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Abstract – The passivity-based control has been 
proposed to control different non-linear systems, but 
practical implementation aspects have not been discussed 
on most of them. One of those systems is the buck 
inverter. In some applications it is necessary the boosting 
capability additionally to the inversion capability, 
therefore a boost inverter has been proposed in those 
cases, since the buck inverter does not have those 
capabilities. In this paper the practical implementation of 
the passivity-based control for the boost inverter is 
discussed in some detail, and a modified controller is 
proposed to overcome the implementation drawbacks. 
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Nomenclature  
C - Capacitor of the current emulator 
d - Duty cycle 
 e

1z  - Output of the current emulator 
Gm - Maximum gain 
IL - Inductor current 
Io - Output current 
kp,ki - PI controller parameters 
Rn - Controller parameters 
R - Resistance of the current emulator 
un - Control law 
Va - Capacitor voltage  
Vin - Input voltage 
Vdc - Dc Component of the capacitor voltage 
Vop - Peak output voltage 
z1,z3 - Inductor current 
z2,z4 - Capacitor voltage 
Z~  - State error vector 

2
~z  - Capacitor voltage error  
Znd - Reference of the state variable 

I. INTRODUCTION 

The dc/ac conversion is widely used in many applications; 
two of these applications are the uninterruptible power 
supplies and the photovoltaic systems. In these two systems 
it is usually necessary the boosting capability, additionally to 
the inversion capability. One converter proposed for those 
applications is the boost inverter, since the traditional buck 
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inverter does not have those referred capabilities. The boost 
inverter can to boost and to invert at the same time [1-2]. 

The boost inverter is a complex system from the control 
point of view. This is because the converter must generate a 
sinusoidal output plus a dc component in each branch of the 
converter (tracking problem), and also the system is non 
minimum phase with respect to the variable to be controlled. 
It is a difficult task to control the converter. 

In [3-7] a sliding mode control and a double loop 
controller for the boost inverter have been proposed. In this 
paper a passivity based control scheme is studied to solve the 
tracking problem for the boost inverter.  The system is non 
minimum phase if the voltage load is taken as the system 
output, then it could be controlled indirectly through the 
inductor current. The document also present how to tackle 
some practical implementation problem, this is made 
modifying the controller. 

The operation of the boost inverter, the analysis of the 
control strategy, and the design considerations that should be 
taken into account to implement the modified passivity-based 
control are discussed. 

In next section a boost inverter model is presented; in 
section three the passivity-based control is addressed, with 
the design considerations to implement the controller; in 
section four the simulation and experimental results are 
presented; and finally some conclusions will be given. 

II. THE BOOST INVERTER 

The boost inverter features an excellent property: it 
naturally generates an output ac voltage lower or larger than 
the dc input voltage, depending on its duty cycle [1-2]. This 
property is not found in the traditional full bridge inverter, 
which produces an instantaneous ac output voltage always 
lower than the input dc voltage as was mentioned before. 

The boost inverter achieves dc/ac conversion as follows: 
the power stage consists of two current bi-directional boost 
converters and the load is connected differentially across 
them (Fig. 1). These converters produce a dc-biased 
sinusoidal waveform (Fig. 2). The modulation of each 
converter is 180 degrees out of phase with respect to the 
other, which maximizes the voltage excursion over the load 
[1-2]. 

Considering the behavior before mentioned, the analysis 
of the converter in steady state is made. According to Fig 2, 
the branch voltage Va [4]:  
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The gain of the branch versus the duty cycle (d) is [4]: 
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Using (1) , (2) and knowing that 

dcao VVV 22 −= , the gain 
of the converter is obtained as: 
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Where:   
 

mG  -Maximum gain (
inop/VV ), 

d  -Duty cycle 
 
The inductor current as a function of the duty cycle is [4]: 
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Where:    

Io - Output current 
 
With (2) and (4) is obtained that: 
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It is important to notice that the inductor current has a 

non-conventional form (Fig. 3), and also depends on the load 
(I0). The variable to control is the capacitor voltage following 
a sinusoidal trajectory. 

A. System modeling 
For control purposes it is necessary to obtain the model of 

the system to be controlled. Fig. 4 shows the simplified 
circuit used for the boost inverter. For modeling purposes it 
is assumed that all the components are ideal and the circuit 
operates in continuous conduction mode. 
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Fig. 1.  Boost inverter.  

This model permits to emulate every load and verify the 
performance at any load, because the load is modeled as a 
current source.  In a previous paper it just has been modeled 
the converter for each branch and the load as a resistance, 
that model in consequence is incomplete because the load is 
not necessarily a resistance [3-7]. 

