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Abstract – Exploiting the flux concentration
configuration is a good alternative for designing a
relatively low cost synchronous motor based on ferrite
magnets. This paper discusses the design of a motor drive
system based on a three-phase permanent magnet motor
in which both the use of low cost ferrite and minimization
of cogging torque have been adopted as design criteria.
The dynamic modeling, parameter identification, and
experimental characterization of the motor as well as
the overall control system design have been performed.
Simulation and experimental results are presented to
demonstrate the correctness of the methodology and the
feasibility of proposed motor drive solution and its related
feedback control laws.

Keywords – AC motor drive system, Characterization
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I. INTRODUCTION

The development of the power electronics together with
the availability of new types of magnetic alloys have allowed
the usage at industrial scale of permanent magnet motors.
This fact opens new perspectives for applying this type
of electromechanical converter in quite diverse types of
configurations, all of them requiring the use of computer aided
design tools to investigate how the physical arrangement of the
magnets in the rotor of the device affects the energy conversion
process. The most popular among these configurations are
the surface design (SPM) and transverse design (IPM). In the
surface design, the permanent magnets are placed along the
outer surface of the rotor whereas, for the transverse design
the permanent magnets are inserted in the rotor along its
radius. Transverse placed permanent magnets provide good
mechanical resistance against centrifugal forces created when
the rotor rotates at nominal speed [1]. Besides the mechanical
robustness the transverse design allows one to use ceramic
magnets that exhibit low energy density being relatively cheap
when compared to rare earth magnets. The transverse design
promotes magnetic flux concentration and consequently one
may obtain, even for a low energy density magnet, a relatively
high level of magnetic induction at the airgap and thus a
high torque density. In the face of the so called rare earth
magnet crisis [2] these are quite important characteristics since
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it provides an alternative for the design of high performance
and low cost permanent magnet motors.

This paper discusses the design of motor drive system
based on strontium ferrite (SrFe12O19) permanent magnet
motor in which the magnets are placed transversely along
the rotor radius. As it will be shown, such electromagnetic
configuration leads to mathematical formulation that is quite
different from the standard salient pole permanent magnet
motor model. However, despite these differences, the
conceptual basis for the proposed control laws is quite similar
to the standard cascade strategy where the reference current
for the q-axis stator current controller is provided at the
output of the speed controller and the reference current for
the d-axis current controller is kept zero [3]-[5]. The idea
behind this decision is to verify the robustness of the standard
control strategy and determine whether it will be necessary
to employ more sophisticated control laws. Simulation and
selected experimental results are presented to demonstrate the
correctness of the methodology as well as the feasibility of
proposed motor design and its related control strategy.

II. MOTOR DESIGN

Interior permanent magnet motors (IPM) are designed such
that the magnets are placed transversely along the rotor radius
[6]-[8]. This type of motor is used in high performance
applications that demand high massive power [9]-[11] and
high volumetric efficiency [12]. The design procedure adopted
for the motor studied in this paper exploits the use of computer
aided tools based on the finite element method. The details of
the design procedure can be found in [9]. In the present paper,
due to space limitations, the proposed modeling, parameter
estimation and control design methodology will be applied
only to the first built prototype for which the cogging torque
reduction was not implemented. Figure 1 shows a photograph
of the actual IPMS prototype. Exploded views of all the parts
that compose the stator and the rotor of the prototype are
shown in Figure 2. The IPM motor design data are given in
Table I; from now on the machine prototype will be refereed
as IPMS.

III. MOTOR MODELING

In the design of motor drive systems, the standard approach
is to employ the Park’s model for representing the dynamic
behavior of the electromechanical converter. The modeling
approach adopted in the present work can be considered as a
semi-empirical one. Indeed, the derivation of the proposed
model, up to certain point, follows the same procedure
adopted in the modeling of a salient pole permanent magnet
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TABLE I
IPM Motor Design Data - Strontium Ferrite: SrFe12O19

Magnets.

