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Abstract - This paper proposes a state feedback
controller for doubly-fed induction generators at variable
speed wind. The controller uses pole placement technique,
stator flux orientation, and state feedback rotor current
vector loops. None conventional PI controller is used on
the control. Its algorithm calculates the voltage vector
to be supplied to the rotor to certificate that the active
and reactive power follow their desired reference values.
Experimental results obtained in a hardware setup are
carried out to validate the controller operation.
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I. INTRODUCTION

The renewable energy systems and especially wind energy
have attracted interest due to the increasing concern about
CO2 emissions. The wind energy systems using a doubly-
fed induction generator (DFIG) have some advantages due
to variable speed operation and four quadrants active and
reactive power capabilities, when compared with fixed speed
induction squirrel cage and synchronous generators [1], [2].
The DFIG stator is connected directly to the grid and the rotor
is connected to the grid through a bi-directional converter. The
rotor converter objective is to control the DFIG active and
reactive power flow between the stator and AC supply.

The control of DFIG wind turbine systems is traditionally
based on either stator-flux-oriented [3] or stator-voltage-
oriented [4] vector control. The scheme decouples the rotor
current into active and reactive power components. Its active
and reactive power control are achieved with rotor current
controller [5]. Some investigations using PI controllers and
stator-flux-oriented have been presented in [6].

The PI controller problems are the gains tuning and the
cross-coupling on DFIG terms in the whole operating range.
An interesting method that tries to solve these problems has
been presented in [7] and another solution is to use hysteresis
controllers, as proposed in [8]. The stator of DFIG is directly
connected to the grid, and it, in case of three-phase faults
or unbalanced voltages, can destroy the converter or damage
the machine. Initially, for converter protection, the crowbar
system was used [9]. In this case, when voltage sag is detected,
the converter is turned-off, and the rotor is connected to a
resistance bank.

Nowadays, there are several control strategies to maintain
DFIG connected to the grid during voltage sags, as presented
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in [10], [11]. These strategies have satisfactory dynamic
performance, and they do not damage a converter during the
voltage sag.

In addition, there are power control schemes for DFIG
in normal operation using, for instance, rotor current loops
and predictive functional controller [12] or internal mode
controller [13], [14]. These controllers have satisfactory
power response when compared with the PI ones, but it is
hardly to implement them due to the predictive functional
controller and internal mode controller formulation. Other
possibilities to DFIG power control are fuzzy logic [15], [16],
deadbeat [17], model based predictive control [18] or sliding
mode control [19], [20]. In the same way, these strategies
also have satisfactory ones, although it involves relatively
complex transformation of voltages, currents, and control
outputs among the stationary, rotor, and synchronous reference
frames.

In this context, this paper proposes a state feedback
controller for DFIG at variable speed wind generation. Its
power control algorithm calculates the voltage vector to
be supplied to the rotor to certificate that the active and
reactive powers reach their desired reference values. For this
action, only proportional gains or integral gains are used in
determined points of the closed loop and the ones are designed
using the DFIG rotor equations. In this way, this strategy has
the advantage of easy implementation.

This paper is organized as follows: besides the introductory
section, vector control of DFIG is shown in Section II. The
proposed control scheme is presented in Section III. Main
experimental results are considered in Section IV to validate
the proposed control scheme. Finally, Section V concludes
the work.

II. MACHINE MODEL AND ROTOR CURRENT
VECTOR CONTROL

The DFIG model in synchronous reference frame is given
by [21]:

�v1dq = R1
�i1dq +

d�λ1dq

dt
+ jω1

�λ1dq (1)

�v2dq = R2
�i2dq +

d�λ2dq

dt
+ j (ω1 − PPωmec)�λ2dq (2)

where the relationship between fluxes and currents are:

�λ1dq = L1
�i1dq + LM

�i2dq (3)

�λ2dq = LM
�i1dq + L2

�i2dq. (4)
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The machine dynamics is given by:

J
dωmec

dt
=

3

2
PP Im(�i1dq�λ

∗
1dq)− TM (5)

and the generator active and reactive powers are represented
by:

P =
3

2
(v1di1d + v1qi1q) (6)

Q =
3

2
(v1qi1d − v1di1q) . (7)

The subscripts 1 and 2 represent the stator and rotor
parameters, respectively. ω1 is the synchronous speed, ωmec

is the machine speed, R1 and R2 are the per phase electrical
resistance of the stator and rotor windings, L1 , L2, and LM

are the proper and mutual inductances of the stator and rotor
windings, �v is the voltage vector, �i is the current vector, �λ is
the flux vector , PP is the machine pair of poles number, J is
the load and rotor inertia moment, and TM is the mechanical
torque.

