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Abstract – Several approaches related to fault tolerant 

motor control have already been proposed. However, 

most of them consider the sensors fault-free and work 

about faults in motors and actuators. Sensors are the 

fundamentals in any feedback control system. The bad 

calibration of sensors in motor drives may lead to 

degradation of performance and even to instability.  The 

purpose of this work is to evaluate some models 

presented in recent publications to perform on-line 

sensor fault compensation. In a standard fault tolerant 

approach, the fault would be detected and the sensor 

would be isolated. The faulted sensor may have an off-set 

or scaling error and could still be used if its error is 

compensated. In this paper, different mathematical 

solution based on auto-associative models will be 

evaluated and compared. This technique is described and 

applied in indirect vector control of an induction motor. 

Simulated and experimental results are discussed. 

1 

Keywords - Drive Systems, Auto-associative Models, 

Sensor drift compensation, Induction Motor. 

I. INTRODUCTION 

The importance of motor drives with vector control is 

already highlighted in the word. Vector controlled induction 

motor drives have replaced other expensive machines with 

comparable performance requirements. However, it is well 

known that the performance is completely dependent on the 

measurements and fault in sensors may lead to instability. 

Therefore, it is mandatory to have a solution for sensor fault 

compensation in motor drives applied to critical processes. 

Despite the importance of sensors in motor drives, this 

subject is relatively recent and there are only a few published 

papers about faults in sensors and its compensation in motor 

drives [1-6]. There are several approaches to fault tolerance 

in motor control [7-10], but most of them are aimed at faults 

on power semiconductors and on motors. 

The scaling error (multiplicative) in current measurement 

causes oscillations in the torque at the same electrical 

frequency and the off-set error (additive) in current causes 

oscillations in the torque with the double electrical frequency 

[4]. Faults in a position sensor in rotor may result in over-

currents with heavy load or high speed of operation due to 
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the decoupling failure between the d and q axes. Under light 

load and low speed, the torque linearity would not be kept 

[5]. The error in voltage sensors results in problems with PI 

controllers tuning and in the decoupling term of the counter-

electromotive force in the current controller [5]. Only the 

fault in current sensors is evaluated here in order to introduce 

the methodology, but the same principle can also be applied 

to the voltage sensors. Also, any other sensors such as 

temperature, vibration and flux can be used with this 

technique. 

In [4], the current sensors are compensated using the 

estimation of the off-set or scaling error based on the speed 

measurements. The current errors are well compensated, but 

the speed sensor is also susceptible to faults. 

In [5], the current, voltage, and speed sensors are 

considered. Every sensor is estimated as a function of the 

others and if the encoder is faulted, the controller is switched 

to the sensorless mode. 

In [6], the fault detection is done using the sum of the 

three currents. If it is not zero, the sensor with the highest 

peak is disconnected. The same procedure is applied to the 

voltage sensors. 

It is important to note that the compensation is more 

desirable than the detection and isolation of the sensors. 

Isolate will always imply in the open loop control unless 

there are redundant sensors. The sensor compensation found 

in literature is always based on the other sensor 

measurements, which may also be faulty. This is the 

challenge of the sensors compensation.  

Strategies based on auto-associative model (AAM) 

techniques have been successfully applied for sensor 

validation and fault detection in huge processes such as 

nuclear power plants and chemical plants. With this approach 

a sensor may be sent to maintenance only when a fault is 

detected. The estimation of the auto-associative models has 

important features, such as noise reduction, improvement of 

the accuracy and fault rejection. In other words, the estimates 

are more reliable than the measurements and can be used to 

compensate the sensor errors in the feedback control. This 

approach, have recently be showed in previous works [1-3] 

and will be deeply explored in this paper. 

The aim of this paper is make a comparison of the 

previously reported methods for this specific application. 

