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Abstract – This paper presents a simple configuration, 
based on the integration of two flyback converters, to 
supply high intensity discharge (HID) lamps with a low 
frequency square waveform (LFSW), in order to avoid 
the occurrence of the acoustic resonance (AR) 
phenomenon. The proposed topology is compared to a 
previous presented one. Both topologies integrate two 
flyback converters in different ways. Losses of both 
integration modes are compared and advantages are 
discussed in respect to current and voltage components 
stress. The proposed electronic ballast presents a high 
efficiency with a reduced number of components and no 
over current stress in the shared switch. Experimental 
results validate both configurations. 
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I. INTRODUCTION 

When High Intensity Discharge (HID) lamps are supplied 
by high frequency sinusoidal current waveforms, they are 
susceptible to the occurrence of the acoustic resonance (AR) 
phenomenon [1]. In literature, many works have studied this 
phenomenon and different methods have been proposed in 
order to avoid its occurrence [2] - [6]. 

The option of supplying the lamp with a low frequency 
square waveform (LFSW) is presented by many researchers 
as the most reliable technique [7] - [10]. However, the choice 
for this method demands electronic ballasts with a high 
number of power stages, increasing cost and decreasing 
efficiency. 

Usually, in this method, three power stages are necessary. 
The first one, provides the input power factor correction 
(PFC), the second is the power control (PC) stage, employed 
to guarantee the stable lamp operation and the last is the 
inverter stage, used to alternate the lamp current. 

The integration of converters has proven to be a good 
option to reduce the number of stages and components of the 
ballast, increasing efficiency and decreasing costs, becoming 
more attractive to the industry [11][12]. However, when two 
converters are integrated their shared switch is submitted to 
some extra current or voltage stress.  

In this paper, a novel integrated topology is proposed. 
Two flyback converters employed in the PFC and PC stages 
of an electronic ballast are integrated in a single one. This 
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topology is compared to a previous presented in [8]. The 
basic difference between both integrations is that the shared 
switch of the topology proposed in this paper, is submitted to 
a voltage stress and in the previous one to extra current. The 
number of components employed in both topologies is the 
same and their design is similar. Therefore, the topics to be 
evaluated are the difference of operation, design, calculation 
of the shared switch drain to source voltage and rms current, 
and losses presented in both configurations. 

II. INTEGRATED CONFIGURATIONS 

The original circuit and both BiFlyback integrated 
topologies are presented in Figure 1. The previous one, 
presented in [8] is called BiFlyback Integrated Ballast with 
Current Stress (BFIB-CS), and the proposed one is 
BiFlyback Integrated Ballast with Voltage Stress (BFIB-VS). 
It can be observed, from Figure 1, that both topologies have 
the same number of components with similar voltage and 
current characteristics with the exception of the shared 
switch (S1) and diodes D5 and D6.  

In order to understand how the current is distributed 
among the main switch (S1) and diodes D5 and D6 in both 
configurations, the equivalent circuits and theoretical 
waveforms are presented in Figure 2. As can be observed in 
BFIB-CS, the shared switch (S1) handles the sum of the 
currents of both integrated flyback stages. The current 
through diodes D5 and D6 is equal to iL1 and iFly_1, 
respectively. On the other hand, in BFIB-VS, the shared 
switch (S1) only handles the highest current of the two 
integrated flyback stages in each instant, and diodes D5 and 
D6 only handle the difference between iL1 and iFly_1 currents. 
This is the main difference between both topologies. 

III. ANALYSIS OF THE PROPOSED INTEGRATED 
CIRCUITS 

This section presents the theoretical analysis of both 
integrated circuits, which includes: design equations of the 
PC and PFC stages, and the analysis of rms current and 
drain-to-source voltage in the shared switch. 

A. Design of the PC and PFC Stages  
First of all, the characteristics of the PC stage, performed 

by the flyback converter, are presented. Some considerations 
are made, in order to analyze this stage: the former converter 
(PFC stage) is represented as a DC source, VB; only one of 
the secondary windings is taken into account, LFly_2-3; the 
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Fig. 1. BiFlyback original circuit and proposed integrated configurations: BFIB-CS and BFIB-VS. 

 
 

Fig. 2. Equivalent circuit and theoretical waveforms for both 
configurations. 

