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Abstract - This paper provides a mathematical 
expression to determine the occurrence of soft-switching 
for a general topology of ZVT converters with auxiliary 
resonant voltage source. This expression is used to help 
the designer in choosing appropriately the values of 
inductance and capacitance for the auxiliary resonant 
branch ensuring ZVT. The main advantage of the 
proposed methodology is to point out suitable sets of 
circuit parameters without relying only on time 
consuming numerical simulations of the entire converter. 
Additionally, numerical methods to compute the time of 
occurrence of ZVT for these power converters are 
provided. The proposed methods are given by second 
order approximations of a nonlinear function which 
describes the voltage on the ZVT snubber capacitor 
during the zero-voltage resonant stage. The results can be 
seen as applications of second order Taylor series and of 
quadratic interpolation. However, differently of simply 
finding the root of a given nonlinear equation, the 
conditions given here provide analytical expressions to 
compute the time of occurrence of ZVT based on the 
converter parameters. Then, the proposed conditions 
become useful for analysis and design, allowing 
evaluating operation sequence, total commutation time, 
resistive losses and other important parameters to 
describe the converter performance. 1 
 

Keywords - Design Guidelines, Mathematical 
Optimization, Soft-Switching, ZVT. 

I. INTRODUCTION 

The continuous search for compactness and high 
performance of power electronics converters always push the 
switching frequency of the semiconductors to high values. 
To overcome the losses and electromagnetic interference 
problems associated with such high frequencies, soft-
switching approaches have been extensively used. In the last 
decades, several soft-switching topologies have been 
proposed in power electronics literature [1-12]. Among the 
soft-switching techniques utilized so far are the Zero Voltage 
Transition, ZVT, converters with a resonant voltage source 
[7-12]. This class of ZVT converters operates in such a way 
that an active resonant snubber, comprised by a coupled of 
capacitors and an inductor, shapes the voltage and current 
waveforms of the switching device before its commutation, 
alleviating the switching energy losses. Hence, the choice of 
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the active resonant snubber parameters are of prime concern 
to ensure the best performance of the soft-switching 
technique and thus, it still deserves investigation on how to 
choose circuit parameters (specially the inductance and 
capacitance of the auxiliary branch and occurrence of ZVT) 
based on performance indices that rely on analytical 
conditions (i.e. mathematical expressions) instead of on only 
computer simulation. Although simulation is recognized as a 
fundamental tool to help the circuit designer, the existence of 
analytical tests ensuring properties as ZVT and other 
important performance parameters can contribute to increase 
the reliability of the results and to reduce the time spent in 
the design.  

The first contribution of this paper is to provide an 
analytical condition to decide whether a resonant stage with 
switch voltage given by 
 )cos()sin()( tDtCBtAtv ee ωω +++=  (1) 

achieves ZVT or not. The proposed condition avoids 
numerical simulation to detect a real positive root for the 
above nonlinear function. Instead of this, it uses 
mathematical optimization to check the existence of ZVT by 
means of an analytical condition [13,14]. An immediate use 
of this condition is to rapidly decide for which values of 
resonant inductance and capacitance, in a set defined by the 
circuit designer, ZVT is ensured. 

Then, some mathematical methods are provided in order 
to compute, by means of analytical approximations, the time 
of occurrence of ZVT in a resonant stage with switch voltage 
given by the former expression. 

In other words, it aims on the computation of the root of 
v(t) in the general case, where the parameters of the equation 
are not known. The motivation for this work is the 
importance of having mathematical conditions that, based on 
the knowledge of A, B, C, D and ωe, and without relying only 
on computer simulation, provide the time at which ZVS takes 
place. Such conditions allow the systematic calculation of 
important features such as operation sequence and quantities 
as the total commutation time, the RMS value of currents 
that are important for circuit operation and that are related 
with resistive losses, to the loss of duty ratio, etc. 

The above function is nonlinear and its root is nontrivial 
to be obtained analytically. It will be shown next that a 
simple second order Taylor series, centered at appropriately 
chosen points, and a quadratic interpolation provide the value 
of the root of this function with good precision [14]. 

