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Abstract - A deadbeat power control scheme for

doubly-fed induction generator for variable speed was

proposed. The deadbeat controller algorithm calculates

the voltage vector to be supplied to the rotor in order

to eliminate the active and reactive power errors in each

period using and stator field orientation and the doubly-

fed induction generator dynamic model. The deadbeat

controller uses the rotor current control to the power

control of the machine. This control technique can be

applied to the wind energy systems. Experimental results

are carried out to validate of the deadbeat controller

operation.
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I. INTRODUCTION

The renewable energy systems and specially wind energy

have attracted interest due to the increasing concern about

CO emissions. The wind energy systems using a doubly-

fed induction generator (DFIG) have some advantages

due to variable speed operation and four quadrant active

and reactive power capabilities compared with fixed speed

induction generators and lower cost when compared with solar

energy [1, 2].

In wind energy systems the stator of DFIG is direct

connected to the grid and the rotor links the grid by a bi-

directional converter as shown in Figure 1. The rotor converter

objective aims to the DFIG active and reactive power control

between the stator and ac supply.

The power control of DFIG is traditionally based on

either stator-flux-oriented [3] or stator-voltage-oriented [4]

vector control. Some investigations using PI controllers that

generates reference currents from active and reactive power

errors to the inverter or a cascade PI controllers that generate

a rotor voltage which have been presented by [3, 5–7]. The

problem in the use of PI controller is the tuning of the gains

and the cross-coupling on DFIG terms. An interesting method

to solve these problems have been presented by [8–10].

Some investigations for DFIG power control by using

predictive functional controller [11], internal mode controller

[12,13] and predictive control [14,15] have satisfactory power

response when compared with the power response of PI but

it is hardly to implement one due to the formulation of the

controllers.
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To improve the power response and to protection of rotor-

side converter under grid voltage sags with stator voltage

orientation a proportional control with anti-jamming control

which has been proposed by [16]. This control has satisfactory

power response and eliminate the rotor current overshoot in

voltage sags although power and rotor currents results was

shown only in super-synchronous DFIG operation and the

proportional controller needs to be carefully tuned to ensure

system stability and adequate response within the whole

operating range.

This paper proposes an alternative solution to power control

presented in [17] by using the doubly-fed induction generator

dynamic discrete equations when DFIG operates with variable

speed. The deadbeat control for DFIG power control aims

the active and reactive power control using the DFIG dynamic

equations in synchronous coordinate system using the stator

flux position. The controller calculates the rotor voltages

required to guarantee active and reactive power reach their

desired reference values in a few sampling intervals in which

simulations results were presented in [18]. The deadbeat

controller uses the rotor current control to the power control

of the machine. This power control technique can be applied

to the DIFG for wind energy systems due to the fact the

wind speed is uncertain and the controller also operates with

variable speed. Experimental results are presented to validate

of the proposed controller.

Fig. 1. Configuration of DFIG connected direct on grid.

II. MACHINE MODEL AND VECTOR CONTROL

Doubly-fed induction machine model in synchronous

reference frame is given by

(1)

(2)
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the relationship between fluxes and currents

(3)

(4)

and generator active and reactive power are

(5)

(6)

where , , are voltage, currents and flux space vectors,

respectively, is resistance of the winding, is inductance of

the winding, the subscripts , , denotes stator, rotor and

mutual, is the pole pairs and is the rotor speed. The

parameters estimation of the induction machine were made

using the method presented in [19].

The DFIG power control aims independent stator active

and reactive power control by means a rotor current

regulation. For this purpose, and are represented

as functions of each individual rotor current space vector

components. Using stator flux oriented control, that decouples

axis (3) becomes

(7)

(8)

and the active (5) and reactive (6) power can be calculated

by using Equations (7) and (8) and it is given by

(9)

(10)

Thus, rotor currents will reflect in stator currents and on

stator active and reactive power. Consequently, this principle

can be used on stator active and reactive power control by

using current control on rotor side of the DFIG with stator

direct connected to the grid.