Also, it will be shown how to use the performance metrics to 

evaluate the methods for other applications. Moreover, three 

other AAM sensors compensation in motor drives will be 

evaluated: (Linear, MSET and Partial Linear). 
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II. MOTOR DRIVER OVERVIEW 

Figure 1 shows the block diagram of induction motor 

drive system using stator flux-oriented indirect vector 

control. The stator flux orientation has the advantage that its 

parameter variation problem is less compared to that of rotor 

flux orientation. The power circuit in the figure consists of a 

DC source (battery or rectifier DC), PWM IGBT inverter and 

cage type induction motor. The Figure 2 shows how the 

AAM is included in the conventional control scheme, 

comparing with Figure 1. The signal processing blocks 

include machine phase current sensors, auto-associative 

model based drift compensator, signals computation and 

controller, and the PWM algorithm as shown. The command 

torque (Te
*
) and stator flux (ψs

*
) generate the active (iqs

*
) and 

reactive (ids
*
) current commands within the block which are 

then translated into command voltage (V
*
) and its angular 

position (θ
*
) through the unit vector generated by the speed 

encoder output (ωr) and feedforward slip frequency. The 

feedback stator flux is calculated with the current model 

using speed and feedback currents. One reason for selecting 

this drive topology was that the setup already existed in the 

laboratory for the project. However, the approach proposed 

here can also be applied to other drive control schemes. 

 

�
��
�

 

Fig. 1.  Block diagram of stator flux oriented vector-controlled 

drive. 

�
��
�

 

Fig. 2.  Block diagram of a stator flux oriented vector-controlled 

drive using AAM Drift Compensation of current sensors. 

III. EFFECTS OF SENSOR FAULT IN FEEDBACK 

CONTROL  

Consider the dynamic system represented in the state-

space equations (1). In (1), x is the vector of states, u is the 

vector of inputs and y is the vector of outputs. A, B and C are 

matrices that define the dynamic behavior of the process. The 

first equation is the state-space equation and the second is 

known as state observer neglecting the influence of u in y.  

 

�
�
�

⋅=

⋅+⋅=

xCy

uBxAx�
 (1) 

Equation (2) shows the equivalent state-space equations of 

the system of (1) in closed loop considering u = r – y, where 

r is the reference and input in closed loop. 

 rBxC)B(Ax ⋅−⋅⋅−=�  (2) 

The matrix that multiplies x determines the dynamic 

features of the system, including controllability and stability. 

The equations with additive error, such as an offset in the 

sensor measurement, in (3) are calculated using u = r – (y + 

e), where e is an error. 

 e)(rBxC)B(Ax −⋅+⋅⋅−=�  (3) 

Equation (3) shows that there is no change in the 

dynamics of the system. However, the consequence of the 

additive error will be the change of the point of operation of 

the system. In (4), the state-space equations are obtained with 

a multiplicative error, such as attenuation of excessive gain 

in the sensors signal conditioning, considering u = r – y e. 

 rBxe)CB(Ax ⋅−⋅⋅⋅−=�  (4) 

This error is equivalent to a feedback gain and it changes 

the dynamics and the stability of the system. In this point of 

view, multiplicative errors are more critical than additive 

errors, but both of them can lead to undesirable effects 

accordingly their intensity. 

Multiplicative or additive errors may be produced by 

faults in sensors due to aging, interference, physical damage, 

and others. The AAM is successful, because it reduces the 

magnitude of the error in the presence of redundancy as 

explained in the next sections. 

A. Stability 

Evaluating the stability for linear state space models, it is 

well known that it is dependent only on the eigenvalues of 

the state matrix (matrix that multiply the state vector x). In 

equation (3), the additive error does not change the state 

matrix in closed loop and it has an effect of change the 

referent r. On the other hand, multiplicative error calibration 

changes the state matrix, as shown in equation (4), and it 

may turn the system more susceptible to instability. 

In fact, the real system is not ideally linear and even 

additive fault may cause stability problems. But this notion 

of stability, observing the state matrices in (3) and (4), shows 

that the fault effects of multiplicative errors may be usually 

severer than the effects additive errors. 
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IV. STUDY OF THE FAULT EFFECTS 

The sensor drift compensation AAM was studied initially 

on MATLAB/Simulink simulation with a 20 hp drive 

system. In the simulated drive system, the current 

measurement in one phase was injected with additive (1.5 A 

or 15% of the nominal current) and multiplicative (with a 

factor of 0.05) errors, whereas the other two phase currents 

remain normal. Then the drive system was tested without 

compensation. Figure 3 shows the resulting speed response, 

where the set speed, actual response without fault and that 

with fault condition are indicated. Obviously, speed 

oscillation is induced by severe unbalance in the phase 

currents. It is important to note that three current sensors are 

used in this case and the fault is applied only in one sensor. 