The analytical approach proposed here to calculate the 
root of v(t) is based on two simple steps: first, before 
searching the root of v(t), it must be assured that the root 
exists; second, instead of searching the root by numerical 
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computation in a case by case basis, it can be used 
mathematical expressions that relate the value of an 
acceptable approximation for the root with parameters A, B, 
C, D and ωe. The advantages of this approach is saving time 
in searching the root when it does not exist and not being a 
case by case solution, but being a systematic solution for the 
problem. The usefulness and the efficiency of the proposed 
conditions are illustrated by means of numerical examples in 
the paper. 

This paper is organized as follows: in Section II the 
operation sequences of the concerning converters is 
described; section III provides the analytical condition to 
decide if ZVT occurs or not and an example of application of 
this condition; Section IV describes three methods to obtain 
the center point of the Taylor series which describes the 
behavior of v(t); Section V shows some examples for the 
methods proposed and shows how to determine two 
operation parameters that can be obtained by the approaches 
shown in Section III. 

II. STRUCTURE OF A ZVT TOPOLOGY 

Despite the large amount of known ZVT converters, all of 
them share the same basic structure, which is illustrated in 
Figure 1(a). As shown in this figure, there are capacitors 
placed in parallel to the switches of the converter pole. These 
capacitances aim to slow down the dv/dt rates when a switch 
is turned off. As they mitigate the turn-off losses by 
decreasing the overlap between the voltage and current 
waveforms through a switch, they also would cause large 
turn-on losses when the switch is turned on since the energy 
stored on the plates of the capacitor would be dissipated in 
the switch. Such drawback is avoided by discharging the 
capacitance before the turn-on of a switch, what is 
accomplished by a circuitry that works similarly as a current 
source, injecting or drawing current from the pole. The least 
amount of current that must be removed from the pole is 
given by (2). 

 ( )( ) ( )( )
ia Is ia Is

tf tf

CS S a S S ZYt t
i t I dt i t I dt C V

= =

− = − =∫ ∫ , (2) 

where CS = CS1+CS2. 
Equation (2) shows that the current drawn/injected in the 

pole can be of an arbitrary shape as long as it is larger than IS 
and it remains larger enough time to discharge CS, the 
resulting capacitance. 

In practical circuits the current source Ia is implemented 
by an inductor whose current is controlled by the voltage 
applied across it, Figure 1(b). As a result, the inductor 
current is directly a function of the way as a voltage source 
connected to the inductor branch behaves during the switches 
turn-on commutation interval. 

One of the ways of implementing the voltage source Ea 
from Figure 1(b) is by means of a capacitor. Since the 
voltage of a capacitor is not a constant value, it must be 
assured that it presents the adequate value (or range of 
values) during the commutation process, what can be 
obtained by clamping circuits to avoid the capacitor voltage 
boosting or/and by the connection of terminal a to some 
terminal of the converter, Figure 1(c). The occurrence or not 
of the clamping results in three different operation 

sequences, which will be commented further on. The voltage 
applied on terminal a in relation to terminal y will be called 
VW and is a function of the topology under analysis. Its value 
is Vo for [8] and zero for [7], [9-12]. 

Consider that IS current flows into the pole and flows 
entirely through the body diode of switch S2. Consider also 
CS as the equivalent capacitance from CS1 and CS2. The basic 
operation of the converter for the turn-on and turn-off of S1 
can be summarized into the stages shown in Figure 2. 

(i) Initially the entire current IS flows through the 
antiparallel diode of switch S2 (DS2). (ii) Then, to commutate 
from DS2 to S1, the current through the Auxiliary Branch, 
AB, starts to increase resonantly until it reaches the IS current 
value. (iii-a) When this happens, capacitor CS1 joins the 
resonating process being completely discharged. (iv-a) The 
AB continues to resonate until the current through it becomes 
null, (v) inverts its sense and resonates until Cr reaches its 
initial conditions. (vi) Then, the entire IS current flows 
through switch S1. (vii) When S1 is turned off, CS1 is charged 
due to IS up to the VZY voltage. 