 

converter must work in discontinuous conduction mode 
(DCM); and the lamp is considered as a resistance. Then, the 
equivalent circuit is shown in Figure 3(a) and the main 
waveforms of primary and secondary winding currents in 
Figure 3(b).  

The analysis of the flyback converter supplied from a DC 
source is already presented in [9]. Therefore, only the 
relevant equations are presented in this paper. This converter 
behaves as a resistance working in DCM, RFly, and its 
equivalent value is shown in (1). The condition to guarantee 
the DCM operation is shown in (2). 
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Where LFly_1 – PC flyback primary winding inductance, D – 
duty cycle, TS – switching period, n2 – PC flyback turns 
ratio, VL – lamp voltage, and VB – DC bus voltage. 

The PFC stage is also performed by a flyback converter 
working in DCM. This converter is loaded with the PC stage, 
which can be represented by its equivalent resistance, RFly. 
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a.  PC stage – flyback converter 
supplied from a DC source. 

 

b. Theoretical waveforms. 

Fig. 3. PC stage.  
 

The equivalent circuit is presented in Figure 4. The 
objective of this analysis is: to define the PFC flyback turns 
ratio in order to guarantee the DCM operation of the 
converter, n1; to design the BUS voltage capacitor (CB) 
according to a desired voltage ripple; and to define all other 
ballast components. It is important to emphasize that this 
analysis is common for both configurations, BFIB-VS and 
BFIB-CS. 

In order to simplify the analysis, the following parameters 
are defined: 
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Where VG is the line voltage peak value, and L1 is the 
primary winding inductance of the PFC flyback. 

The flyback turns ratio, which is designed to the boundary 
between CCM and DCM operation, is shown below, 
neglecting the BUS voltage ripple. 
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The duty cycle, D, used to calculate n2 in (2) and n1 in (5) 
must be the same, as both flyback converters share the same 
switch. 

As can be seen in Figure 4, the current iB(t), in the PFC 
stage, is divided between the BUS capacitor, CB, and the PC 
flyback equivalent resistance, RFly. Then, considering that the 
AC component of iB(t) flows only through CB and that the 
DC component, IB, flows only through RFly, the BUS voltage, 
VB, can be defined as: 

FlyBB R.IV =  (6)

Fig. 4. PFC stage equivalent circuit.  
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ω is the line angular frequency and t the time. 
Considering (1), (6) and (8), the voltage ratio, m, is 

defined in function of the inductance ratio, α, as presented 
below. 

α.m 2=  (9)

 
Equation (9) is plotted in Figure 5. This graphic allows to 

define the inductance ratio, α, according to a desired voltage 
ratio, m. It can be observed that the relation between the bus 
voltage and the input voltage, m, only depends on the 
inductance ratio α. 

 

Fig. 5. Inductance ratio α as function of the voltage ratio m. 

The equation (10) defines the output power of the 
analyzed converter, Pout. Besides, Pout can also be defined as 
in (11). 

BBout I.VP =  (10)
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Where Plamp is the lamp power and η the efficiency of the 
circuit. 

Then, using (1), and (10) in (11), a closed equation to 
calculate L1 is defined. 
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Another important issue that must be analyzed before a 

complete design can be performed is the voltage ripple 
across the bulk capacitor, ΔVB. The peak-to-peak voltage 
ripple across the bulk capacitor can be calculated through the 
charge injected into the capacitor (ΔQ), as follows: 
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The ripple factor is defined in (14). Therefore, the 

equation that defines the necessary bus capacitance to limit 
the ripple below to a determined value is shown in (15). 
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Where fS is the switching frequency, and f the line frequency. 

B. Voltage and Current in the Shared Switch. 
The analysis of maximum drain-to-source voltage and rms 

current in the shared switch for both circuit configurations is 
very important, since it is the main difference between the 
circuits. Besides, this analysis helps to define the suited 
configuration according to a desired application and, 
consequently, to choose the appropriate MOSFET to each 
case. This analysis must be performed for each configuration 
separately. The theoretical integrated switch current for both 
analyzed configurations is shown in Figure 6. 

 

Fig. 6. Integrated switch current waveforms for both configurations  
(not to horizontal scale). 

