 

activation functions are sigmoid and weights have also been 
updated via back propagation. The method was applied with 

the acceleration sensor fixed at any of the six positions. It 

was observed that the best result was obtained for the sensor 

in the vertical position, in which the vibration levels are more 

significant in case of mechanical faults. The total success rate 

was 86.16% for training and 82.37% for validation.  

 
Fig.1: Scheme for the global MLP network.  

 

A well trained network must adequately respond not only 

to the pattern used for training but also to all other pattern 

submitted to them. This is known as network generalization 
capacity. At the training stage the generating function of data 

is based on possible realizations of the training sets for same 

task. This variety of solutions is named variance, which must 

be minimized to guarantee a good network generalization. 

On the other hand, the number of possibilities increases with 

the model dimension. A reduction of dimension, by reducing 

the number of parameters, solves this problem. However, it 

can originate polarization, which reduces the generalization 

capacity of the network. It is said that the polarization occurs 

when even for different realizations of the training process in 

the reduced dimension space the solution is practically the 

same. Polarization of solutions must be minimized to 
preserve the generalization capacity. Therefore, a point of 

equilibrium must be achieved.  

A multi-objective algorithm approach minimizes both the 

sum of squared error and the norm of network weight vectors 

to obtain the Pareto-optimal solutions [10]. Since the Pareto-

optimal solutions are not unique, there is a need of a decision 

phase in order to choose the best final solution by using a 

validation set. The final solution is expected to balance the 

network variance and bias and, as a result, to generate a 

solution with high generalization capacity, avoiding over and 

under fitting. Once a large topology is defined, the algorithm 

generates a set of solutions with a variety of norms and 

minimized error for each one, and selects the best response in 
relation to the validation set. Calculation of network 
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efficiency confirmed the vertical position of the sensor as the 

most significant, and reached a success rate of 98. 

 

B2. Parallel Layers Network (PLP). 

A Parallel Layers Perceptron was proposed in [11] and 
replaces the original input of the Adaptive-network-based 

fuzzy inference system (ANFIS) by parallel perceptrons, Its 

main objective is to overcome the limitation of working with 

multiple inputs imposed by the classical ANFIS network due 

to the resulting exponential increase of operations when each 

input is combined. In Figure 2 is shown the PLP topology, 

where β(.), γ(.) and  Φ(.) are activation, vji and pji are 

components of the weight matrices P and V, xit is the ith input 

for the tth sample, where x0t is the perceptron bias, and yt is 

the tth position of the vector output y.  Similarly to the 

traditional multi-layer perceptron, all network parameters can 

be adapted using the backpropagation method. However, 
some differences must be highlighted. Firstly, in the MLP 

case, the network uses function of functions to input–output 

mapping. The PLP is mainly based on product of functions. 

Moreover, as can be seen in Figure 2, the proposed topology 

is composed of parallel layers. This feature simplifies the 

network implementation in parallel machines or clusters. The 

method was applied for the case of the sensor fixed at any of 

the six positions, as described before. Again, the vertical 

position of the sensor is confirmed as the most significant 

and the success rate percentage was 94%. 

 

 
Fig. 2.  Parallel Layers Network scheme 

 

C. Fuzzy Logic System (FLS) 

The FLS are based on a set of rules. One advantage of 

FLS is that the rules allow the input to be fuzzy, i.e. more 

like the natural way that human express knowledge. In 

contrast to ANNs, they give a very clear physical description 

of how the function approximation is performed (since the 

rules show clearly the function approximation mechanism).  

Awadallah and Morcos [4] presented an extensive list of 

references, indicating some of the fuzzy and adaptive-fuzzy 

systems applications to motor fault diagnosis: evaluating 
performance using linguistic variables; predicting abnormal 

operation and locating faulty element; utilizing human 

expertise reflected to fuzzy if—then rules; system modeling, 

nonlinear mapping, and optimizing diagnostic; fault 

classification and prognosis. 

 

Example 

The aim of this example is the diagnosis of signatures of 
rotor broken bars when the induction machine is fed by an 

unbalanced line voltage.  It is known that, in this case, the 

motor generates components in both the forward and the 

backward system. Considering fs the supply frequency and s 

the known induction motor slip, the interesting components 

to monitor are: f1=[s-2]fs; f2=[-2s-1]fs; f3=-fs; f4=[2s-1]fs; 

f5=[1-2s]fs; f6=fs; f7=[1+2s]fs and f8=[2-s]fs. The spectrum in 

Figure 3 shows these eight line components in the case of a 

50 Hz fundamental frequency.  

 

 
Fig. 3. The stator line currents spectrum in case of one broken bar. 