The DFIG power control aims independent stator active
P and reactive Q power control by means of rotor current
regulation. For this purpose, P and Q are represented as
functions of each rotor current. Using stator flux oriented
control, that decouples dq axis (3), they become:

i1d =
λ1

L1
− LM

L1
i2d (8)

i1q = −LM

L1
i2q (9)

where λ1d = λ1 = |�λ1dq|. The active (6) and reactive (7)
powers can be reformulated by using (8), (9) and v 1d = 0 as:

P = −3

2
v1

LM

L1
i2q (10)

Q =
3

2
v1

(
λ1

L1
− LM

L1
i2d

)
(11)

where v1 = v1q = |�v1dq|. Thus, the rotor currents will reflect
in stator currents and on stator active and reactive power.
Consequently, this principle can be used on stator active and
reactive DFIG power control.

A. Rotor Side Equations
The rotor currents control by using (10) and (11) allows the

DFIG power control. The rotor voltage (2), at the synchronous
reference frame, using the stator flux position, and (8) and (9)
become:

�v2dq = (R2 + jσL2ωsl)�i2dq+σL2
d�i2dq
dt

+j
Lm

L1
ωslλ1 (12)

where ωsl = ω1 − PPωmec and σ = 1− L2
M

L1L2
.

In space state form, (12) becomes:

˙̄x = A ˙̄x+B ū+G ω̄ (13)

[di2d
dt

di2q
dt

]
=

[
−R2

σL2
ωsl

−ωsl
−R2

σL2

][
i2d
i2q

]
+

[ 1
σL2

0

0 1
σL2

] [
v2d
v2q

]
+

[
0 ωslLM

σL1L2−ωslLM

σL1L2
0

][
λ1

0

]
. (14)

It can occur due to the fact that the mechanical time constant
is greater than the electrical ones. Thus, ωmec=constant is a
valid approximation for each sampling period [22], [23]. In
this way, the slip speed ωsl is constant, since the synchronous
speed ω1 = 2πf (f = 60Hz) is determined by the grid.

III. STATE FEEDBACK POWER CONTROL

The state feedback power control is a technique that allows
null steady state error. The controller is designed by using the
overshoot, system frequency, settling time, damping ratio, and
space state equation of a linear continuous system [24], [25].

This system can be represented by:

˙̄x = Ax̄+Bū+Gw̄

ȳ = Cx̄ (15)

where w̄ denotes the perturbation vector and A, C, B and
G 2 × 2 matrices for this case. In this paper C = I , where
I is the identity matrix. The state feedback block diagram is
presented in Figure 1.

Fig. 1. State feedback control block diagram.

The controller represented by the gain k and k i can be
designed using pole placement. The desired poles are obtained
for second order system in accordance with the expressions:

pol1,2 = −ωnξ ± jωn

√
1− ξ2 (16)

ξ =
−ln(MP )√
π2 + ln(MP )2

(17)

ωn =
4

ξts
(18)

where MP is the overshoot, ωn is the natural frequency, ts
is the settling time, and ξ is the damping ratio. The desired
characteristic equation is given by [24]:

H = |sI −A+Bk| . (19)
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The k gains of the state feedback controller are calculated
by using the poles calculated from (16)-(18) and the desired
characteristic equation (19). The resulting equation is:

|sI −A+Bk| = (s+ pol1)(s+ pol2) (20)

and k = [k1 k2]
T , where k1 and k2 are the proportional gains.

For null steady state error, a new loop is added using an
integrator. The equation of the new loop is:

˙̄q = ˙error = x̄ref − x̄. (21)

In this way, the input is given by:

ū = −kx̄+ kiq̄ (22)

and ki = [ki1 ki2]
T , where ki1 and ki2 are integral gains.

The new steady state equation using (15) and (21) is given
by:

˙̄x1 = A1x̄1 +G1w̄ +Rx̄ref +B1ū (23)

[
˙̄x
˙̄q

]
=

[
A z

−II z

] [
x̄
q̄

]
+

[
G
z

]
ω̄ +

[
z
I

]
x̄ref +

[
B
z

]
ū (24)

II =

[
1 0
0 1

]
(25)

where z is a zero matrix.
By using (21)-(25) and the diagram shown in Figure 1,

the ki gains are calculated using the modified desired
characteristic equation as:

|sI −A1 +B1kx+G1ω̄ +R| =
(s+ pol1)(s+ pol2)(s+ α)(s+ β) (26)

where α = β = 2× |pol1|, and kx = [k1 k2 ki1 ki2]
T .

A. Power Control
The DFIG power control aims the independent control of

the active and reactive power using stator flux orientation.
The state feedback controller gains are designed by using
the model presented in (14) and (16)-(26). In this control
application, the rotor current is the state variable and the input
is the rotor voltage. Only the rotor voltage equation is used
due to the fact the DFIG is directly connected to the grid.
An alternative application can be seen in [26]. The converter
connected to the grid controls the DC link voltage. This
control can be achieved by using voltage orientation and PI
controllers as presented in [27]. The state feedback power
control block diagram is shown in Figure 2.