1) BFIB-VS Analysis - As in this configuration only the 
highest current between both integrated stages is handled by 
the shared switch, the current through the main switch, S1, 
depends on the conduction angle β, (Figure 6 (a)). During 
intervals [0,β] and [π-β,π], named PC interval, the switch 
handles the PC flyback stage current, and during interval 
[β,π-β], named PFC interval, the switch handles the PFC 
flyback stage current. The conduction angle, β, depends on 
the ratio m, defined in (3): 
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This β value is in radians. Thus, the following equation 

represents it in seconds: 

ω
β
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Therefore, for m ≤ 2, the rms current through the main 
switch, Irms_VS, can be defined as: 
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Where IPC_VS is the switch rms current during the PC interval, 
and IPFC_VS is the switch rms current during the PFC interval, 
which are defined below: 
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Where T is the line period, 
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Therefore, solving the integrals and using (12), equations 

(23) and (24) can be defined: 
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In the case that m > 2 (VB<Vβ), the PC stage current is 

always higher than the PFC stage current in steady state. In 
this case, the main switch handles only the PC stage current, 
and its value can be defined as: 
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Another important parameter to be considered is the 

maximum drain-to-source voltage in the main switch, VS_VS. 
Thus, neglecting the flyback leakage inductance, this 
parameter can be defined as: 
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Simplifying this equation: 
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2) BFIB-CS Analysis - In opposite to the former analysis, 
the rms current through the main switch does not depend on 
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any conduction angle (Figure 6 (b)), and can be directly 
defined as: 
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Thus, simplifying the equation, the following expression 

is obtained: 
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Where: 
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TNT =  (30)

 
The maximum drain-to-source voltage in the main switch 

in this case, VS_CS, can be one of the indicated in (31) and 
(32), whichever is higher. It depends on the projected input 
and BUS voltage. If VG>VB the shared switch voltage is 
calculated using (31), on the other hand, (32) must be used. 
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3) Shared Switch Design - Considering the previous 
analysis the abacus of Figure 7 for both configurations 
(BFIB-VS and BFIB-CS) can be build. This abacus makes 
possible to design the electronic ballast evaluating the shared 
switch necessary characteristics for each case. 

To build this abacus the following parameters have to be 
defined: mains – 110 Vrms / 50 Hz; lamp - PHILIPS Master 
Color CDM-T 35 W, converters switching frequency – 80 
kHz and expected electronic ballast efficiency – 90%. 

The characteristics of switch voltage and current are 
plotted in function of VB and D, which can be chosen 
according to the desired MOSFET parameters. 

IV. PROJECT EXAMPLE 

Two Electronic ballasts are projected and implemented for 
an input voltage of 110 V, 50 Hz, in order to supply a 35 W 
MH lamp. The ballasts were designed to a bus voltage of 100 
V. So, m = 1.55 is calculated in (3), and through the graphic 
of Figure 5, a relation between the inductances α = 1.2 is 
obtained. Once the flyback employed in the PC stage is 
projected according [5], the input flyback can be designed 
through the α ratio.  The considered switching frequency is 
80 kHz and the duty cycle for the steady state operation is 

around 39%. The bus capacitor value is calculated in (15) for 
a maximum bus voltage ripple of 10%. 

The projected values and employed components are 
presented in table I.  

 
TABLE I 

Commercial Components 
BFIB-CS and BFIB-VS 

D5, D6, D7, D8 and D9 UF4007 

CB Electrolytic capacitor 
150 µF / 160 V 

S1 IRFPE50 
S2 and S3 IRF840 

L1=L2 278 µH - 68 winds  
NEE - 30/15/7 core from Thornton® 

LFly_1 
LFly_2= LFly_3 

232 µH - 44 winds  
348 µH - 54 winds  

NEE - 30/15/7 core from Thornton® 
C1=C2 Polypropylene capacitor 

220 nF / 630 V  

 
Through the abacus of Figure 7 the expected peak voltage 

and rms current across the shared switch can be obtained as 
shown in Figure 8. However, in the proposed BFIB-VS there 
is no over current in the shared switch; nevertheless the 
voltage stress is higher than in the previous presented 
topology (BFIB-CS). 

 
V. EXPERIMENTAL RESULTS 

Experimental results shown in Figure 9 and 10 validate 
BFIB-VS and BFIB-CS integrations. In Figures 9a, 10a and 
9b, 10b the input and output characteristics of both 
configurations are presented; the measured input power 
factor was 0.996. In Figure 9c it can be observed that only 
the highest current between both flyback stages is handled by 
the shared switch (BFIB-VS) and not the sum of them as 
shown in Figure 10c (BFIB-CS). The drain-to-source voltage 
in both topologies is shown in Figures 9d and 10d and is in 
accordance with the previous calculated values. 