Quantity Symbol Value/Unit
Rated power Pn 250 W
Rated current Ia 2.5 A

Number of magnetic poles pairs p 4

Number of stator phases m 3

Number of stator slots Nrh 24

Stator pole pitch τp 34.95 mm
Axial length L 90 mm

External diameter Do 120 mm
Core height hn 5 mm
Teeth height ht 10 mm
Magnet sizes lm/hm/wm 8.8/25/42 mm
Remanence Br 0.38 Tesla

Air gap gmec 0.3 mm
Aspect ratio γ 2/3

Fig. 1. Photograph of the IPMS prototype.

motor. The basic difference is related to the refinement of
the mathematical representation used to describe the spatial
dependencies of the self and mutual inductances and the
magnetic flux due to the permanent magnets. The details
regarding the application of the physical laws as well as the
step by step model derivation are not presented due to space
limitations and can be found in [13].

Determining the model parameters is quite important for
designing the feedback control laws. There are several
techniques for determining the mechanical and electrical
parameters of permanent magnet motors [10],[12],[14]-[20].
In the present paper a locked rotor technique was adopted
for determining the angular profile of the stator inductances;
the rotor must be locked at different angular positions.
The characterization of the magnetic flux linkage will be
performed based on the voltage induced at the stator windings
when the machine operates as a generator. Experimental
results obtained from those two tests will be presented further
on. Based on such experimental results, which are presented
in section V, the following mathematical model was adopted
for representing the dynamics of the IPMS prototype:

Vdq = RsIdq + Ldq
d

dt
Idq +Udq (1)

ce =
p

2
I
T
dqLcIdq + pITdqΛ

′

rdq (2)

(a) The principal elements of the stator are: back cover 1 ,
locking ring 2 , stator assembly 3 , evacuation holes 4 ,
front cover 5 , handle 6 , hole guide 7 , 9 and weld seam
8 .

(b) The principal elements of the rotor are: front and back
rings 1 , 4 , spacing ring 2 , polar pieces block 3 , shaft
5 , magnetized pieces 6 , interpolar spacer 7 , extenders

fixing 8 , and retaining flange 9 .

Fig. 2. Exploded views of the stator and rotor showing the principal
elements of the IPMS.

and

J
d

dt
ωr = p(ce − cm). (3)

where
Udq = ωr

(
LcIdq +Λ

′

rdq

)
(4)

Vdq =
[
vd vq

]T
(5)

Idq =
[
id iq

]T
(6)

Rs =

[
rs 0
0 rs

]
(7)

Ldq =

[
ld(θr) 0
0 lq(θr)

]
(8)
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Lc =

[
0 lc(θr)

lc(θr) 0

]
(9)

Λ
′

rdq =
dΛrdq

dθr
=

[
λ

′

rd(θr)

λ
′

rq(θr)

]
(10)

ld(θr) = Ld + ldh cos(6θr) (11)

lq(θr) = Lq + lqh cos(6θr) (12)

lc(θr) = lcdc + lcac cos(6θr) (13)

λ
′

rd(θr) = λPM6d sin(6θr) + λPM12d sin(12θr) (14)

λ
′

rq(θr) = λPMq +λPM6q cos(6θr)+λPM12q cos(12θr). (15)

In the above equations Vdq is d- and q-axis voltages, Idq
the d- and q-axis currents, ce electromagnetic torque, cm
mechanical load, ωr the electrical angular rotor speed, p
number of pair poles, Rs the stator resistance, Ldq the d-
and q- axis inductances, Lc the coupling inductances, Λ

′

rdq

the d- and q- axis magnetic flux linkages, J the moment of
inertia. Indeed, the experimental results have shown that by
adding more harmonic terms in the mathematical expressions
used to specify the spatial dependencies of the self and
mutual inductances as well as the magnetic flux linkage with
respect to the standard salient pole synchronous motor model
equations one may obtain a quite good representation for the
IPMS.

The above model equations have been expressed in
coordinates of a synchronous reference frame. To express the
three-phase quantities in synchronous coordinates one must
apply the following transformation matrices

Tαβ =

√
2

3

[
1 − 1

2
− 1

2

0
√
3

2
−

√
3

2

]
(16)

Tdq =

[
cos(θr) − sin(θr)
sin(θr) cos(θr)

]
. (17)

Figure 3 shows a simplified representation for the
permanent magnet motor studied in this paper. This
illustration presents the permanent magnets placed
transversely along the rotor radius, eight magnetic poles,
where θm (θr = pθm) is the rotor angular position
in mechanical radians. Thus, the dq-axes are spaced
electrically by π/2 degrees as represented in a polar pitch
and mechanically by π/8 degrees. The parameter values are
provided in the section where it presents and discusses the
experimental results.