In normal application with two sensors, the fault in one 

sensor is extended for two phases and the resulting fault 

effect is worse than that shown in Figure 3.  
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Fig. 3.  Simulated current sensor fault effect on speed oscillation. 

Therefore, even without compensation, the simple 

procedure of using three current sensors instead of two helps 

to improve the performance. Figure 4 shows the frequency 

components of the speed oscillation. The multiplicative error 

generates oscillation at double the electrical frequency, 

whereas the additive error generates oscillation at the system 

electrical frequency. 
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Fig. 4.  Simulated fault effect on speed oscillation in frequency 

domain. 

Figure 5 shows the real stator currents in the motor in 

normal operation (a) and under fault conditions (b). Although 

there is no fault in the motor or actuator, there are high 

currents due to the fault in sensor, which may be dangerous 

to other components. 
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Fig. 5.  Stator Currents for Normal (a) and Fault (b) Conditions. 

More than just oscillations have been observed in vector 

controlled induction motor. Depending on the type and 

intensity of the error the system may goes unstable, as shown 

in the simulation of Figure 6. In this simulation, a 

multiplicative error was exponentially applied to the system 

in such way as the initial gain was 1 (no error) and the gain 

in the imminent instability was about 0,2. 

The Figure 7 shows the fault effect in the control using an 

AAM. The measured current of phase A suffers deep 

distortion compared with the real current. On the other hand, 

the estimated currents are closer to the real currents than the 

measurements. Once these estimated currents are used in the 

control, the effects of overcurrents presented in Figure 5 are 

reduced. Increasing the number of redundant sensors and 

using different methods this improvement can be even better 

of this example of compensation.  
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Fig. 6.  Instability caused by multiplicative error. 
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Fig. 7.  Currents operating with AANN compensation. 

V. AUTO-ASSOCIATIVE MODELS OVERVIEW 

The auto-associative models can be built using several 

different techniques, where AANN and AAKR is just one of 

them. These models have been used in monitoring and 

diagnosis very often, but just recently they are being used in 

control loops to compensate the sensor fault effect directly. 

Therefore, it is not well-known exactly the advantages and 

drawbacks of these models. The comparisons described in 

this work aims to overcome this gap and methodology 

presented may help future evaluation of each technique for 

each application. 

The conventions and performance metrics used to 

compare the methods will be first described, and then, the 

comparison will be presented. 

A. Conventions 

Consider the generic auto-associative model in Figure 8. 

The models trained with data (data based or empirical 

models) usually have a big number of inputs and outputs, 

because they are used to model complex systems. In the 

sensors current application, the models have three outputs 

(because three current values are needed) and the number of 

inputs is equal to the number of sensors presented in the 

training data. 

 
 

Model . 

. 

. 

. 

. 

. 

N input  

(X) 

M output 
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Fig. 8.  Generic Auto-Associative Model. 

The training is performed off-line so the training data set 

must be well chosen to make sure that the model will provide 

good estimates in any operating point. 

It is useful a clear definition of the notation used to better 

understand these models and the performance metrics. 

Suppose that xi is the i
th

 of the N inputs and yj is the j
th

 of the 

M outputs, accordingly the Figure 8. And jŷ  is the j
th

 

estimation correspondent to the output yj. Note that xi, yj and 

jŷ  are bold because they are vectors with n observations 

each. Also, let is consider X, Y and Ŷ as matrices that 

contain the vectors xi, yj and jŷ respectively. The Figure 9 

represents the described notation. 
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Fig. 9.  Notation. 

In practice, each column of matrix X represents a sensor 

used in the input of the model and the columns of matrix Y 

are signals whose measurements have to be estimated. Both 

matrix are the same when an estimation of each sensor is 

needed. The matrices X and Y are the data used to build the 

model. Matrix Ŷ  are estimations of Y obtained with the 

trained model for each input X. 