There are three possible operations sequences. In the first 
sequence, which was detailed above, the clamping voltage of 
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Fig. 1. Diagrams for ZVT structures. (a) General structure; (b) ZVT 
structure with practical auxiliary current source; (c) ZVT topology 
with a capacitor as the auxiliary voltage source. 
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capacitor Cr is not reached; in sequence two, it is reached 
during stage (iii-a). As a result, (iii-b) the energy from Cr 
stops resonating and (iv-b) Lr discharges linearly. With Lr 
discharged, the operation resumes from (v). The last 
possibility is that the clamping voltage of Cr is reached 
during stage (iv-a). In this case (iv-b), Lr discharges linearly 
and the operation also resumes from stage (v). 

As commented above: 
Sequence 1: i, ii, iii-a, iv-a, v, vi and vii; 
Sequence 2: i, ii, iii-a, iii-b, iv-b, v, vi and vii; and 
Sequence 3: i, ii, iii-a, iv-a, iv-b, v, vi and vii. 

III.  ANALYTICAL CONDITION FOR ZVT 

Assume that the current through AB reaches IS at the end 
of stage (ii), that is, there exists a real positive solution for 
function (1). Then, the voltage through S1 is given by (1). 

The parameters A, B, C and D in (1) depend on the 
parameters of the circuit and on the final values of state 
variables in stage (ii), being written as: 
 ( )( ) ( )SrSorWC CCCVCVtVA

r
+++= )( 2

, (3) 

 ( )Sr CCIB += , (4) 

 ( )eSr CCIC ω)( +−=  (5) 

and 

 ( ) ( )SrCWor CCtVVVCD
r

+−−= )( 2
, (6) 

where VCr(t2) is given by 
 ( ) )cos()()( 202 tVVtVVVtV roWCWoC rr

ω−++−=  (7) 

 ( )( ) rWCor VtVVIZt
r

ω−−= )(arcsin 02
, (8) 

and is equivalent to 

 ( ) ( )22
02 )()( roWCWoC IZVVtVVVtV

rr
−−+−−=  (9) 

with VCr(t0)  < 0, t2 from equation (8) and  

 
Srr

Sr
e CCL

CC +=ω , (10) 

 
rrr CLZ =  (11) 

and 
 

rrr CL1=ω . (12) 

The knowledge of the signal of some of these terms will 
be useful furthermore. By inspection of the previous 
expressions, it follows that v(0) = A+D = Vo and thus  
v(0) > 0. Moreover, B > 0, C < 0 and D > 0. Particularly,  
D > 0 holds for two situations. First, for VW = Vo, one has 

 ( ) ( )
Sr

rCr

Sr

Cr

CC

ttVC

CC

tVC
D rr

+
−

=
+

−
=

)cos()()( 202 ω . (13) 

Since, from the existence of solution of (1), one has 

] [1,0
)(

)sin(
0

2 ∈
−

=
tV

IZ
t

rC

r
rω  then ] [2,02 πω ∈tr

, leading to 

cos(ωrt2) > 0 and hence D > 0 in the above expression. For 
the second situation, VW = 0, after few manipulations, one 
gets 

 ( )
Sr

rCor

CC

ttVVC
D r

+
−

=
)cos()( 20 ω , (14) 

which is also necessarily positive. 
In a straight way, there exists ZVT in stage (iii) if and 

only if there exists a real positive root for (1). Due to the 
presence of the term Bt, the analytical solution of v(t) = 0 in 
(1) is not trivial. At this point, the circuit designer usually 
copes with the problem of checking occurrence of ZVT by 
means of numerical computation. However, this solution can 
be time consuming, depending on the size of step used in 
simulation, and may lead to an unreliable conclusion about 
the nonexistence of ZVT if the step is not adequately chosen. 
In this section, an approach that does not rely on numerical 
computation is given to decide rapidly and precisely if ZVT 
occurs or not in stage (iii).   