IV. CONTROL STRATEGY

The design of a control strategy is usually based on a
mathematical model that suitably represents the dynamics of
the system under consideration. High performance ac motor
drive systems are usually based on field orientation concepts.
Figure 4 shows the block diagram of the speed control scheme.
The outer loop is for regulating the mechanical speed control
and the inner loop for stator current regulation. The control

Fig. 3. Simplified representation for the permanent magnet motor.
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Fig. 4. Block diagram of the control strategy for ac motor drive
system.

laws are implemented in the rotor flux reference frame an
thus the d-axis shown in Figure 3 must be aligned with
θr. Pulse width modulation is used for generating the stator
supply voltage and the control strategy is composed of three
linear proportional integral controllers. The output of speed
controller provides, i∗q , the q-axis reference current (an image
of the required electromagnetic torque) and thus it is cascaded
with the q-axis current controller. The d-axis reference current
is set to zero, i∗d = 0, since the magnetic excitation is provided
by the rotor magnets and there is no field weakening. The
outputs of the d- and q-axis current controller are compensated
by ûd and ûq, respectively; these terms represent the effect of
the back electromotive force.

A. D- and Q-axis Current Control
For determining the gains of the current controllers the

strategy one may consider that the mechanical time constant
is quite large when compared to the electrical ones; thus, for
the design of the electrical control loops one may assume that
the terms associated with the mechanical sub-system can be
treated as slowly time varying quantities. Besides, provided
by the decoupling of the d- and q-axis, the current control
can be achieved with two independent PI regulators since the
current/voltage relationship can be described by a first order
model and unity gain is a requirement for the closed-loop. The
Laplace transform of the voltage equation is given by:

Vdq(s)=

[
sld(θr) + rs 0

0 slq(θr) + rs

]
Idq(s)+Udq(s). (18)

The back electromotive forces (Udq(s)) depend on the motor
speed and will be considered as disturbances. Defining the
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voltage
V

′

dq(s) = Vdq(s)−Udq(s) (19)

leads to

I{d,q}(s) =
1

l{d,q}s+ rs
V

′

{d,q}(s) (20)

where the θr argument was dropped to simplify the notation,
and the PI current controller is given by

Gdq(s) =

[
Kpd 0
0 Kpq

]
+

1

s

[
Kid 0
0 Kiq

]
(21)

where Kp{d,q} and Ki{d,q} denote the proportional and the
integral gains, respectively. The closed-loop transfer function
from the reference current to the actual stator current is given
by

I{d,q}(s)
I∗{d,q}(s)

=

Kp{d,q}s+Ki{d,q}

l{d,q}

s2 +
Kp{d,q}+rs

l{d,q}
s+

Ki{d,q}

l{d,q}

. (22)

These gains are determined by d-axis: Kpd = αidrs, Kid =
Kpd

rs
ld

, q-axis: Kpq = αiqrs, Kiq = Kpq
rs
ld

where αid and
αiq are specified in terms of the pole location for the respective
closed-loop. For this design rule, only the average values of
the self inductances of the d-axis and q-axis, i.e., Ld and Lq ,
have been considered, as explained further on.

B. Speed Controller
For determining the gains of the speed controller one may

consider that the stator currents are both regulated, i.e.,

id (t) = i∗d, ∀t > 0 (23)

iq (t) = i∗q , ∀t > 0 (24)

in this case the electromagnetic torque generated by the motor,
ce, is determined by i∗q . Thus, from the point of view of
the mechanical load, one may consider the permanent magnet
motor as a torque generator. The Laplace transform of the
mechanical sub-system is given by

p(Ce(s)− Cm(s)) = JsΩr(s). (25)

Now, defining the net torque as

C
′

e(s) = Ce(s)− Cm(s) (26)

the transfer function used in the design of the speed control
becomes

Ωr(s) =
p

Js
C

′

e(s). (27)

The PI controller for the speed loop is given by

Gw(s) = Kpw +
Kiw

s
(28)

where Kpw and Kiw denote the proportional and the integral
gains, respectively. Thus, the closed-loop transfer function
will be given by

Ωr(s)

Ω∗
r(s)

=
(Kpws+Kiw) (p/J)

s2 + (p/J)Kpws+ (p/J)Kiw
. (29)

In this case the controller gains are given by Kpw =

2Jαw, Kiw =
K2

pw

4J where αw is specified in terms of the
displacement of the real pole.