A detailed block diagram of the proposed controller, based
on (27) and (28), is shown in Figure 3.

To compensate the e.m.f.
(
λ1ωsl

Lm

σL1L2

)
a feed forward

is added to the quadrature rotor component loop. Hence, the
components of rotor voltage vector are calculated by:

Fig. 2. State feedback power control for DFIG block diagram.

Fig. 3. State feedback power controller in detail.

v2d =
(
i2dref

− i2d
) ki1

s
− k1i2d (27)

v2q =
(
i2qref − i2q

) ki2
s

− k2i2q −
(
λ1ωsl

Lm

σL1L2

)
. (28)

The gains of (27) and (28) are designed using (16)-(26) and
the parameters shown in Appendix.

For the active power control, the rotor current reference,
using (10), is given by:

i2qref = −2PrefL1

3v1LM
(29)

and for the reactive power control by using (11), the rotor
current reference is:

i2dref
= −2QrefL1

3v1LM
+

λ1

LM
. (30)

Thus, if the gains k1, k2, ki1, and ki2 are correctly
calculated, the d (27) and q (28) axis voltage components
are calculated by the controller and they are applied to the
generator. Then, the active and reactive power convergence
to their respective commanded values will occur. The desired
rotor voltage in the rotor αβr reference frame generates
switching signals for the rotor side. Using space vector
modulation, it is given by:
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�v2αβr = �v2dq eδs−δr . (31)

B. Estimation
The power control requires the stator flux magnitude and

position, slip speed, synchronous frequency, and the power
errors to calculate the active and reactive power values.

The flux estimation, using (1), is given by:

�λ1αβ =

∫ (
�v1αβ −R1

�i1αβ

)
dt. (32)

The integrator was implemented in accordance with [23].
Figure 4 shows the block diagram of the stator flux estimation.

Fig. 4. Block diagram for stator flux estimation.

The flux position, by using (32), is:

δs = arctan

(
λ1β

λ1α

)
(33)

and synchronous speed ω1 estimation is given by [28]:

ω1 =
dδs
dt

=
d

dt
arctan

(
λ1β

λ1α

)
. (34)

So, (34) becomes:

ω1 =

dλ2β

dt λ1α − dλ1α

dt λ1β

(λ1α)2 + (λ1β)2
. (35)

Solving (35) and using (32), ω1 is given by:

ω1 =
(v1β −R1i1β) λ1α − (v1α −R1i1α)λ1β

(λ1α)2 + (λ1β)2
. (36)

This is valid for normal operation. For unbalanced voltage,
the methods presented in [29] can be used.

The slip speed estimation, by using the rotor speed and
synchronous one, is represented as:

ωsl = ω1 − PPωmec. (37)

Finally, the rotor reference frame angle is given by:

δs − δr =

∫
ωsldt. (38)

The generator parameters have variations due to its
operation. This type of analysis is traditionally based on
their resistances. For DFIG, the analysis of stator resistance,
used in stator flux estimation, and the rotor resistance, used in
rotor voltage calculation, have a negligible impact on system
performance for high power generators [4]. Although, the
integral component of the proposed controller can minimize
the output errors due to the generator parameter variations. So,
it allows a null steady state error.

IV. SIMULATION AND EXPERIMENTAL RESULTS

First, the performance of the proposed state feedback
strategy is verified by simulation using MATLAB/Simulink on
a 2.2 kW DFIG, whose nominal values are given in Appendix.
The control loop parameters, designed through simulations,
are also shown in Appendix.

The experimental setup, used to verify the proposed
strategy, consists of DFIG mechanically coupled to a DC
motor. The power control is implemented with a power
electronic converter using insulated-gate bipolar transistor
(IGBT) and controlled by the DSP TMS320F2812 board. The
rotor speed is measured by an encoder with 3,800 pulses per
revolution, and the rotor voltage commands are modulated
by using symmetrical space vector PWM with switching
frequency equal to 5 kHz. The DC bus voltage of the inverter
is 120 V. The DC motor drives DFIG to simulate several wind
speed operation. The experimental setup is shown in Figure 5.

Fig. 5. Experimental setup block diagram.

A. Simulation Results
During the test at constant speed, the reference stator

powers are varied in steps, as shown in Figure 6. In this test,
the satisfactory performance of the controller can be seen due
to the fact that the rotor current in the synchronous reference
frame and stator active and reactive power reach their desired
references values with quick dynamic response. The currents
in the rotor reference frame are also seen in this figure.