B. Performance Metrics 

The quality of each model may be defined using some 

important performance metrics. Some of them are: mean 

square error and sensibility. They can show if the model may 

improve the system response in normal conditions of 

operation and if the model can improve the response in fault 

conditions. 

The mean square error (MSE) in equation (5), compare 

the estimated output with the actual output without noise. In 

(5), n is the number of observations, kjŷ  is the k
th 

estimation 

of the signal j and ykj is the k
th

 observation. 

 ( )

=

−=
n

k

kjkjj yy
n

MSE
1

2
ˆ

1
 (5) 

This metric is well known and is useful to determine the 

accuracy of the model. This accuracy is fundamental to 

assure that the control system will keep the same response 

using the estimations of the model as a feedback signal in the 

control loop. On the other hand, the sensibility is a metric to 

define the improvement of the transient response in the 

presence of fault. 

Consider that 

drift

kix
 is the kth observation of xi with 

artificially generated drift and 

drift

kjŷ
 is the kth estimate 

Time(s) 

Estimated Currents 

Measured Currents 

Real Currents 
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observation of yi to the same inputs with the drift. This drift 

may be additive or multiplicative changing the off-set or the 

scale of the original signal. Thus, the denominator in 

equation (6) represents a simulated drift in the input i and the 

numerator is the propagation of the fault to the estimation of 

the signal j. 
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=

−

−

=
n

k

ki

drift

ki

n

k

kj

drift

kj

ij

xx

yy

S

1

1

ˆˆ

 (6) 

This effect of propagation can also be observed in the 

illustration in Figure 10. Once an error is simulated in one 

input, this error is propagated to the all estimations y. It 

happens because each estimation is a combination of all 

inputs. In ideal condition, the error in any input should not be 

presented in the estimations.  

 

Fig. 10.  Illustration of error propagation in AAM. 

The result is a matrix which shows the effect in the output 

j due to a fault in the input i. When i is equal to j, then it is 

called robustness. When i is different from j, then it is called 

spillover. The optimum sensibility matrix should be zero so 

that the fault effects could be completely eliminated. 

Equation (7) shows the filtering performance were the 

noise is rejected from the model. The AAM is no dynamic 

but it can filter distinct white noise for each sensor since the 

noises for each sensor are not correlated. That is the reason 

that allows AAM increases the precision of the 

measurements. 
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In practice, this equation is the same of equation (6). The 

only difference is that a noise is added in each input instead 

of a constant error. 

VI. EXPERIMENTAL RESULTS 

The results have been obtained using and indirect vector 

controller ½ HP induction motor. The motor is controlled to 

track the speed path indicated by the black line in Figure 11 

and Figure 12. The multiplicative and additive faults are 

applied after 5 seconds of running indicated in Figure 11. 

The motor vibration is immediate and it loses the stability 

after 8 seconds. The response in Figure 12 was obtained 

using the same conditions applied to get the response in 

Figure 11, including the same number of sensors and the 

same fault applied after 5 seconds. The only difference is the 

use of an AAM in the feedback currents, as presented in [1]. 

The AAM is implemented on-line as presented in Figure 2 

with a 1ms of sample time. The vibration was not completely 

mitigated, but it showed a slightly reduction and the motor 

kept stable up to the end of the experiment. Obviously, 

attenuation in speed oscillation occurs due to compensation 

of the current errors. 
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Fig. 11.  Experimental current sensor fault effect. 
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Fig. 12.   Experimental current sensor fault effect with AAM 

compensation. 

The fault effect is still observable even with the use of the 

AAM and it is not possible to assure the system will never go 

unstable. However, it is possible to confirm that AAM at 

least delayed the instability and reduced the fault effect. 

Another important result is that the response was practically 

not changed in normal operation. 