First, from 

 0)sin()cos()( =−+== tDtCBtv
dt

dv
eeee ωωωω& , (15) 

one can observe that (1) has stationary points (maxima or 
minima), which repeat with a period 2π/ωe. Suppose then 
v(t*) is the first minimum of v(t) for t > 0. The second 
minimum for t > 0 is v(t*+2π/ωe). From (1), it follows that 
v(t*+2π/ωe)-v(t*) = B2π/ωe, which is always positive. 
Generalizing this reasoning, the next minimum always 
exceeds the previous by the amount B2π/ωe and thus, the first 
minimum of v(t) is the global minimum for t > 0.  

Since v(t) is a continuous function and v(0) > 0, there 
exists ZVT if and only if the first minimum of v(t) for t > 0, 

(i)  (ii)  

(iii-a)  (iii-b)  

(iv-a)  (iv-b)  

(v)  

(vi)  

(vii)  
 

Fig. 2. Diagrams for the ZVT operation circuit modes. 
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represented by v(t*), is less than or equal to zero. When v(t*) 
is equal to zero, one has the critical case for ZVT.  

Hence, the main point of the proposed approach is to 
exchange the verification of occurrence of ZVT by means of 
zero cross detection or root calculation of (1) by the 
verification of the condition v(t*) ≤ 0. An analytical solution 
for this problem is given in next theorem.  

 
Theorem 1: There exists ZVT in stage (iii) if and only if  

 0)cos()sin()( **** ≤+++= tDtCBtAtv ee ωω  (16) 

for 
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Proof: From  
 )cos()sin()( tDtCBtAtv ee ωω +++=  (18) 

one gets 

 








 +








−
+++=

−+=

πωω

ωωωω

k
D

C
tsinDCB

tDsintCBtv

ee

eeee

2arctan

)()cos()(

22

&

 (19) 

and 
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with k integer. From the necessary condition for a minimum, 
given by 0)( =tv& , one has 
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After few manipulations using the previous expressions 
for B, C, D and ωe, it follows that  
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and  

 ] [πππω 2,232arctan ∈
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This allows to conclude that 0)( >tv&& and then (21) is also 

sufficient to provide the minimum points of v(t). Since 

 ] [23,arctan ππ∈








− D

C  (25) 

due to the fact that C < 0 and D > 0, one has that the first 
minimum of v(t) for t > 0 occurs for k = 0 in (21). Thus, the 
solution of (21) for k = 0, given by (17) in Theorem 1, is 
necessary and sufficient to provide the time of occurrence of 
the first minimum of v(t) and (16) in Theorem 1 checks if  
this minimum is negative or null. This proves that Theorem 1 
is necessary and sufficient to detect ZVT in stage (iii). � 

To illustrate the efficiency of Theorem 1 as a test to 
decide on the existence of ZVT, consider the circuit under 
study here with parameters given in Table I. Parameters VW 
and VCr(t0) are given by the topology choice. In this case, the 
parameters used are from [8]. These parameters allow to 
obtain 

 ωe = 12.91x106rad/s (26) 
and 
 

 VCr(t2) = -611.0101V (27) 
and then 
 A = -58.2576V; (28) 

 

 B = 2.5000x109V/s; (29) 
 

 C = -193.6492V; (30) 
and 
 D = 458.2576V. (31) 

Applying Theorem 1, one has that the first minimum for  
t > 0 occurs at  
 t* = 181.41ns (32) 
and its value is 
 v(t*) =  -62.9967V, (33) 
which allows to conclude rapidly and precisely, without 
computer simulation, that there exists ZVT for stage (iii) for 
the circuit with parameters in Table I. Figure 3 presents 
function v(t) for this example and corroborates, based on 
numerical computation, the existence of ZVT. Observe that 
the choice of a time step not sufficiently small could lead to 
the wrong conclusion of nonexistence of ZVT in this case. 
The reliability of the conclusions based on numerical 
computation becomes computationally more expensive when 
ZVT approaches of the critical case, where v(t) only touches 
the horizontal axis, without crossing it. In this case, the time 
step must be very sharp, increasing the computational time 
necessary to have a reliable conclusion. On the other hand, 
Theorem 1 copes with the decision of existence of ZVT 
without such problems of numerical precision, rapidly 
providing a response for the question.  