The two control variables u1 and u2 only affects two 
different state variables; u1 affects z1 and z2, and u2 affects z3 
and z4, then the system is uncoupled. This is possible because 
the load is represented by a current source. The following 
system can be used just for controller design: 
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Where:    
z1 - Inductor current 
z2 - Capacitor voltage  
u1 - Control law 
Vin - Input voltage 
 
From (6) it can be observed that if either z1 or z2 is the 

output, then the relative degree of the system is one. Model 
(6) is a bilinear non-minimum phase system if z2 is taken as 
the output. It is well known that exact tracking can not be 
achieved by a non-minimum phase system because any 
control law would render the closed loop system unstable. 

As it was mentioned before the inductor current depends 
on the load, then to control the converter with passivity based 
controller is relatively complex; also as the output voltage is 
not controlled directly, the parasitic resistance or losses must 
be considered at the control law. This paper presents a 
method to implement the passivity-based controller 
considering these facts. 
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Fig. 2. Output voltage for each dc-dc converter. 



 
Fig. 3.  Inductor current form: resistive load. 
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Fig. 4.  Simplified circuit of the boost inverter. 

III. THE PASSIVITY BASED CONTROL 

The passivity theory is related to the energy dissipation of 
physic systems. A passive system is relatively easy to control 
in the sense that the system is naturally stable [8]. This 
property makes the passivity-based controller an interesting 
option, but it has some inconveniences when it is 
implemented. 

At difference with the Sliding Mode Control (SMC) the 
passivity based controller naturally assures stability, due to 
the properties of the passive systems [8]. The SMC is based 
on a sliding surface, the system is obligated to remain into 
the sliding surface; and then the stability analysis must be 
done to assure that the system will reach the equilibrium 
point. The passive based controller starts with a stable system 
to find the control law. 

The system to be controlled, equation (6), is naturally not 
passive, but through the control law the system becomes 
passive. The motivation is to assure the stability obligating to 
the system to has the behavior of a stable passive system, 
then the control law is chosen with the purpose to obtain a 
stable passive system behavior. 

It is important to remark that both controllers offer to the 
system a good dynamic response. 

Despite of the good characteristics of the passivity based 
controller, it has some inconveniences when it is 
implemented, which it is discussed in this paper. 

A. Obtaining the passive-based control law 
 
Summarizing, the passivity control law can be obtained by 

the next steps: i) Obtain the system model, ii) Propose an 
error system with the desired dynamic, this system must be 

passive, iii) Found the control law that makes the system 
follows the error system proposed. 

The first step has been made in the previous section, for 
the second step the passive error system proposed is [8]: 
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The conditions 01 >R  and 02 >R , must be fulfilled in 

order to assure the stability, these terms are the dissipative 
elements that permit to the system becomes passive 
(controller parameters). A stability proof of this passive error 
system is made in chapter 4, section 3.3 of the reference [8].  

In the third step the control law is obtained. The reference 
system is obtained using (6) and (7) resulting: 
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Where:  

z1d - Inductor current reference 
z2d - Capacitor voltage reference 
u1 - Control law 
 
From (8) the following control law is obtained: 
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It is important to note that there are not singularities in the 

control law despite that dz2 is at the denominator of (9). dz2  
is the capacitor voltage reference, and this voltage must be 
like the desired capacitor voltage (Va) shown in Fig. 2; this 
voltage is always higher than zero volts and higher than the 
input voltage, this is because the dc/dc boost converter can 
not produce a voltage lower than the input voltage. 

The control law should include the input voltage to 
eliminate perturbations at the output voltage due to this 
variable. As the inductance is too small this term was 
neglected. The controller parameter is used to adjust the 
system performance. The control law depends on the 
inductor current reference, and as it was mentioned before, 
that reference changes with the load. 

To avoid the generation of the reference current an 
emulator is used. To emulate the current error the solution of 
the following differential equation is used (Fig 5): 
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Where: 

e 1z   - Output of the current emulator 
R, C - Parameters of the current emulator 
 
As the controller does not operate directly with the output 

voltage, an error related with the parasitic elements may 
occur, even worst as a tracking is performed. To eliminate 
that problem another loop is added to the term Vin of the 
control law: 
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Where:     
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The implemented control law is then: 
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The output of the error current emulator is obtained from 

(10), this is made with the circuit of the Fig 6. 
 