A. Rotor Side Equations

The control of rotor currents allows the DFIG power control

as can be seen in (9) and (10). The rotor voltage (2), in the

synchronous referential frame using the stator flux position,

Equations (7) and (8) becomes

(11)

where .

In space state form (11) becomes

(12)

(13)

where .

From now it will be assumed that the mechanical time

constant is much greater then the electrical time constants.

Thus is a valid approximation for each

sampling time. As synchronous frequency is fixed by the grid,

slip speed for each sampling time is also a

valid approximation.

III. THE DEADBEAT CONTROL

The deadbeat control is a digital control technique that

allows to calculate required input to guarantee that the

output to will reach their desired reference values in in

the smallest number of sampling intervals using a discrete

equation of the continuous linear system which have been

presented in [20]. For an -order linear system, the

minimum number of steps (sampling intervals) will be at most

to the output reaches their desired reference values [20].

A linear continuous system is represented by

(14)

where denotes the pertubation vector and and

matrices. In this paper , where is the identity

matrix.

The Equation (14) can be discretized considering as the

sampling period and as the sampling time by using zero-

order-hold (ZOH) with no delay as

(15)

where

(16)

The input calculation to guarantee a null steady state error

is given by

(17)

where is the reference vector and is the matrix gain.

Substituting (17) in (15) and making the

input that guarantees a null steady state error is given by

(18)

The block diagram that represents (17) is shown in Figure 2
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Fig. 2. Deadbeat block diagram.

A. Deadbeat Power Control

The power control scheme uses a deadbeat controller

presented in section III to obtain rotor voltages which should

be applied on generator in order to guarantee active and

reactive power reach their desired reference values in

samplings intervals. The sampling period has the same time

of PWMmodulator. The converter that is connected to the grid

control the voltage of the link DC and one can be controlled

by using a current control [21]. The deadbeat power control

block diagram is shown in Figure 3.

Fig. 3. Deadbeat power control block diagram.

The rotor equation (13) can be rewritten as a discrete

equation using (15) and making

. It is given by equation (19)

(19)

The rotor voltage which is calculated to guarantee null

steady state error by using (18) and (19) is given by

(20)

(21)

For the active power control, the reference of quadrature

component of rotor current space vector is achieved by using

Equation (9) is given by

(22)

and for the reactive power control the reference of direct

component of rotor current space vector is achieved by using

Equation (10) is

(23)

The block diagram for deadbeat power control

implementation is shown in Figure 4.

Fig. 4. Deadbeat power control block diagram for implementation.

Thus, if the and axis rotor voltage components

are calculated according equations (20) and (21) above are

applied to the generator, then the active and reactive power

convergence to their respective commanded values will occur

in a few sampling intervals. The desired rotor voltage in the

rotor reference frame generates switching signals for

the rotor side using either space vector modulation.

Stator currents and voltages, rotor speed and currents

are measured to stator flux position and magnitude ,

synchronous frequency and slip frequency estimation.

B. Estimation

To deadbeat power control, as show in the equation (21), it

is necessary to calculate the active and reactive power values,

their errors, the stator flux magnitude and position, the slip

speed and synchronous frequency.

The flux estimation using (1) is given by

(24)

This expression has been implemented for low speed

operation in [22] based on method presented in [23] using the

block diagram shown in Figure 5.
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Fig. 5. Block diagram for stator flux estimation.

The flux position by using equation (24) as

(25)

The synchronous speed estimation is given by

(26)

and the slip speed estimation by using the rotor speed and

synchronous speed is

(27)

The rotor angle in rotor reference frame is given by

(28)

IV. EXPERIMENTAL RESULTS

The deadbeat control strategy was implemented using a

Texas Instruments DSP TMS320F2812 platform and also has

a . The system consists of a three-phase

voltage source inverter with insulated-gate bipolar transistors

(IGBTs) and the three-phase doubly-fed induction machine

shown in the appendix. The stator voltage commands are

modulated by using symmetrical space vector PWM, with

switching frequency equal to 2.5 kHz. The DC bus voltage

of the inverter is 36 V due to the fact the transformation

relationship between stator winds and rotor winds is not one

and it is used a transformer between the converter and the

grid. The stator voltages and currents are sampled in the

frequency of 2.5 kHz. The encoder resolution is 3800 pulses

per revolution. The rotor voltage was limited using limiters

in the dsp (digital signal processor) program. The speed is

applied to the DIFG using a separately excited DC motor in

open loop voltage control. The DFIG synchronization is made

using the methods presented by [24–27]. The experimental

setup is shown in Figure 6.