Suppose that the circuit designer has a set of possible 
values for Lr and Cr for the auxiliary branch and must 
investigate for which pairs (Lr, Cr) ZVT is ensured. As an 
example, suppose the circuit with parameters in Table I, 
except for Lr and Cr, that now are given by 

[ ]nFCr 30,...,2,1∈  and [ ]µHLr 25,...,3,2∈ . 

These sets can be arbitrarily chosen by the circuit designer 
based on cost, precision and availability of the components, 
volume or other constraints. The prior sets provide a space of 
design with 720 points (Lr, Cr). The investigation of ZVT for 
all the elements of this set by means of numerical 
computation can be time consuming. On the other hand, for 
each one of these pairs (Lr, Cr), Theorem 1 can be applied to 
decide rapidly on the existence of ZVT. Using Matlab 
running in a notebook with Intel Core Duo processor, 1024 
GB RAM, the test of all 720 pairs with Theorem 1 is carried 
out in 32ms, which is a considerably short time, providing  
the result shown in Figure 4. In this figure, the area shown in 
grey corresponds to the pairs (Lr, Cr) for which ZVT 
operation is assured. Moreover, the method proposed has the 

TABLE I 
Circuit parameters 

Parameter Value 
Vo 400V 
I 10A 

VW Vo 
VCr(t0) -800V 

CS 1nF 
Cr 3nF 
Lr 8µH 

 

196 Eletrônica de Potência, Campinas, v. 15, n. 3, p. 193-202, jun./ago. 2010



advantage of being conclusive, while the numerical ones 
depend strongly on the initial guess and on the step (or error) 
previously specified. 

IV.  PROPOSED CONDITIONS 

The conditions proposed in the sequence allow finding a 
root for the nonlinear function (1). This equation is obtained 
by applying the Kirchhoff’s Laws to the circuit formed by 
the series connection of capacitors CS1 (in parallel with 
current source I) and Cr and inductor Lr. 

In (1) the voltage VCr(t0) is given by the topology under 
analysis. Some examples for chosen topologies are given in 
Table II. 

By finding the root of (1), it can be determined the time of 
occurrence of ZVT and, as a consequence, the duration of 
stage (iii-a), which is useful for several analyses, as will be 
illustrated later on. 

It is easy to notice that, by knowing the numerical values 
of A, B, C, D and ωe for a specific case, the root can be found 
using numerical methods [14]. However, the problem to be 
solved here is to find analytical expressions depending on A, 
B, C, D and ωe in order to provide a good approximation of 

the root of (1). This is a more general solution for the 
problem and allows the use of the obtained expressions for 
analysis and design. 

Section III of this paper provided a condition to determine 
if the root of (1) exists or not. Since v(t) in (1) is continuous, 
with periodical extremum points and is necessarily positive 
for t = 0, the root exists if and only if there is a negative 
minimum (or zero, in the critical case) for function (1). The 
time of occurrence of this minimum is given by t* in equation 
(17), referred as t1n from now on, and is used as a starting 
point for the methods that follow, which are also a 
contribution of this paper. 

Three approaches are given in this section to compute an 
approximation of the root of (1). Method 1 is based on a 
second order Taylor series approximation of v(t) with the 
center of the series placed at PRoot in Figure 5.  Method 2 is 
based on a quadratic interpolation of (1) using points P1 and 
P2 and the time-derivative of v(t) of the curve at P1, as shown 
in Figures 6 and 7. Method 3 is similar to method 2 with the 
difference that is used the time-derivative at P2 instead of P1. 

A. Method 1 
The key idea here is to center a Taylor series 

approximation of v(t) at PRoot. PRoot is the root of the line 
connecting points P1 and P2, as seen in Figure 5, and is 
located at  
 ))()0(()0( 11 nnP tvvvtt

Root
−= . (34) 

The second order Taylor series of (1), centered at tPRoot, is 
given by 
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Thus, the root of vTaylor(t), named now on as ∆t3a, 
immediately calculated by means of the well known 
Baskara’s formula, is an approximation of the root of  (1). 
The error associated with a second order Taylor series 
approximation of v(t) can be written as [14] 