(a)ld(θr) = Ld + ldh
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Fig. 5. Poles (×) and zeros (◦) for the three different operating
conditions regarding the inductances ld,q(θr): (a) Maximum values,
(b) dc component, (c) minimum value of d-axis inductance, (d)
Maximum values, (e) dc component, (f) minimum value of q-axis
inductance.

(a)

(b)

Fig. 6. Bode’s diagram for the three different operating conditions
regarding the inductances ld,q(θr): (a) Maximum Ld + ldh, dc
component Ld and the minimum Ld − ldhd-axis inductance, (b)
Maximum Lq + lqh, dc component Lq and the minimum Lq − lqh
q-axis inductance.

C. PI Current Controllers

Figure 5 shows the pole-zero maps for the transfer function
given in (22) at three different conditions regarding the
inductances profile ld,q(θr) (see expression in section III), i.e.,
the maximum Ld,q + ldh,qh, the dc component Ld,q and the
minimum Ld,q − ldh,qh. By observing this figure one can
see that pole-zero maps remain basically unchanged when the
inductances varies. Figure 6 shows the Bode’s diagram for the
same conditions.
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Based on those results one may use constant gains in the
current controllers since the differences observed at pole-
zero maps at the three operating conditions can be neglected.
Thus, for simplicity, the dc components of the d-axis and q-
axis inductances for determining the controller gains will be
used; the correctness of this decision will be demonstrated by
numerical simulation and also experimentally in the following
sections.

D. Control Law Discretization
The discrete time implementation of the stator current

controllers and speed controller was obtained by using the
Tustin discretization method. Although not mandatory,
for simplicity the same sampling time was used in the
implementation of the three controllers. The discrete transfer
function of the controller is given by

Gx(z) = Kpx +
Ts

2
Kix

z + 1

z − 1
(30)

where x ∈ {d, q, w}, d and q denoting the d-axis current
controller and q-axis current controller, respectively and w
standing for the speed controller. By considering that ek
represents the controller input and uk its respective output, the
recursive equation for computing the control signal is given by

uk = uk−1 + (Kpx +K
′

ix)ek + (K
′

ix −Kpx)ek−1 (31)

where K
′

ix = Ts

2
Kix and k = 1, 2, · · · , denotes the kth

sampling instant.

V. MOTOR CHARACTERIZATION

The IPMS prototype cannot be considered as a standard
synchronous motor. As emphasized in a preceding section the
dynamic model of the IPMS prototype is similar in structure
but substantially different from the standard Parks’s model. In
this case one must rely on experimental methods to determine
the values for the model structure and its parameters.

A. Magnet Flux Linkage
To determine the magnetic flux linkage of IPMS

prototype it has been operated as a generator driven by an
auxiliary synchronous motor (AM) running at constant speed.
Figure 7(a) illustrates the experimental set-up used in the
characterization of the magnetic flux linkage; vab and nm

are acquired to characterize the magnetic flux linkage The
waveform of one of the line to line voltages, vab, in open
circuit, has been recorded as well as the speed of the auxiliary
motor. Thus, the magnetic flux linkage can be determined by

λPM =
60

πnm

1

2p

max {vab}√
3

(32)

where max{vab} denotes the amplitude of the line to line
voltage (vab) and nm denotes the speed of the auxiliary
machine (in rpm) and p is the number of pole pairs. Using
this relationship and the dynamic model presented previously
one may determine

vd = ωrλ
′

rd (33)

nm

IPMS AM

nba c

vab

Data acquisition

(a)

IPMS

nba c

�r

= p�m

van

vcn

ia

L ( )s M ( )s

Data acquisition

�r

�r

(b)

Fig. 7. Experimental arrangements used for characterizing the IPMS.
a) Experimental arrangement used for determining the magnetic flux
linkage of the IPMS prototype. b) Experimental arrangement for
determining the self and mutual phase inductances.

and

vq = ωrλ
′

rq. (34)

The refinement of the electromotive voltage representation is
defined as a trade-off between accuracy and model complexity
stated in terms of the quantity of harmonics.