  

There are four stages in the process: acquisition of the 

currents, calculation of the Concordia’s vector, searching of 

the defective lines amplitude and computation of diagnosis 

indexes thanks to an expert system based on fuzzy logic.  

The current signatures are given by the complex spectrum 

modulus of the line current. The amplitudes of all these 

components are necessary for the fuzzy system fault detector. 
For this, each input variable was described by membership 

functions (Small, Medium and High) which can be triangular 

or take other function shapes. The inference engine was 

based on the classical Max-Min method determined by the 

output membership functions. Thanks to the sets of rules, 

several diagnosis indexes are able to be evaluated we are able 

to evaluate.  

The sense of velocity (positive or negative) is one of 

them, which can be easily determined through the rules: 

IF (If6 is <high>) AND (If3 is <small>) THEN Velocity is 

<Positive> OR 

IF (If6 is <small>) AND (If3 is <high>) THEN Velocity is 

<Negative>. 
Also, the connection of the motor to the line (normal or 

abnormal) is monitored using  

IF (If6 is <high>) AND (If3 is <high>) THEN Current line is 

<abnormal> OR 

IF (If6 is <small>) AND (If3 is <small>) THEN Current line is 

<abnormal>. 

In addition, the load level of operation (Small, Medium, 

Full) can be determined as a function of the motor slip: 

IF (s is <small>) THEN Load level is <Small> OR 

IF (s is <medium>) THEN Load level is <Medium> OR 

IF (s is <high>) THEN Load level is <Full>. 
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In the case of a broken bar, the frequency of the current 

flowing in the bar is sfs. It is well known that the negative 

sequence rotor current produces currents of (1±2s)fs 

frequency in the stator. The detection and the degree of fault 

severity is proportional to the average amplitude of the two 

component lines at the right (1+2s)fs and the left (1-2s)fs of 

the main line at the feeding frequency divided by the 

fundamental current amplitude. This approach gives a 

sufficient precision about the fault severity.  

In the study of the forward and the backward sequence of 

the supply line, the ratio has to be calculated for the two 

sequences: Irf and Irb. The set of rules for the expertise of 

three phase induction motor, in case of broken bar defect, are 
given by: 

IF (Irf is <small>) AND (If6 is <high>) AND (If3 is <small>) 

THEN Operating Condition is <Normal> OR 

IF (Irb is <small>) AND (If6 is <small>) AND (If3 is <high>) 

THEN Operating Condition is <Normal> OR  

IF (Irf is <medium>) AND (If6 is <high>) AND (If3 is 

<small>) THEN Operating Condition is <Progressive 

failure> OR 

IF (Irb is <medium>) AND (If6 is <small>) AND (If3 

is<high>) THEN Operating Condition is < Progressive 

failure > OR 
IF (Irf is <high>) AND (If6 is <high>) AND (If3 is <small>) 

THEN Operating Condition is <Broken Bar> OR 

IF (Irb is < high >) AND (If6 is <small>) AND (If3 is <high>) 

THEN Operating Condition is < Broken Bar > 

 

The results of this example have been used as the 

additional inputs for the expert system. However, this 

technique requires the knowledge of the system behavior for 

determination of the membership functions.  

In order to confirm the effectiveness of the proposed 

approach, invasive experiments had been performed on one 

type of induction motor. The first experiments were 
considered thanks to a healthy induction machine. Several 

tests were made for the motor operating at 50%, 75% and 

100% of the full load level. This served as references in order 

to test the efficiency of the approach proposed. The second 

experiments were made with a machine where a partial hole 

was made in order to simulate a progressive failure in a 

broken bar. The third experiments were made with a 

complete hole in order to have one full broken bar. All the 

results obtained by the fuzzy expert system were in full 

accordance with the test considered.  

 
D. Neural-Fuzzy 

The idea behind the fusion of Neural and Fuzzy 

technologies is to use the learning ability of ANN to 

implement and automate the fuzzy system, which use the 

high-level human-like reasoning capability. Consider the 

case of a faulty motor stator, Neural-Fuzzy (NF) fault 

detection is obtained, which learns the stator faults and the 

condition under which they have occurred by an 

inexperienced and noninvasive procedure. Many methods 

have been proposed for implementing and optimizing fuzzy 

reasoning via ANN structures [12].  