For the test at variable speed, shown in Figure 7, the
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Fig. 6. Test with constant speed.

references of active and reactive powers of the stator are kept
constant, at -2 kW and 0 var, respectively. It can be seen that
even at variable speed, both the rotor current in synchronous
reference frame and the stator active and reactive powers have
satisfactory performance without steady state error. The rotor
currents in αβr during this test are also shown in Figure 6.

B. Experimental Results
In the first test, the generator is operating in the

subsynchronous mode at constant speed of 1,527 rpm (85%
of the machine’s synchronous speed) and it is analyzed with
different active and reactive power steps as set points to test
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Fig. 7. Test with variable speed.

the dynamic response of the control strategy. The initial active
power and the power factor references were, respectively,
-2kW and +1. The active power and the power factor
references were changed from -2 kW to -1 kW and from
+1 to -0.85 (capacitive) at 400 ms, respectively. Finally,
at 700 ms, the active power reference was changed from
-1 kW to -1.5 kW and, the power factor, from -0.85 to
+0.85 (inductive). It can be observed that during the changes
of the power references, which are the controlled variables,
the proposed control strategy generates the required control
voltage (v2dref

and v2qref ) from the errors. The ones are
between the references and actual values of the d-q rotor
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current components, resulting in transient responses within
a few milliseconds of both mode decoupled powers without
overshoot and null steady state error.

The active and reactive power responses are shown in
Figures 8(a) and 8(b). In details, Figures 9 and 10 for active
power and Figures 11 and 12 for reactive one show the better
time response performance of the proposed controller when
compared to the PI controllers.
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Fig. 8. Test with constant speed.
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Fig. 9. Detailed active power response of proposed controller.

It can be noted that the proposed controller has an
overshoot, but it is not relevant and does not damage the DFIG
or the converter. Also, the settling time of the experimental
results has a difference when compared with the theoretical
value due to the digital controller implementation in the
experimental setup.
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Fig. 10. Detailed active power response using PI controller.
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Fig. 11. Detailed reactive power response of proposed controller.
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Fig. 12. Detailed reactive power response using PI controller.

The d-q components of the rotor current for this test are
shown in Figures 13 and 14. It can be verified that the
measured results of the d-q rotor current components quickly
follow their respective references, showing a satisfactory
performance. The rotor current in αβr and the phase a stator
current and voltage during this test are shown in Figures 15
and 16, respectively.

Another test is made at several speed operations. During
this test, the generator is driven with speed profile that
varies from 2,050 rpm (supersynchronous) to 1,350 rpm
(subsynchronous), shown in Figure 17. In this operational test
a constant active power of 2 kW with PF=1 is used, as shown
in Figure 18. It is verified that even in variable speed operation
the controller is able to make a quick response of decoupled
active and reactive powers without overshoot and with null
steady state error, similarly to the previous test. The d-q



157Eletrôn. Potên., Campo Grande, v. 20, n.2, p. 151-159, mar./mai.2015

components of the rotor current and the rotor current in αβ r

during this test are shown in Figures 19 and 20, respectively.
When an integral controller is used in the control system,

a problem due to integral windup can occur. This is a
common problem in analog controllers and it causes long
periods of overshoot. The integral controllers of (27)
and (28) are implemented in a DSP platform by using digital
implementation and the time during oscillations is very short,
as shown in results.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Time (s)

D
−c

om
po

ne
nt

 ro
to

r c
ur

re
nt

 (A
)

i
2d

ref

i
2d

Fig. 13. Rotor current direct axis component.

0 0.2 0.4 0.6 0.8 1

2

4

6

8

Time (s)

Q
−c

om
po

ne
nt

 ro
to

r c
ur

re
nt

 (A
)

i
2q

ref

i
2q

Fig. 14. Rotor current quadrature axis component.
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V. CONCLUSION

This paper presented a power control scheme for DFIG
using stator flux orientation, state feedback control, and pole
placement. The controller uses rotor voltage DFIG model
where the rotor current is the state variable and the rotor
voltage vector is the input. The controller allows to design the
feedback and integral gains that calculate the required rotor
voltages in order to the active and the reactive power values
reach the desired reference values using rotor current vector
loop. The experimental results of the proposed controller show
better performance than obtained with PI controller. Also, it
is confirmed the effectiveness of the controller during several
operating conditions. In this way, this proposed controller can
be used in wind energy applications with easy implementation
and good performance.

APPENDIX

A. DFIG Parameters
Rs = 1.2 Ω; Rr = 0.8 Ω; Lm = 92 mH; Lls = Llr = 6.18

mH; PP = 2; PN = 2.2 kVA; and VN = 220 V.

B. Controller Parameters
ξ = 0.13; ts = 3.5 ms; pol1,2 = −285.714 ± j2179.15;

k1 = −40; k2 = −50; ki1 = 12.6 and ki2 = 11.3.
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