B. D- and Q-axis Inductances

The first step for finding the d-axis and q-axis inductances is
determining the self and mutual phase inductancesLs(θr) and
Ms(θr). In the experimental test for determining the phase
inductances the rotor of the IPMS prototype is mechanically
locked at different angular positions. At each position
one determines the phase impedance for calculating the self
inductance and the induced voltage of an open phase for
calculating the mutual inductance. Figure 7(b) illustrates the
experimental set-up used in the characterization of the self
and mutual phase inductances. The phase a is excited with
a sinusoidal voltage van (self inductance) and voltage at phase
c is used for measuring the induced voltage, vcn (mutual
inductance). A milling dividing head is used to lock the
rotor at a specific angular positions; in this test one needs
to have access to the neural wire of the machine since the
measurement of van and vcn are required.

The characterization procedure starts by applying a
sinusoidal voltage to one of the phases and measuring the line
current (flowing in this phase) and line voltage (one of the non
excited phases). From these records one may determine the
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phase inductances by using:

L̂s (θr) =

√( |−−→van|
∣
∣
∣
−→
ia

∣
∣
∣

)2

− r2s

2πfe
(35)

M̂s (θr) =
|−→vcn|

2πfe

∣∣∣−→ia ∣∣∣ (36)

where θr is the electrical angle at which the measurement is
taken, |−→van| is the RMS value of the applied sinusoidal voltage,
|−→ia | is the RMS value of the line current, fe is the frequency of
the applied sinusoidal voltage and |−→vcn| is the induced voltage
(at one of the non excited phases). These steps are repeated

∀θr ∈ ΘR,ΘR = {θ1, θ2, · · · , θN} (37)

After measuring at all of these positions one has determined
estimates for the angular profiles of the self and the mutual
phase inductances, i.e.,{

L̄s (θr) , M̄s (θr) , θr ∈ ΘR
}
. (38)

To use those estimates in the dynamic model one needs to
decompose these profiles in terms of a Fourier series, i.e.:

L̂s (θr) = L0 +

KL∑
n=1

Ln cos (2nθr) (39)

M̂s (θr) = M0 +

KM∑
n=1

Mn cos
[
2n

(
θr +

π

3

)]
. (40)

This decomposition can be formulated as a system
identification problem:

L̂L = arg min
LL∈DL

[
L̄s (θr)− L̂s (θr,LL)

]2
(41)

LL = [L0, Ln, n = 1, · · · , KL] (42)

L̂M = arg min
LM∈DM

[
M̄s (θr)− M̂s (θr,LM )

]2
(43)

LM = [M0,Mn, n = 1, · · · , KM ] (44)

which can be solved by using the least squares method,
provided KL and KM are specified.

Since the experiment used to determine the phase
inductance profiles was conducted at locked rotor, although at
different positions, the mechanical speed is always zero, i.e.,
ωr = 0. In this case the dq voltage equations of the dynamic
model can be simplified to

vd = rsid + ld
did
dt

(45)

and

vq = rsiq + lq
diq
dt

. (46)

Then, assuming that

L̂s (θr) = L0 +
4∑

n=1

Ln cos (2nθr) (47)

and

M̂s (θr) = M0 +

4∑
n=1

Mn cos
[
2n

(
θr +

π

3

)]
(48)

one may apply the coordinate transformation matrices to
obtain, after some algebraic work [see Ldq the d- and q- axis
inductances, Lc the coupling inductances given in (1), (8) and
(9)], the following relationships:

Ld = L0 −M0 +
1

2
L1 +M1 (49)

Lq = L0 −M0 − 1

2
− L1 −M1 (50)

ldh =
1

2
L2 +M2 + L3 −M3 +

1

2
L4 +M4 (51)

lqh = −1

2
L2 −M2 + L3 −M3 − 1

2
L4 −M4 (52)

lcdc = Ld − Lq, lcac = −2L2 − 4M2 + 4L4 + 8M4. (53)

C. Stator Resistance
The experimental arrangement used for determining the self

and mutual phase inductances has also been used to determine
the stator resistance. Figure 8 shows a phasor diagram for
which one may derive the following expression which was
employed to calculate the stator resistance:

rs = cos (θia)
|−→van|
|−→ia |

(54)

where, θia is the angle between van and ia. This technique
includes sinusoidal excitation and skin effects.

r is a

jw L ie s a

van

ia�

Fig. 8. Phasor diagram used to determine stator resistance.