 3)(
!3

)(
RootPTaylor tt

v
e −= ζ&&&  (37) 

for some ζ in the open interval with extrema tPRoot and t. 
From Figure 5, the actual root is located in the interval with 

extrema tPRoot and t̂ , where t̂  is the point where the 
derivative of v(t) at tPRoot crosses the horizontal axis, being 

0
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Fig. 3.  Function v(t) (1) with parameters from Table I, showing 
ZVT.  The minimum of (1) is -62.9967V and occurs for 181.41ns. 
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Fig. 4.  Pairs (Lr, Cr) for which ZVT is ensured by Theorem 1. ZVT 
holds for 638 points of the set of 720 points tested. 
 

TABLE II 
Circuit parameters 

Topology VCr(t0) VW VClamp 
[7],[10] 0 0 - 

[8] -2Vo Vo 0 
[9] undefined 0 - 
[11] -Vo 0 Vo 
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given by 
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Hence, the error in the approximation in Method 1 can be 
bounded by  

 3
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)ˆ(
6
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e
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DC
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Although the results provided by this method are not very 
satisfactory, this method is shown because it is quite simple. 

Two alternative methods are presented now. 

B. Method 2 
This method lies in interpolating two points of the v(t) 

curve with a second order equation, given as below: 
 ( ) cbtattvint ++= 2 , (40) 

whose derivative is 

 ( ) battvint +=
•

2 . (41)  

The points chosen to be part of (40) are the point of the 
first positive minimum and the point of half of the time of the 
first positive minimum of the real curve. This is done 
because the commutation occurs during this interval for the 
most critical cases. Then it is defined: 
 ( )[ ]2,2 111 nn tvtP =  (42) 

and 
 ( )[ ]nn tvtP 112 ,= . (43) 

Given that only two points do not provide enough 
information to define a second order interpolating equation, 
there must be a third constraint. Such constraint is chosen to 
be the derivative of the curve in one of the points that are 
being interpolated, Figure 6. In this way, two points can be 
analyzed. 

Initially the third constraint analyzed is the derivative of 
curve v(t) at P1: 

Then, it is defined 

 ( )




=
••

2/,2/ 111 nn tvtP , (44) 

where the derivative of v(t) is given by 

 ( )( ) ee CDtDCBtv ωω ,2arctancos)( 22 +++=
•

 (45) 

and arctan2() is the four quadrant inverse tangent function. 
Points P1 and P2 must verify (40), resulting in the first and 

second lines of equation (46), respectively. Point 
•

1P  must 

verify ( )
•

tvint , given in (41), corresponding to the third line in 

(46). Thus, the following linear system is obtained: 
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. (46) 

By solving (46), the parameters a, b and c can be 
determined, resulting in a second order curve that 
interpolates P1 and P2 and has a derivative in point P1 given 

by 
•

1P . 

With vint(t) determined, its root (tPRoot) can be calculated 
easily by using Baskara’s formula and, in this way, the 
Taylor series is centered at tPRoot. 

C. Method 3 
Another constraint that can be utilized is the derivative of 

the curve v(t) on P2, Figure 7: 
Then, it is defined 

 ( )




=
••

nn tvtP 112 , , (47) 

where the derivative of v(t1n) is obtained by making t = t1n in  
(45). 

Lines 1 and 2 in (48) are as those in (46). The third line is 
obtained by applying P2 in (41). Thus, the following linear 
system is obtained: 
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. (48) 

By solving (48), the parameters a, b and c can be 
determined, resulting in a second order curve that 
interpolates P1 and P2 and has a derivative in point P2 given 

by 
•

2P . 

Then, tPRoot can be calculated from vint(t), as it was done 
before, and the Taylor series can be centered on this point. 