 

Example 

Applications of two known NF structures to solve the 

induction motor fault detection are presented in [13]: The 

Fuzzy Adaptive Learning Control/Decision Network 

(FALCON)-Based Fault Detector (FFD), and the Adaptive-

Network-Based Fuzzy Inference System (ANFIS)-Based 

Fault Detector (AFD).   

In a three-phase induction motor framework, stator 

currents and rotor angular velocity are measured under 

different motor friction and load torque. The magnitude of 

motor friction and load torque affect motor operations, 

which, in turn, affect speed and current measurements. The 

effects of incipient motor friction faults are highly coupled 
with effects of load torque. For a balanced friction fault, 

monitoring stator currents and rotor speed could lead to 

successful fault detection/diagnosis. In the presence of 

varying load situations, however, it is observed that the 

impact of load on motor current and speed is similar to that 

of the motor friction. For example, an increase in motor 

friction increases the current, and decreases the speed, which 

is similar to the effect of an increase in load. Two NN/FZ 

systems have been employed, which perform motor fault 

detection under different load conditions, and were able to 

extract heuristics for the fault detection process [13].  

The fault detection process may be viewed as a mapping 

from the input space to the output space, which maps the 
operating current, speed, and load torque to motor friction. 

Both structures provided good fault detection/diagnosis 

under varying load torque. However, the results of the AFD 

were slightly more accurate [13].  

 

E. Support Vector Machines 

Support Vector Machine (SVM) is derived from the 

Statistics Learning Theory (SLT) and has attractive features, 

such as good generalization ability, large dimension 

robustness, objective function convexity, and well 

established theory. In fact, the SVM based classifier is 

claimed to have an efficiency that does not depend on the 

number of  features of classified entities, to have better 

generalization properties, cost much less time than NN based 
classifiers and better accuracy (greater than 97%) than Linear 

Discriminant analysis, K-Nearest Neighbor, Probabilistic 

Neural Network, Gaussian Mixture Model pattern 

recognition techniques [14]. However, its accuracy may be 

drastically affected by choices in SVM implementations, 

such as kernel function and penalty parameters of the support 

vector. An improvement can be obtained by tuning these 

parameters with other optimization techniques, like GA [14], 

artificial immune system [15], or on particle swarm 

optimization [16]. 

The SVMs are essentially binary classifiers (positive and 
negative classes). Nevertheless, SVM-based multi-class 

classifier can be constructed using “one against one” 

technique, which consists in creating k SVMs, k 

corresponding to the number of classes.  In the generation of 

each machine, a class is fixed as positive while the other are 

considered as negative. However, the use of “one against 

one” technique needs a synthesizing scheme to decide the 

final results according to the results of sub classifiers. In [17] 

four synthesizing schemes were compared (majority voting; 
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binary tree decision; neural network and hybrid matrix), 

while in [18] ten of them were needed. 

Depending on what is required in motor diagnosis, there 

are two possibilities. The first, called simple diagnosis (1-

Class), discovers only if the fault has occurred. The second 

one (complex diagnosis, 2-Class) is able to find, for instance, 

how many bars have been damaged [19]. The SVM is 

gaining application in rotating machinery anomaly detection, 

due to its superb performance with small samples [20-21].  

 

Example 

The fault diagnosis of induction machine is a multi-class 

classification problem. For classification of mechanical 
faults, as in the ANN example (Global MLP Network, 

section B1 and Parallel Layer Network, section B2), have 

been compared to the “healthy” operation [22]. The software 

developed by [23] was used because this work deals with 

four classes: SVM1 - No Faults; SVM2 - Unbalance; SVM3 

– Misalignment and SVM4 Mechanical Looseness. The one-

against all classifier gave the final diagnosis, grouping the 

four support vector machine. The output was one of the 

following messages: no fault, misalignment, unbalance or 

mechanical looseness. The method was applied for the 

acceleration sensor fixed at any of the six positions described 
in section B. The final results of the nets outputs for each 

acceleration sensor position for the data used to test the 

diagnosed system was: P1 (VCF), 96%;  P2 (ACF), 90%; P3 

(HCF), 92%; P4 (VMC), 92%; P5 (AMC), 92%; P6 (HMC), 

92%. 