D. Parameter Estimation
The techniques described previously have been applied to

determine the parameters of the dynamic model of the IPMS
prototype.

Magnetic flux linkage– Figure 9 shows the experimentally
acquired line voltage (upper plot) observed as a result of
the magnetic flux linkage when the auxiliary motor runs at
900 rpm. The line voltage is a highly distorted waveform and
its relevant frequency content (lower plot) is also shown in the
same figure. The harmonic orders and amplitudes are given
in Table II. To decide how many harmonics must be included
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Fig. 9. Experimentally obtained vab (thick line) (a) and its
reconstructed version (dotted line) as obtained with the relevant
frequency components (b) (see Table II).

TABLE II
Harmonic Orders and Amplitudes of vab Waveform.

Harmonic order Amplitude (V)
c1 1.0
c5 0.19797
c7 0.032879
c11 0.029614
c13 0.037828

in the representation of the line to line voltage, the reduction
of approximation error (its RMS value) when more harmonics
are added in the Fourier expansion was observed; no reduction
in the error has been observed for harmonic order greater than
13. Based on these results one may determine the harmonic
content of the magnetic flux linkage (λPMi = ciλPM) of the
dynamic model of IPMS prototype as given in Table III.

λPM =

√
3

2
λPM1 (55)

λPM6d =

√
3

2
(λPM5 − λPM7) (56)

λPM12d =

√
3

2
(λPM13 − λPM11) (57)

λPM6q =

√
3

2
(λPM5 + λPM7) (58)

λPM12q =

√
3

2
(λPM13 + λPM11). (59)

TABLE III
Harmonic Orders, dq Representation and Amplitudes for

Representing the Magnetic Flux Linkage.
Harmonic order Amplitude (Wb) dq-representation

λPM1 0.1333 λPMq 0.1633
λPM5 0.0259 λPM6d 0.0364
λPM7 0.0038 λPM6q 0.0271
λPM11 0.0032 λPM12d 0.0088
λPM13 0.0040 λPM12q -0.00097

TABLE IV
Harmonic Components of the Self and Mutual

Inductances.
Component Inductance (mH)

L0 9.51
L1 -5.72
L2 -0.52
L3 1.03
L4 -0.076
M0 -1.88
M1 1.03
M2 -1.08
M3 0.32
M4 0.11

d-axis and q-axis inductances– Figure 10 shows{
L̄s (θr) , M̄s (θr) , θr ∈ ΘR

}
for ΘR = {0, · · · , 2π} as

obtained experimentally. The phase current ia was kept
at 2.5 A (RMS) ∀θr ∈ ΘR. Based on these profiles the
least squares method was applied to determine the harmonic
components of the self and mutual phase inductances.
Similarly, to decide how many harmonics must be included in
the representation of the self and mutual inductances profile,
the reduction of approximation error (its RMS value) when
more harmonics (increasing KL and KM ) are added in the
Fourier expansion was observed; no reduction in the error has
been observed for KL and KM greater than 4. Table IV gives
the amplitudes of the four components of the self and mutual
inductances as well as its dq representation. The thick lines in
Figure 10 show the self and mutual inductances as calculated
with these four harmonic terms.

Stator resistance– By applying the procedure described
previously, the stator resistance was found to be 1.3915 Ω.

VI. MODEL VERIFICATION

A model verification test is described in this section.
The IPMS prototype was connected to a resistive bank of
33.33 Ω/150W per phase and it has been driven by the
auxiliary machine at a constant speed (900 rpm). The same
operating condition was simulated by using the estimated
parameters (see Section V). Figure 11 shows the measured
(imes) and calculated (icalc) phase current and the respective
instantaneous error (ε(k) = imeas(k)− icalc(k)).

The mean square error between the measured and calculated
phase current has been computed. For each phase, the mean
square error computed by

εLS =
1

N

N∑
k=1

ε(k)2 (60)

where k is the sample number, N the number of samples,
imeas the measured phase current and icalc the respective
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TABLE V
Parameters of the IPMS Prototype.