Figure 11 shows the measured input current harmonics for 
BFIB-VS configuration. It is in accordance to the IEC-
61000-3-2 standard limits.  

It is important to notice that the input current harmonics 
and, consequently, the input power factor for both 
configurations are the same, as the difference between the 
topologies is located in the circuit connection done across the 
main switch and diodes D5 and D6, as explained in section II. 

VI. LOSSES ANALYSIS 

The main purpose of this section is to compare the losses 
in the shared switch (S1) and diodes D5 and D6, as there is no 
losses difference in the other components. The shared switch 
employed for both topologies are the same (IRFPE50), 
because the drain-to-source voltage (VDS) for this project 
presents a difference of 164 V, which is not significant to 
employ different MOSFETS. Losses are studied through 
simulation and presented in the graphic of Figure 12. The 
efficiency obtained through experimental results, for the 
BFIB-VS configuration is 85% and for the BFIB-CS is 81%.  
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Fig. 7. Integrated switch drain-to-source voltage and rms current characteristic. 
 

  

Fig. 8. Defined shared switch drain-to-source voltage and rms current to VB=100 V and D=0.4. 

The lower efficiency of BFIB-CS occurs due to the higher 
shared switch conduction losses presented by this 
configuration, as can be seen in Figure 12. 

Also, experimental results for both integrations are 
obtained in [13] for a mains of 220 Vrms / 60 Hz to supply 
an OSRAM Vialox 70 W HPS lamp. The efficiency obtained 
in that case for the BFIB-VS configuration is 91.6% and for 
the BFIB-CS is 84.5% employing a COOLMOS 
SPW17N80C2 in the shared switch. 

The results show that increasing the input voltage and the 
output power the efficiency of both configurations tends to 
increase, and, as expected the BFIB-VS efficiency is higher 
than the BFIB-CS configuration.  

The maximum power that these integrations may provide 
to the load, in order to supply different lamp wattages, 
depends on the limits of the flyback converter working on 
DCM. This issue is being evaluated and will be presented in 
a future work. 
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a. Input voltage (CH1-50 V/div) and 
current (CH2-500 mA/div), 5 ms/div. 
 

b. Lamp voltage (CH1-50 V/div) 
and current (CH2-500 mA/div), 1 
ms/div. 

 

c. Converter currents: PFC stage (iL1 – 
2 A/div), PC stage (iFly_1 – 2 A/div) 
and shared switch (iS1 – 2 A/div), 2 
ms/div. 

 

d. Shared switch voltage (CH1-
100 V/div), 2 ms/div. 

Fig. 9. BFIB-VS experimental results. 

 

a. Input voltage (CH1-50 V/div) and 
current (CH2-500 mA/div), 5 ms/div. 
 
 

b.  Lamp voltage (CH1-50 V/div) 
and current (CH2-500 mA/div), 1 

ms/div. 

c.  Converter currents: PFC stage (iL1 
– 2 A/div), PC stage (iFly_1 – 2 A/div) 
and shared switch (iS1 – 2 A/div), 2 

ms/div. 
 

d.   Shared switch voltage (CH1-
100 V/div), 2 ms/div. 

Fig. 10. BFIB-CS experimental results 

Fig. 11.  Measured input current harmonics compared to the 
IEC61000-3-2 standard limits for the BFIB-VS. 

 
 

Fig. 12.  Comparison between losses in the two electronic ballasts 
configurations. 

VII. CONCLUSION 

The proposed BFIB-VS electronic ballast complies with 
the industry claims on reducing the product final costs, 
maintaining high efficiency, input power factor correction 
and the desired lamp operation. Experimental results validate 
both configurations and losses comparison show that BFIB-
VS configuration presents better efficiency than BFIB-CS to 
supply a 35 W Metal Halide lamp considering an input 
voltage of 110 Vrms. The main difference between both 
topology losses takes place in the shared switch (S1). 
Although the switching losses for the BFIB-VS are higher, 
the difference of the conduction losses percentage is 
considerable, leading to a lower overall efficiency of the 
BFIB-CS configuration in relation to the proposed one, 
BFIB-VS. 
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