The SVM, together with one-against-all technique, has 

shown an excellent performance. It is shown that the best 

position for signals acquisition and analysis is vertical over 

the cooling fan, which is considered useful information for 

the maintenance workers. This valuable information reduces 

the number of sensors and also the maintenance time and 

costs.  
 

F. Genetic Algorithm 

Genetic Algorithm (GA) is based on biology and, in 

particular, by those biological processes that allow 

populations of organisms to adapt to their surrounding 

environment: genetic inheritance and survival of the fittest, 

that is, natural selection as well as evolutionary process. 

Because GA is a stochastic optimization method, it needs 

less prior information about the problems to be solved than 

the conventional optimization schemes, which often require 

the derivative of objective functions. It also has the unique 
features of parallel search and global optimization and it is 

adapted for the simultaneous evaluation of a large number of 

points in the search space.  

GA can be used to determine the coefficients of a 

regulator [24] or to identify induction machine parameters. It 

can also be used in the diagnosis of induction motor rotor 

and stator faults, such as rotor broken bars [25-26], open 

rotor and stator phase [27], rotor unbalance and 

misalignment, and bearing loose fault [28].  

Although GA based approaches have interesting features 

when used alone, as compared to Neuro-Fuzzy (NF) based 

approaches, for instance [27]. GA combined with other AI 
based approaches will have tremendous scope in future. An 

example is found in [29] in which in order to improve fault 

identification accuracy rate, principal component analysis 

(PCA) and GA are employed to reduce the feature 

dimensionality of the measured data. PCA extracts the 

principal components (PCs) from the original features. Then 

the significant features are selected from the extracted 

features by GA as inputs to neural network. GA is also used 

to optimize the ANN parameters. The combined technique 

have considered broken rotor bar, bowed rotor, bearing outer 

race fault, rotor unbalance, misalignment and phase 

unbalance. Results have shown that the combination has fast 
training procedure, high classification rate and compact 

structure  

 

Example 

Consider the process mentioned in the example of section 

C: acquisition of the currents, calculation of the Concordia’s 

vector, amplitude search of the defective lines and finally 

computation of diagnosis indexes thanks to an expert system 

based on fuzzy logic. This example treats of the application 

of the GA to find the global maximum as well as to solve an 

optimization problem in the spectral lines identification 
process in case of a rotor broken bar of an induction motor 

[25-26]. The N individuals in the case are the supply 

frequency and the slip frequency and these are the 

parameters to be found.  

In order to find the eight main components in the current 

spectrum in Figure 3, eight Gaussian functions were used as 

a window, which only depends on the supply frequency (fs) 

and the slip frequency (sfs) The integral of the  product of the 

current spectrum by the spectral window was used to 

calculate the fitness. 

The approach was tested for a rotor broken bar fault 

detection. Besides searching lines of the supply frequency 

GA was used to search the slip frequency, inside of the 

Concordia’s vector spectrum. Figure 4 depicts the results for 
line currents spectrum with one full broken bar and 100% of 

full load level.  Results are obtained after few interactions. A 

comparison with the healthy line currents spectrum allows 

the operator to distinguish the faulty case and also to be 

aware of a progressive failure in the rotor.  

 

G. Particle Swarm Optimization algorithm 

Particle swarm optimization (PSO) is a semi-global 

optimization algorithm, first introduced by [30]. It simulates 

social model like those of birds, insects and fish swarm. Its 

main concept is simulating the movement of these organisms 
searching for food. Candidates to find the best solution are 

particles. They move globally into the search space along a 

search trajectory, sharing their experience, collaborating to 

each other, suggesting its own solution for the problem. The 

particles speed is based on particle momentum, the attraction 

force towards the global and the best local.  

PSO is a simple optimization technique without heavy 

computation and has shown success in solving many 

optimization problems [31, 32]. The technique does not 

require the computation of derivatives and hessians nor does 

not need training with heuristic data and its performance has 

been continuously improved [33-35].  
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PSO method has been applied to the following motor 

faults: broken bar, part of the end-ring broken [31], stator 

inter-turn and independent winding short circuit [36]. It is an 

efficient method to solve the optimization problem as to 

extract information quickly from a frequency. Next it will be 

shown its ability to estimate the line frequency and the fault 

line frequencies with the induction motor operating under 

one full broken bar [31]. 