Nominal speed (nm) 900 rpm
Ld 9.55 mH
Lq 13.22 mH
ldh 0.55 mH
lqh 2.0 mH
lcac 5.9 mH

Stator resistance (rs) 1.39 Ω

Moment of inertia (J) 0.00131 Kgf/m2

calculated phase current. The magnitude of the mean square
errors represent 0.57%, 0.52%, 0.59%, of the amplitude of
phase currents ia, ib, and ic, respectively. Based on those
results one may conclude that the model given by (1) can
suitably be used to describe the dynamics of the IPMS.

VII. SIMULATION AND EXPERIMENTAL RESULTS

Table V gives the parameters of the dynamic model of
the IPMS prototype. A computational code based on the
Runge-Kutta-Fehlberg integration method has been employed
for simulating the motor drive system configuration described
in Figure 4.

A. Simulation Results
Figure 12, 13, and 14 show the dynamic response of the

motor drive system in terms of step changes in the reference
speed with and without load. Table VI shows the gains of
the discrete time equivalent (Tustin discretization method) of
the current controller for three different conditions regarding
the self inductance profile ld,q(θr), i.e., the maximum Ld,q +
ldh,qh, the dc component Ld,q and the minimum Ld,q− ldh,qh.
As verified by simulation (the results are not shown due to
space limitations) the response time of the closed-loop is fairly
the same. Thus, instead of using current controllers with angle
varying gains, it was decided to keep the gains constant and

(a)

(b)

Fig. 10. Estimates of the angular profile of motor inductances: a) Self
inductance and b) Mutual inductance.

(a)

(b)

Fig. 11. Measured current, calculated current and phase current error.
a) Measured and calculated currents an b) Instantaneous current error.

TABLE VI
Gains for the Discrete Time Representation of the Stator
Current Controllers as Obtained by Applying the Tustin

Discretization Technique for Ts = 100μs.
Inductance Kp{d,q} + K

′

i{d,q} −Kp{d,q} + K
′

i{d,q}

Ld − ldh 48.24 -30.86
Ld 51.19 -32.75

Ld + ldh 54.13 -34.63
Lq − lqh 60.14 -38.48

Lq 70.86 -45.33
Lq + lqh 81.58 -52.19

equal to the ones determined for the dc component of the self
inductances. The decision has a beneficial impact on the real-
time implementation since it allows to reduce the number of
mathematical operations and consequently its complexity. The
effect of compensating or not the back-emfs at the output of
the current controllers, i.e., ûd and ûq, respectively, is also
shown (see Figure 12 and 13).

Figure 12 shows the dynamic response of the quadrature
current control loop. The dashed black line denotes the
reference (i∗q) and the solid gray line denotes the quadrature
current iq. From t = 0 to t = 1.5 s there is no compensation
for the back-emf term. Details of the response around the
labels (a) and (b) are zoomed in Figure 12(a) and Figure 12(b),
respectively; at label (a) the load (1 Nm) is applied and at
(b) the load is removed. Details of the response around the
labels (c) and (d) are zoomed in Figure 12(c) and Figure12(d),
respectively; at label (c) the load is applied and at (d) the load
is removed. In this case, since the compensation for the back-
emf is provided (from t = 1.5 s to t = 3 s) one can clearly see
the improvement in terms of disturbance rejection.

Figure 13 shows the dynamic response of the speed control
loop. The dashed black line denotes the reference (n∗

m) and
the solid gray line denotes the mechanical speed (nm). The
period from t = 0.15 s to t = 0.5 s is the startup transient due
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to a step change of 900 rpm. Details of the response around
labels (a) and (b) are zoomed in Figure 13(a) and Figure 13(b),
respectively. At (a) the load (1 Nm) is applied and at (b) the
load is removed.

Figure 14 shows the dynamic response of iq , id and nm

during a speed reversal. The reference speed set to 0 rpm and
at t = 0.1 s a 900 rpm step change is applied. At t = 0.8 s the
load (1 Nm) is applied and at t = 1.2 s the load is removed.
At t = 1.5 s the reference speed is changed to -900 rpm. At
t = 2.2 s the load (1 Nm) is applied and at t = 2.5 s the load
is removed.
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Fig. 12. Dynamic response of the quadrature current control loop.