Fig. 6. Experimental setup.

Six tests were made, five in sub-synchronous speed

operation and one in several speed operation. The first one

was the response of step of 5 A which is shown in Figure 7.

The satisfactory performance of controller can be seen due to

the fact the reference is followed. In this test the is 0.5A.

The rotor current reach the reference no more than 40 .

Fig. 7. Response of step test for .

The second was the response of step of 5 A. The

satisfactory performance of controller in this test can be seen

again in Figure 8 due to the fact the reference is followed. In

this test is 4A.



308 Eletrôn. Potên., Campo Grande, v. 16, n.4, p. 304-311, set./nov. 2011.

Fig. 8. Response of step test for .

The same test of step of 5 A with rotor currents in rotor

reference frame is presented in Figure 9. The satisfactory

response of the controller can be seen due to the fact the

reference is followed.

Fig. 9. Response of step test for and rotor currents .

The fourth test is the response of reactive power of

-300 VA, 300 VA and 0 VA which means leg, lead and unitary

power factor. The satisfactory performance of the controller is

can be seen again in Figure 10 due to the fact the reference is

followed. The rotor currents are shown in Fig 11.

The fifth test is the steady state of unitary power factor and

active power is . The rotor current reference are also

calculated using Equations (22) and (23). The response of

stator power and rotor current are presented in Figures 12 and

13, respectively. The stator voltage (127Vrms) and the stator

current (0.8Arms) of phase is shown in Figure 14. It can be

seen the satisfactory performance of the controller due to the

fact the angle between the stator voltage and the stator current

is . The spikes occurs due to the fact the noise of the

system and errors of measurements currents and voltages.

Fig. 10. Response of step test of reactive power.

Fig. 11. Rotor currents of response of step test of reactive power.

Fig. 12. Active and Reactive Power of DFIG.
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Fig. 13. Rotor current of DFIG.

Fig. 14. Stator voltage (18 V/div.) and current (0.38 A/div.).

In the last test, the generator operates with several speed

and a constant active and reactive power reference of 0W

and 0VA, respectively. The rotor current reference are also

calculated using Equations (22) and (23). In this case, this

test just maintains the magnetization of the generator. The

response of the active and reactive power is shown in Figure 15

and the rotor current is presented in Figure 16. The rotor

speed in several operations and the rotor current of phase

is shown in Figure 17. The satisfactory performance of the

controller is can be seen during several speed operation due

fact the reference is followed and the DFIG operates from

super-synchronous operation to sub-synchronous operation.

V. CONCLUSION

This paper has presented a deadbeat active and reactive

power control for doubly fed induction generator. The

controller uses the DFIG discretized dynamic equations to

calculate the required rotor voltages in order to the active

and the reactive power values reach the desired reference

within a few sampling intervals due to the fact the controller

response depends of the order of the system and the sampling

period. The deadbeat control uses a rotor current control for

this objective. This strategy operates with constant switching

frequency that overcomes the drawbacks of conventional

DPC [28, 29]. Experimental tests with parameters variations

have to be done to analyze the performance of the controller.

The experimental results confirm the effectiveness of the

deadbeat power controller during several operating conditions.

Fig. 15. Active and reactive power of DFIG.

Fig. 16. Rotor current in steady state.
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Fig. 17. Rotor current and speed of DFIG.
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APPENDIX

Doubly-fed induction generator parameters: ;

; ; ;

; ; ; ;

.
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