 

Example 

Consider the same four stages process mentioned in the 
example of section C. In this example, the search of the 

defective lines amplitude is accomplished by using PSO 

Based on a spectrum of current and calculation of the 

window function and of Fitness with the same equations used 

in GAS method, the transient of the PSO was examined 

thanks to several variables. In the estimation of the 

fundamental frequency the majority of the particles stayed 

close to the fundamental frequency after about twenty 

iterations. To estimate the slip s, the population moved along 

the two sidebands to be found. Both the particle best fitness 

and the global best performance have been reached after 
twenty iterations. Bad performance particles disappeared 

with the increasing value of the number of iterations.  

 
Fig. 4. Stator currents spectrum in case of one broken bar and the 

motor operating at full load, obtained by using GA. 

 

H. Other Techniques 

There are many AI techniques that could be employed in 
the induction motor fault diagnosis. Two of them, already 

tested, have been select to illustrate these possibilities. 

 

H1.  Artificial Immune System 

Artificial immune system (AIS) is an emerging soft 

computing method inspired by natural immune system. 

Because the AIS abilities of learning, memory and self 

adaptive control, this method is used in pattern recognition, 

classification, optimization and anomaly detection problems. 

Clonal selection is an artificial immune algorithm used for 

optimization problems. It has not crossover operator, so this 

method is different from genetic algorithm. Also, it 
converges faster than genetic algorithm.   

In combination with other diagnosis methods, AIS can 

effectively improve the accurate rate of fault diagnosis and 

diagnosis system robustness, bringing into play each of their 

advantage, so that the accurate rate is improved. Clonal 

selection has been used to select optimal parameters of SVM, 

extracted from three phase motor current and constructed 

based on Park’s vector approach. This has been applied to 

the study of broken rotor bar and stator short circuit faults 

[15]. Also, AIS method has been combined with neural 

network for machine fault diagnosis using genetic algorithm 

to combine diagnosis methods [28, 37-38]. In [39] the IGA is 

employed to adaptively optimize the structure of an ANN. 

Four typical fault situations have been studied: bearing fault, 

stator winding fault, broken rotor bar, and eccentricity [39]. 

AIS inspired fault detection algorithm has been proposed in 

[40] for detection of broken bars. The performance of faults 

detection is improved by using genetic algorithm and fuzzy 
clustering method. 

 

H2. Bootstrap Gaussian Process 

Bootstrap Gaussian Process (BGP) has been proposed 

from the merge of Gaussian process classifiers (GPCs) and 

bootstrap methods, as an alternative to other classifiers, like  

the kernel classifier support vector machine (SVM), which 

has excellent performance towards this purpose, but it has 

difficulties to optimize relevant hyper-parameters. GPCs are 

Bayesian probabilistic kernel classifiers and provide a well 

established Bayesian framework to determine the optimal or 
near optimal kernel hyper-parameters. They are largely 

unexplored for anomaly detection applications and, also, a 

promising statistical tool for both binary and multi-category 

classification. Moreover, GPCs proved to outperform SVM 

[41]. It can be employed to solve a wide range of problems, 

such as hypothesis tests, model selection and probability 

distribution estimations. Bootstrap is most useful where little 

is known about the statistics of the data or too few samples 

are available to use asymptotic results [42]. 

In BGP, bootstrap methods are incorporated to improve 

GPCs’ performance for small machinery anomaly samples 

by re-sampling at random. The fact that GPCs are strong 
classifiers suggests that small numbers of bootstrap samples 

might be sufficient to enhance classification performance.  

Experiment results for rotating machinery misalignment 

anomalies detection [43] in which wavelet packet is utilized 

to perform vibration analysis, show that bootstrap GPCs are 

highly effective and outperform GPCs and SVM with cross 

validation for anomaly detection. Thus the proposed 

approach is promising for rotating machinery anomaly 

detection. 

III. CONCLUSION 

This paper treats of the application of nine Artificial 

Intelligence (AI) methods in induction motor fault diagnosis: 

neural networks, fuzzy logic, neural-fuzzy, genetic 

algorithms, artificial immune system, vector support 

machine, particle swarm optimization, and Gaussian 
bootstrap process were summarized. Their applications and 

possibilities of combination were discussed as well. AI 

techniques are a very strong tool for electrical motors 

diagnosis studies. Although some investigators indicate that 

they are not yet supposed to compete with conventional 

methods, tremendous efforts have been made to develop new 

methods, as it is the case of bootstrap gaussian process. AI 

methods become a strong tool when used in combination 

with other ones. 
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