The type of model used to obtain these results was AANN 

(Auto-Associative Neural Network) which was trained with 

the features presented in Table I, using simulated data. The 

trained topology has one more layer than that presented in 

Figure 2. The bottleneck layer has only two neurons and it is 

indicated in bold. The performance function considered in 

the training process is the regularized mean square error. The 

regularization improves the generalization of the network 

and its robustness to fault in sensors. 
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TABLE I 

Main features for the AANN with Three Sensors 

Features Tested AANN 

Number of layers 6 

Number of neurons for each 

layer, respectively 

3, 8, 6, 2, 8 and 3 

 

Performance Function Regularized MSE 

Training Algorithm Resilient Backpropagation 

Epochs 2000 

 

The performance varies with the data set used and for 

each different AANN trained. Maybe, the high reliability 

drive systems in the future could have neural networks 

(specifically trained for each family of drives) used to pre-

process all feedback signals from the sensors.  

A. Other Results with Kernel Model 

The same experimental setup was used to get results with 

auto-associative kernel regression (AAKR). This model was 

made using the same simulated data used for training the 

AANN. The control is performed to follow the trapezoidal 

path of speed shown in Figure 13. The motor is accelerated 

from 0 to 3 seconds up to 900 rpm and decelerated from 7 to 

10 seconds. The standard response is compared with the 

response using the kernel model with three sensors and the 

kernel model with six sensors.  
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Fig. 13.  Experimental Speed Responses without Fault.  

The kernel model improves the precision of the 

measurements and it tends to improve the response also in 

normal conditions of operation. 

A multiplicative fault is added to one current sensor of 

one phase at 5 seconds after the beginning of the experiment. 

The results are shown in Figure 14. 
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Fig. 14.  Experimental Speed Responses with Fault.  

In this case, the fault also caused the loss of control. This 

is due to the gain applied to the current sensor, where the 

current is amplified. Then, an amplified current is observed 

by the controller while the actual current is low. As a result, 

the control action reduces the supposed high current that is 

actually a low current. It decreases torque and stop the 

machine. 

The kernel models showed to minimize the fault effect 

and can keep the control even with three sensors [2]. But the 

use of more sensors could also be useful for multiple faults. 

VII. EVALUATION OF THE MODELS 

A. Type of models 

The methods used to create associative models tested in 

this work were: Linear Regression, Auto-Associative Kernel 

Regression (AAKR) [2,14], Auto-Associative Neural 

Network (AANN) [1,11-13], Partial Linear [15] and 

Multivariate State Estimation Technique (MSET) [16-17]. 

Also, it has been made the analysis of the performance 

increasing the number of sensors.  

B. Results 

The presented metrics allow the different modeling 

techniques to be compared.  

The tables II, III and IV shows the values of the sensibility 

matrix found for the linear, kernel and neural network 

models, respectively, in the application of current 

compensation. These results were obtained using equation 

(6). For the linear model, all sensibilities are 0.5 which 

means that an error in any sensor will affect 50% all the three 

estimations (A, B and C). 

TABLE II 

SENSIBILITY OF A LINEAR MODEL 

       Propagation 

 

Drift 

A B C Sum 

Sensor A 0.5 0.5 0.5 1.5 

Sensor B 0.5 0.5 0.5 1.5 

Sensor C 0.5 0.5 0.5 1.5 
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The kernel sensibility matrix in Table III is slightly 

asymmetric and the propagation is not the same for each 

sensor. This asymmetry is even more intense in the AANN 

model in Table IV. This difference of these models in 

relation to the linear model is not necessarily a drawback. It 

means that the each sensor will be not equally compensated. 

The best sensibility matrix should be a zero matrix, which 

means that no drift in the sensors will be reflected in the 

estimations. 

TABLE III 

Sensibility of a Kernel Model 

     Propagation 

 

 

Drift 

A B C Sum 

Sensor A 0.6547 0.3240 0.3307 1.3094 

Sensor B 0.3320 0.6592 0.3273 1.3185 

Sensor C 0.3351 0.3230 0.6581 1.3162 

Although some values of propagation are bigger than the 

other models, the AANN presented some of the smallest 

values as occurred with the drift in the sensor A. In this case, 

the model is adequate is this sensor has more probability to 

be faulted. 