To sintonize the controller parameters has four steps: first 

cancellate the kp and ki parameters, and increase R1 until the 
output becomes the desired sinusoidal output; this is made at 
no load. As second step, connecting the load, increase the kp  
until the steady state error is almost eliminated. As third step 
increase the ki parameter to have a better response; it is 
important to note that in this controller the steady state error 
is eliminated with kp. And finally RC is a constant time 
chosed according to the switching frequency (fs), that is 
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Fig. 5. Error emulator.  
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Fig. 6. Inductor error current emulator.  
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Fig. 7. Basic divisor circuit. 

+

-

PWM

+15

+

-

+15

+15

+

-

+
-

+15

S1

S2

+

-

PWM

+15

+

-

+15

+15

+

-

+
-

+15

S1

S2

 
 

Fig. 8. Dead time circuit. 

B. Experimental circuits  
The controller was built experimentally; some important 

practical circuits to implement it are the high pass filter 
(current emulator), the divisor, the PWM generator and the 
dead time generator. 

The error current emulator is made with a high pass filter 
(Fig. 6), this simple circuit permits eliminate the generation 
of the inductor current reference. For the divisor circuit a 
multiplier in configuration as divider is used (Fig 7), the 
multiplier used for this purpose is the MC1495 integrated 
circuit. For the pulse with modulator (PWM) generation the 
TL494 integrated circuit is used. The control law discussed 
in the previous section is introduced in this circuit to obtain 
the pulses that determine the turn off and turn on of the boost 
inverter semiconductors. 

Inverter topologies always need a dead time generator for 
the semiconductors of the inverter branches, in order to avoid 
a short circuit on the branch. The circuit used for this purpose 
is shown in Fig 8; just one integrated circuit is used for this 
purpose (LM339). 

To turn on and turn off properly the semiconductors a gate 
driver must be used for each one. The gate driver used is the 
M57959L of POWEREX. This circuit includes protection of 
malfunction and over stress. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

Some simulation and experimental results of the converter 
are shown in Figs. 9-12. The converter parameters are Vin= 
50V, Vo=120Vac (Gm≈ 3.4), L=360µH, C= 27µF and 
Po=300VA.  

The simulation results of the converter are shown in Fig. 
9, the output voltage and current are shown under a load 
variation, also the capacitor voltage, the input voltage and the 
control law. 



 
The experimental results are shown in Figs. 10-13. These 

experimental results of Figs. 10 and 11 were made with a 
resistive load at 150W. In Fig. 10 it is shown the capacitor 
voltage, and the input voltage without compensation of the 
parasitic elements.  As it can be observed the voltage is 
distorted, and so the output voltage is also distorted. In Fig. 
11 it is shown the output voltage with the compensation of 
the parasitic elements, as it can be observed the voltage is not 
distorted. The compensation is made including (11) to the 
control law, that is (12) is used. 

In fig 12 is shown the performance of the prototype under 
load variations, as it can be observed the system has a good 
performance. The load changes from 20% to 80% of the total 
power, the total power is 300W. 

 

 
 

Fig. 9 Simulation results under load variation. 

 

 
 

Fig. 10 Top to down: Capacitor voltage, input voltage. System 
without compensation of the parasitic elements. 

 
 

 
 

Fig. 11 Output voltage. System with compensation of the parasitic 
elements. 

     
 

Fig. 12 Inverter under load variation: Top to down: Branch 
voltages, Output voltage and output current, with compensation of 

the parasitic elements. 

          
 
Fig. 13 Inverter under input voltage variation: Top to down: Branch 

voltage, Input voltage, Output voltage and output current. 

 



 
 

Fig. 14 Photo of the passivity based controller. 

 
 

Fig. 15 Photo of the complete system. 

In Fig 13 it is shown the performance of the system under 
an input voltage variation at full load. The input voltage 
changes from 50V to 45V. A good response is observed, no 
distortion is observed at the output voltage. 

In Fig 14 and 15 is shown a photo of the implemented 
prototype. One of them is the controller and the other one is 
the complete system. 

The THD at full load for the output voltage is 3.5% 

V. CONCLUSIONS 

In this paper a boost inverter is analyzed using a passivity 
based controller. The boost inverter is used in uninterruptible 
power supplies and photovoltaic systems when it is necessary 
to boost the input voltage additionally to the inversion 
capability. The converter is a non-minimum phase system 
with respect to the variable to be controlled. Then the 
tracking problem makes the task much more difficult. 

In this paper the passivity based control with the tracking 
problem at the boost inverter is analyzed, and a modified 
controller is proposed. The analysis, operation, simulation 
and experimental results are presented. 
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