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Abstract – This paper analyses and compares 
experimentally the magnetic hysteresis losses evolution in 
iron steel sheets submitted to different supplies: 
sinusoidal, square, triangular, two and three-level PWM 
voltage waveforms. The magnetic induction amplitude 
influence and the modulation index are investigated for 
Two and Three-level PWM voltage waveforms. The 
experimental investigation is performed using a 
workbench with a closed loop PWM inverter for 
imposing the induced voltage waveform on the secondary 
winding of an Epstein frame. 
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I. INTRODUCTION 

Iron sheets present hysteresis, eddy current and anomalous 
losses [1,2]. With the advent of Power Electronics, 
electromagnetic devices became frequently fed by static 
converters imposing non-sinusoidal voltage waveforms. 
Some of these waveforms may increase the iron losses when 
compared to purely sinusoidal voltage [1,2]. This work 
presents some relevant technical aspects, complementing the 
conclusions already presented in [3]. 

Non-sinusoidal voltage waveforms cause non-sinusoidal 
magnetic inductions. The dynamic losses Wd depend on the 
induction derivative dB/dt. Equation (1) is the most accepted 
model [2] to evaluate the total iron losses W in iron sheets; kf  
and  ke are constant coefficients. The dynamic losses (eddy 
current and anomalous losses) are modeled according the two 
last terms on the right side of (1). The focus of this work is 
on the results related to non-sinusoidal induction waveforms 
hysteresis losses Wh. 
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The contribution of the hysteresis losses can be evaluated 

by the following equation [3]: 
 
                                                                     (2) α

phh BkW =
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Where: 
 

kh - Constant coefficient; 
Bp - Peak value of the flux density; 
α  - Steinmetz coefficient. 
 
Equation (2) the hysteresis losses depend on the induction 

peak value Bp  and it is validated only when the voltage fed 
waveform does not produce minor loops [4]. Nevertheless, 
magnetic hysteresis losses may increase under some 
conditions. The hysteresis losses rising are related to the 
minor loops appearing inside the main hysteresis loop. 

One of the purposes of the work is to analyze how the 
losses behave under arbitrary voltage waveforms. Also, 
another goal here is to investigate the losses increasing due to 
the minor hysteresis loops appearing from PWM voltage 
waveforms. In these waveform types, the influence of the 
magnetic induction amplitude, the triangular frequency and 
the modulation index m will be investigated. The modulation 
index m is defined by (3), where Vsin is the voltage sinusoidal 
reference amplitude and Vtriang the triangular carrier signal 
amplitude. 

 
 
                                  triangVVm sin=                              (3) 

 
 

II. THE EXPERIMENTAL WORKBENCH 

The experiments were performed in a test workbench 
developed for characterizing electrical steel sheets [5]. Figure 
1 presents its scheme. This workbench consists basically in a 
closed loop PWM inverter, an oscilloscope to measure 
primary current and secondary voltage waveforms on Epstein 
frame (B-EP-25cm - Yokogawa Electric Works Ltd.). The 
electrical steel samples are introduced in the Epstein frame. 
A feedback loop controls the PWM inverter [6] in order to 
guarantee the desired voltage waveform on the secondary 
winding as well as the free current evolution in the primary 
winding of the Epstein transformer. A virtual instruments 
based on a computer generates the arbitrary voltage 
waveforms reference. To calculate the losses, another virtual 
instrument was developed using LabVIEW software [7]. The 
workbench uses a 2430 Tektronix oscilloscope, a Hall effect 
A6302 Tektronix current sensor and its TM502A Tektronix 
amplifier. 

Eletrônica de Potência, vol. 13, no. 4, Novembro de 2008 285

mailto:simao@grucad.ufsc.br


Fig. 1. The workbench used in the experimental investigation. 
 
In order to perform the experimental investigation, twenty 

eight non-oriented silicon-steel sheet samples were employed 
in a Epstein frame. They are cut according to the rolling and 
transversal lamination directions. Table I presents their main 
characteristics.  

 
TABLE I 

Data of the blades 
Used sample in the Epstein frame 

Number of sheets in each arm 7 
Width of the sheet [cm] 3 

Average length of the sheet [cm] 28 
Thickness of the sheet [mm] 0.5 

Average mass of each sheet [g] 32 
 

III. EXPERIMENTAL RESULTS 

The experimental results were obtained adopting a 1 Hz 
fundamental voltage waveform for neglecting the magnetic 
dynamic losses (Wd). In this investigation, the maximum 
value of magnetic induction is fixed on 1.2 T. To generate 
PWM pulses, the amplitudes of the triangular and the 
fundamental as well as triangular frequency were applied on 
the experiments. In this way the modulation index and the 
switching frequency can be modified. 

A. Sinusoidal, Square and Triangular voltage waveforms 
 
Figure 2(a) shows results obtained for square voltage 

waveform, where v(t) is the voltage on the secondary 
winding. B(t) and H(t) are the measured magnetic induction 
and the magnetic field, respectively. Fig. 2(b) shows the 
corresponding hysteresis loops (B(t) vs. H(t)). On the same 
figure, a hysteresis loop obtained at purely sinusoidal 
induction waveform is also presented. Both hysteresis loops 
are very close, since they depend only on the induction peak 
and magnetization procedure [2 - 5]. 

Figure 3 compares the sinusoidal and triangular voltage 
induced waveforms on the Epstein secondary winding. It is 
observed in Figure 2(b) and Figure 3(b) that the losses (or 
internal areas of loops) are the same for sinusoidal, triangular 

and square voltage waveforms. 