V. RESULTS 

The efficiency of the proposed methods to compute good 
approximations of the root of (1) is illustrated by means of 
the following numerical examples. 

t

v t( ) v t( )

[ , ( )]t v t1 1n n

PRoot

P1

P2

[0, (0)]v

 
Fig. 5. Concept of method 1. 
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Fig. 6. Concept of method 2. 
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1) Example for Method 1: 
Consider the parameters in (1) given in Table I. 
Figure 8 shows function v(t) for the above parameters; the 

second order Taylor series approximation of v(t) is centered 
at PRoot. It is important to observe from this figure that the 
second order Taylor series used to approximate v(t) provides 
a good approximation around the center PRoot, which includes 
the region of the actual root, as pointed out in the figure. The 
parts of vTaylor that are not good approximations of v(t) are 
irrelevant for the computation of the root of v(t). The 
approximation of the root of v(t), computed by Method 1, is  
given by 138.81ns, and the actual root, numerically 
computed [13], is given by 139.40ns. This illustrates a very 
good approximation of the actual root, provided by Method 1 
in this example. 

The upper bound of the error, given by Method 1, is 
2.3788V. The actual error, that is, the modulus of v(138.81) 
is given by 0.72V, thus respecting the upper bound provided 
by Method 1. 

2) Example for Method 2: 
Using the same parameters from the former example the 

system obtained is 
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c
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a
. (49) 

From which, the first curve is obtained, 
 vint(t) = 1.51x1016x2 -6.66x109 x + 648.59. (50) 

The first positive root for vint(t) is at 145.03ns. The root of 
Vtaylor(t) centered at this point is 138.56ns, while this value 
calculated numerically is 139.40ns.This shows that the root is 
calculated with great precision. This method is illustrated in 
Figure 9. 

3) Example for Method 3: 
Using the same parameters from the former example the 

following system is obtained: 
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, (51)  

from which the following curve it is obtained, 
 vint(t) = 2.81x1016x2 -1.02x1010 x + 863. (52) 

The first positive root for vint(t) is at 134.09ns. The root of 
Vtaylor(t) centered at this point is  138.54ns, while this value 
calculated numerically is 139.40ns. Again, the root was 
calculated with great precision. This method is illustrated in 
Figure 10. 

As a final example for validation of the proposed 
conditions, consider the converter topology in [8] with 
parameters given in Table I. The simulation results for this 
converter can be seen in Figure 11, indicating that the ZVT 
time obtained is about 138ns. All proposed methods for 
determination of the ZVT time yielded values within the 
interval [138, 139]ns. Thus, there exists a good 
correspondence between the theoretical proposal and the 
simulated results. Besides, the VS1 waveform clearly 
indicates the occurrence of ZVT. This fact can also be 
observed in Figure 4, since the pair (Lr, Cr) utilized belongs 
to the ZVT area provided by Theorem 1. 

By means of the approaches proposed herein some 
important design parameters can be obtained and evaluated, 
such as the operation sequence, the total commutation time, 
the RMS values of current through the auxiliary circuit, 
resistive losses through the auxiliary components, loss of 
duty ratio, to name a few. Below two of these parameters are 
given as examples. 

A. Operation Mode: 
The operation mode can be determined by evaluating the 

following expression 
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Fig. 7. Concept of method 3. 
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Fig. 8. Function v(t), second order Taylor series approximation of 
v(t), marked as vTaylor . The Taylor series is centered at PRoot. 
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Fig. 9. Example for method 2. 
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ClampatCr Vv >∆ )( 3

 (53)  

where  

 ( ) ( )( )
r

s
eeWCr C

C
tDtCBtVAtv ωω cossin)( +−+−= . (54)  

∆t3a is obtained from the methods shown in the former 
section. 

When (53) is satisfied, the converter operates in sequence 
2, i.e., Cr clamps before the voltage of CS becomes null. Else 
it may operate either in sequence 1 or in sequence 3. 

It operates in sequence 3 if Cr is clamped after the CS 
voltage becomes null, satisfying (55). 

 ( )( ) ( )( ) ClampratLWatC VZIVV
rr

≥∆++∆ 2
3

2
3

, (55) 

where VCr(∆t3a) is obtained by making t = ∆t3a in (54) and 

 ( ) ( ) ( )( )
r

SttatLr

BC

CDCI

+
∆+∆=∆  sin cos- e2e2e3 ωωω ; (56) 

 
( ) r

oWCr

r
t VVtV

ZI ω








−+
−=∆

0
2 arcsin ; (57) 

 
rrr CL1=ω . (58)  

Zr is given in (11) and VCr(t0) is defined by the topology, 
according to Table I. 