B. Experimental Results
Figure 15 shows the experimental test platform. The

same control system studied by simulation was tested by
using this test platform. Discrete-time implementation of the
controllers based on Tustin approximation has been employed
for a sampling time of 100 μs. As indicated in block
diagram the IPMS prototype has been fed through a PWM-
VSI switching at 10 kHz, synchronized with the sampling
time. Fixed point arithmetic (Q31) has been used since the
digital signal processor (DSP) does not have a floating point
unit. Mechanical speed measurement has been obtained from
a resolver and an auxiliary permanent magnet motor (AM) was
used as the mechanical load for the IPMS prototype.

Figure 16, 17 and 18 show oscilloscope snapshot screens
illustrating the dynamic response of the implemented system.
The IPMS prototype motor is driven at rated speed in two test
scenarios. For all the test scenarios, the motor drive control
scheme is the one illustrated in Figure 4.

The results of the first experimental test are shown in
Figure 16, i.e., a step change of the reference speed from 0
to 900 rpm, followed by the application of a mechanical load.
The reference speed is set to 0 rpm and at t = 0.7 s changed
to 900 rpm without load. Mechanical load (1 Nm) is applied
at t = 3.5 s.
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Fig. 13. Dynamic response of the speed control loop.

Fig. 14. Dynamic response of iq , id and nm during a speed reversal.

The results of the second test are shown in Figure 17, i.e.,
a speed reversal of the reference speed from 900 rpm to -
900 rpm. The reference speed is set to 0 rpm and at t = 0.5 s
changed to 900 rpm without load. The speed reversal from
900 rpm to -900 rpm is applied at t = 3 s. It is important to
note that these snapshots (upper and lower) have been obtained
sequentially, since we used a two channels oscilloscope.
Indeed, the first step change of the speed reference (lower
plot) should coincide with the first step change of the q-axis
current (upper plot). The two oscilloscope snapshot screens
are displaced and thus when interpreting the results one must
consider that curves of the upper plot (i∗q and iq) must be left
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Fig. 15. Block diagram of the platform used in the first and second
test scenarios.

shifted by 500 ms.
Figure 18 shows the dynamic response of the d

and q-axis current controllers when the back-emfs are
compensated. Those responses clearly indicate that the
proposed methodology is cogent both in terms of the proposed
dynamic model as well as in terms of control design
procedure.

2,5A1 Nm

(a)

1 Nm

900 rpm

(b)

Fig. 16. First test scenario. The upper plot (a) shows the transient
response for the current control loop. The lower plot (b) shows the
dynamic response of the speed control loop.

0,94 A

-0,94 A

(a)

900 rpm

-900 rpm

(b)

Fig. 17. Second test scenario. The upper plot (a) shows the q-axis
current. The lower plot (b) shows the dynamic response of the speed
control loop.

VIII. CONCLUSION

Low cost high performance permanent magnet motor
drive system can be achieved with low energy density
magnets by exploiting the flux concentration configuration.
The electromagnetic configuration demand quite important
changes in the standard Park’s model to represent the
dynamics of the IPSM prototype. The agreement between the
results obtained by numerical simulation and the experimental
ones demonstrates the validity of the proposed methodology
in terms of the proposed dynamic model, the parameter
estimation technique, the control design procedure and real-
time implementation strategy. Finally, the results obtained
so far clearly demonstrates the feasibility of proposed motor
design, model verification and its related control strategy.
The use of constant gain current controllers was evaluated
numerically and tested experimentally to demonstrate its
effectiveness. Besides this, these results also show that the
standard cascade strategy is quite robust, providing a good
motor drive performance at all the experimental test conditions
so far. Further investigation regarding the operational limits,
ripple torque minimization, sensorless operation, angular
position control and nonlinear characteristics is underway.
The application of the proposed modeling and control
methodology to an IPMS in which the polar pieces have been
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Compensation

(a)

Compensation

(b)

Fig. 18. Back-emf compensation. The upper plot (a) shows the d-axis
current without and with back-emf compensation. The lower plot (b)
shows the q-axis current without and with back-emf compensation.
In both case the back-emf compensation is applied at t = 0.5 s.

modified to minimize the cogging torque is also a subject for
further studies.
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