(a) 

 (b) 
Fig. 2. Results for sinusoidal and square voltage waveforms: 

(a) Voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 

(a) 

 (b) 
Fig. 3. Results for sinusoidal and triangular voltage waveforms: 

(a) Voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 
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B. Sinusoidal and three-level PWM voltage waveforms 

Figure 4 presents results for a triangular frequency of 11 
Hz and modulation index m equal to 0.80. Figure 5 shows 
experimental data when the frequency is fixed to 31 Hz with 
a 0.95 modulation index. Figures 4(b) and 5(b) show 
comparisons of hysteresis loops obtained between the three-
level PWM and the purely sinusoidal voltage waveforms. It 
can be observed that the three-level PWM operation does not 
generate minor loops for the whole hysteresis cycle. 

(a) 

 (b) 
Fig. 4. Results for triangular frequency of 11 Hz and m=0.80: 

(a) Voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 

(a) 

 (b) 
Fig. 5. Results for triangular frequency of 31 Hz and m=0.95: 

(a) Voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 

C. Sinusoidal and two-level PWM voltage waveforms 
 
The same variations in triangular frequency and 

modulation index were performed with a two-level PWM 
induced voltage waveform imposed on the Epstein frame 
secondary winding. Figures 6 and 7 show results for 
triangular frequency of 11 Hz and for modulation indexes of 
0.80 and 0.50, respectively. Contrarily to the results obtained 
for three-level PWM waveforms, here minor closed loops 
appear on the B(t) vs. H(t) locii. Comparing to the hysteresis 
curve obtained with sinusoidal voltages, additional losses due 
to minor loops are here generated. 

 

(a) 

 (b) 
Fig. 6. Results for triangular frequency of 11 Hz and m=0.80. 

(a) Voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 

(a) 
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 (b) 
Fig. 7. Results for triangular frequency of 11 Hz and m=0.50: 

(a) Voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 

Figure 8 shows the results for a triangular frequency of 31 
Hz with a modulation index m equal to 0.80. In Figure 8(b) 
the hysteresis loops are close for both fed voltage 
waveforms, but the minor loops are smaller than those 
presented on Figures 6(b) and 7(b). 

(a) 

 (b) 
Fig. 8. Results for triangular frequency of 31 Hz and m=0.80: 

(a) voltage v(t), induction B(t) and magnetic field H(t) waveforms; 
(b) hysteresis loops. 

One observes that the main (outer) hysteresis loops 
depend only on the induction peak values and they are not 
affected by the voltage waveform. In the other hand, the 
minor loops depend on the voltage waveforms. As a matter 
of fact, they are closely related to the switching frequency 
and the modulation index. When the triangular and the 
sinusoidal reference voltages are synchronized (as in the case 
of the workbench used in this work) the number of minor 
loops n can be calculated as function of the triangular 
frequency (ftriang) by the reference frequency (fsin), as 

 
                                     ( ) 1sin −= ffn triang                         (4) 

D. Losses for sinusoidal and PWM voltages 
 
Figure 9 presents the hysteresis losses as function of the 

magnetic induction amplitude for sinusoidal, square, 
triangular and PWM voltage waveforms. The fundamental 
voltage frequencies were kept at 1 Hz. For PWM voltage 
waveforms the modulation index is equal to 0.80 and the 
triangular frequency is 3 Hz. The hysteresis losses to two-
level PWM voltage waveform are larger compared to the 
other waveforms, which is due to the minor loops. 
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Fig. 9. Hysteresis losses comparison for sinusoidal, square, 

triangular and two and three-level PWM voltage waveforms. 

Figure 10 presents the hysteresis losses as function of the 
modulation index m for two-level and three-level PWM 
voltage waveforms. As minor loops do not appear on the 
three-level PWM voltage waveforms, the hysteresis losses do 
not depend on the modulation index. Thus, on the two-level 
PWM voltage waveforms, where there are minor loops, the 
losses increase with the reduction of the modulation index 
values. Indeed, the inner loop areas decrease with the rising 
of modulation index values. 

sin triangm V / V=

W[mJ / Kg]
PWM Two Level Losses−

PWM Three Level Losses−

 
Fig. 10. Hysteresis losses as function of the modulation index m for 

two-level and three-level PWM voltage waveforms. 

IV. CONCLUSION 

Square, triangular and three-level PWM voltage 
waveforms present approximately the same hysteresis losses 
and they behave similarly to purely sinusoidal voltages. In 
these waveform types, hysteresis minor loops do not appear. 
It was observed that hysteresis losses versus modulation 
index m are constant for three-level PWM voltage (minor 
loops absence). However, for two-level PWM voltages, 
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hysteresis minor loops occur, while the main hysteresis loops 
are similar to sinusoidal losses. Experimental results show 
that the main hysteresis loop does not depend on the shape of 
applied voltage waveform. Similar main hysteresis loops are 
obtained with arbitrary or with purely sinusoidal voltage 
waveforms. For the two-level PWM the hysteresis magnetic 
losses vary with the modulation index m, since the areas of 
minor loops vary. Also, measured losses increase as the 
modulation index decreases since larger minor loops appear. 

The hysteresis losses depend obviously on the material 
itself. Nevertheless, the main conclusions here presented can 
be applied for different materials as, for instance, ferrites. 
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