Otherwise, the converter operates in sequence 1. 

B. Commutation Time 
The commutation time is determined depending on the 

operation sequence of the converter. 

1) Sequence 1 
The amount of time used to accomplish the transitions by 

the converter when operating in this sequence is given by: 
 

7654321 tttatatttComt ∆+∆+∆+∆+∆+∆+∆= , (59) 

where ∆t1 and ∆t6 are given by the modulation scheme 
utilized; ∆t2 is given by (57); ∆t3a can be determined by the 
methods presented in section III; 

 ( )
( ) r

ratLr

WatCr
at ZI

VV ω








∆
+∆−=∆

3

3
4 arctan , (60) 

where VCr(t3a) is obtained by making t = ∆t3a in (54) and 
 ( ) ( ) ( )( ) rSttatLr BCCCDI +∆−∆=∆ e2e2e3 cossin ωωω ; (61) 

 
rt ωπ5 =∆ ; (62) 

and 
 ( ) Sot CIV=∆ 7

. (63) 

2) Sequence 2: 
The amount of time used to accomplish the transitions by 

the converter when operating in this sequence is given by: 

 
765

43321

ttt

btbtatttComt

∆+∆+∆+
∆+∆+∆+∆+∆= , (64)  

where ∆t1 and ∆t6 are given by the modulation scheme 
utilized; ∆t2 is given by (57); ∆t3a can be obtained by the 
approaches presented in section III, making vTaylor(t) = VClamp 
and solving for t = ∆t3a. 
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33

3

arcsin
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π

 (65) 

where VCs(∆t3a) is obtained by making t = ∆t3a in (1) and 
ILr(∆t3a) is given in (61). 

 ( )
r

WClamp

btLr
bt L

VV

I

+
∆=∆ 3

4
, (66) 

where 

 
( ) ( ) ( )

( ) ( )bt
r

WaCr

btaLrbtLr

Z

VV

II

3r
t3

3rt33

sin

cos

∆+∆−

∆∆=∆

ω

ω
; (67) 

∆t5 and ∆t7 are given by (62) and (63), respectively. 
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Fig. 10. Example for method 3. 

 
Fig. 11. Simulation results for converter topology [8] with the 
parameters from Table I. 
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3) Sequence 3: 
The amount of time used to accomplish the transitions by 

the converter when operating in this sequence is given by: 

 
7654

4321

tttbt

atatttComt

∆+∆+∆+∆+
∆+∆+∆+∆= , (68) 

where ∆t1 and ∆t6 are given by the modulation scheme 
utilized; ∆t2 is given by (57); ∆t3a can be obtained by the 
approaches presented in section IV; 
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( ) ( )( ) rratLrWatCr

r
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

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∆++∆

+

=∆
 (69) 

where VCr(∆t3a) is obtained by making t = ∆t3a in (54) and 
ILr(∆t3a) is given in (61). 

 ( )
r

WClamp

btLr
bt L

VV

I

+
∆=∆ 3

4
, (70) 

where 

 
( ) ( ) ( )

( ) ( )bt
r
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btaLrbtLr

Z

VV

II

3r
t3

3rt33

sin

cos

∆+∆−

∆∆=∆

ω

ω
; (71) 

∆t5 and ∆t7 are given by (62) and (63), respectively. 

VI.  CONCLUSION 

This work proposed an analysis tool to verify the soft-
switching conditions for a given set of components (Lr, Cr) 
for ZVT converters with resonant voltage source. 

In addition, three numerical methods to compute the time 
of occurrence of ZVT for power converters with capacitor on 
the auxiliary resonant branch were presented. 

The conditions in the paper provide analytical expressions 
to compute the time of occurrence of ZVT based on the 
converter parameters. The results obtained become useful for 
analysis and design, allowing evaluating operation sequence, 
total commutation time, resistive losses and other important 
parameters to describe the converter performance. 

Examples provided in the text illustrate the efficiency of 
the proposed conditions. 
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