TABLE IV 

Sensibility of a AANN Model 

       Propagation 

 

 

Drift 

A B C Sum 

Sensor A 0.5033 0.2732 0.2302 1.0067 

Sensor B 0.4967 0.7268 0.2302 1.4537 

Sensor C 0.4967 0.2732 0.7698 1.5397 

It is important to note that the AANN and the kernel 

model have similar error compensation. But the AANN is 

safer to use in normal operation due the zero MSE, shown in 

Table VI. 

These are results of 3 sensors and two models. To show 

briefly all evaluated results with different models and 

number of sensors, the Tables V, VI and VII are presented. 

The propagated error in Table V is calculated with the 

average of the sum column  presented in Tables II, III and 

IV. Then, this percentage number reflects the capability of 

the model to reject error. All models with 2 sensors presented 

twice the input error. Independent of the model used. That is 

because there is not redundancy. Increasing the number of 

sensors de physical and analytical redundancy increases and 

the propagated error may be under 100%. 

TABLE V 

Propagated Errors 

Number of 

Current 

Sensors 

2 3 4 5 6 

Linear 200% 150% 108% 86% 75% 

AAKR 200% 132% 99% 79% 66% 

MSET 200% 132% 99% 79% 65% 

AANN 200% 133% 100% 89% 82% 

Partial  

Linear 

200% 150% 100% 23% 18% 

 

The Figure 15 shows graphically the results of Table V. 
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Fig. 15.  Propagated Error. 

The results of MSE in Table VI are related with the 

interference of the model in normal operation. Despite the 

best results of error propagation with 3 or 4 sensors, the 

AAKR changes the true current measurement even without 

fault. The impact on the performance still needs to be 

analyzed to verify if they are acceptable. 

TABLE VI 

MSE 

Number of  

Current 

Sensors 

2 3 4 5 6 

Linear 0,0000 0,0000 0,0000 0,0000 0,0000 

AAKR 0,0263 0,4846 0,0839 0,0395 0,0003 

MSET 0,0000 0,0000 0,0000 0,0000 0,0000 

AANN 0,0000 0,0000 0,0000 0,0000 0,0000 

Partial 

Linear 

0,0000 0,0000 0,0000 0,0000 0,0000 

For mode than five sensors, the partial linear models are 

far better with good Sensibility and MSE. But Kernel and 

MSET are the best for filtering, as shown in Table VII. This 

table has been obtained in similar way of Table V. 

TABLE VII 

Average Filtering 

Number of  

Current 

Sensors 

2 3 4 5 6 

Linear 1,1343 0,8638 0,7416 0,6530 0,6107 

AAKR 1,1133 0,7487 0,7062 0,6153 0,5764 

MSET 1,1344 0,8106 0,7250 0,6425 0,5750 

AANN 1,1343 0,8392 0,8256 0,9468 0,9372 

Partial  

Linear 

1,1343 0,8638 0,8088 0,7481 0,6445 

Table VII and Figure 16 show the numerical and graphical 

results for propagated noise.  

The use of two sensors is typical in motor drives in order 

to reduce costs. However, it amplifies the noise in the 

measurements and the error propagation, which are normally 

not observed by the driver designer. 
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Fig. 16.  Propagated Noise. 

VIII. CONCLUSION 

The current sensor fault compensation has been 

demonstrated in the paper with different auto-associative 

models in order to make a comparison of different models in 

this specific application. An indirect vector-controlled 

induction motor drive system has been experimentally 

evaluated to validate the performance improvement in the 

previous works. However, this is the first work comparing 

different techniques and their performance. The AAKR and 

MSET are the best for filtering or noise rejection. The 

models are not dynamic and the filter effect is due to the non-

correlation of the noise. The filtering metric is also a 

contribution of this work, which represents the improvement 

in sensors accuracy. Above five sensors, the partial linear 

models showed a far best performance in error propagation 

compared with other techniques. As this is the main metric 

for fault tolerant operation, it may be preferential to choose 

the best technique. 

The main importance of the presented metrics is that the 

models can be evaluated before the use in real applications.  

The principle of operation of the sensors compensation using 

auto-associative models in feedback control loop showed to 

reduce the fault effects and let open possible future works 

with other types of sensors. Multiple fault effects also need 

to be studied. 
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