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Abstract — Neural networks and fuzzy logic are 

showing a good promise for application in power 
electronics and motion control systems. They have 

been applied in feedback control of converter and 

drives, estimation of waveforms and signals, and 

performance enhancement control. Fuzzy logic and 

neural networks are appropriate where the plant model 

is ill-defined, non-linear and has parameter variation 

problems. Besides, such technologies have distinct 

advantages when compared to a digital signal 

processor (DSP) based implementation, like fast 

response, robustness and immunity to harmonic noise. 

They are model-free estimators since they “learn from 

experience” with numerical and linguistic data. The 

present work uses a fuzzy-neural-network (FNN) 

where a neural network topology emulates fuzzy 

reasoning. Such neural network permits automatic 

identification of fuzzy rules and tunes the membership 

functions. The distorted line current waves in a three- 
phase diode rectifier feeding an inverter-machine load 

have been taken into consideration and a FNN has been 
applied to estimate rms current and fundamental rms 

current. The results of the estimation have been 
compared with the actual values, and indicate good 

accuracy. Although the paper considers a relatively 

simple estimation problem, the fuzzy-neural-network 

technique can be extended to more complex 

waveforms and in the estimation of signals of scalar or 

vector-control drives. 

L INTRODUCTION 

Power electronic converters characteristically generate 

complex voltage and current waves. For control and 

monitoring purposes, it is often necessary to process 

these waves and generate the variables, such as total 

rms value, fundamental rms value, active power, 

reactive power, displacement factor, distortion factor 

and power factor. Sometimes, it becomes necessary to 

estimate the above from waveforms recorded by 
oscilloscope  or  chart  recorder.  Electronic 

instrumentation (hardware and software) techniques 

are extensively used for such measurements. For 

example, on-line fast fourier transform (FFT) analysis 

of a distorted wave can give valuable information for 

such measurements. It is also possible to make 

estimation from the basic mathematical model of a 

system, if such a model can be obtained. This approach 

is difficult because the model equations tend to be 

nonlinear and complex, and in addition, there may be 

parameter variation problems. One difficulty in all the 

above estimation methods is that the response tends to 

be slow because of the processing involved, therefore a 
fuzzy neural network solution would be a faster 

solution when implemented in a parallel hardware 

circuit. In addition, the conventional numerical method 

usually gets the estimated parameters from one or 

multi-dimensional look-up tables in microcomputer 

memory. However, for improvement of accuracy, the 

size of the look-up table should be large or 
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Fig. 1 (a) Three-phase diode rectifier supply for 

inverter-fed induction motor drive, (b) Input phase 

voltage and current waves. 

interpolation calculation would be required. In this 

paper, a fuzzy neural network has been systematically 

explored for the estimation of a distorted line current 

waveform of a three-phase diode rectifier feeding an 

inverter-machine load as shown in Fig. 1. The input 

signals for estimation are wave pulse (W) and peak 

value (H) as indicated. The estimation algorithm can be 
extended for other waveforms and various signals 

estimations of drives as well. The estimation for 

rectifier input current, shown in Fig. 1, is somewhat 

involved because there are no simple closed form 

mathematical expressions available to guide the 

formulation of the estimation algorithm. The 

magnitude of the variables W and H of a waveform are 

determined by the dc link voltage, supply peak voltage 

and the Thévenin inductance of the line. The supply 

voltage imbalance is neglected in our study. Assuming 

the filter capacitance very large, i.e., neglecting the 

ripple voltage in the dc link, the dc link voltage is 

constant and the pulse current increases from time to to 

t) in accordance to Fig. 2. 

Fig. 2 Voltage-time across line inductance 
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When the voltage across the line inductance 

reverses, the pulse current decreases from the peak 

value (H) to zero from time t) to t2. Since the integral 

of the voltage across the inductance is zero, the 

following relationship given by (1) holds. After some 

manipulations, the equations for height (H) and width 

(W) result, as given by (2) and (3). The expressions in 

(4) and (5) are used for displacement power factor 

(DPF) and for power factor (PF). 
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where VI, = inductance voltage, V4 = dc link voltage, 

Vm = peak value of supply phase voltage, Lg = per 

phase source inductance , we = supply frequency, 46 is 

the angular interval of current such that the voltage- 

time integral across the inductance reduces the current 

to zero, I is the total rms current and If is the 
fundamental rms current. 

Obviously, Ig and If are function of W and H, 

and their values increase as W or H increases. 
However, the DPF is insensitive to H but has some 

inverse relation with W, as shown. The above 

equations indicate that the estimation is appropriate for 

I, If, and DPF, while PF can be directly obtained from 

(5). In order to create numerical input/output data for 

training the fuzzy neural network (as explained latter), 

the system shown in Fig. 1 was simulated, with large 

dc link filter capacitor, and using the volts/Hz control 

method. Then, Ig and If functional relation with W and 

H were generated, with help of numerical calculation 

of RMS value of current (Ig) and FFT analysis for 
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fundamental RMS value of current (If). The parameters 

Vd. Vm and L; were manipulated to generate such 

results. 

II. FUZZY LOGIC AND NEURAL NETWORK 
CONTROL AND ESTIMATION 

The fuzzy logic modeling and estimation 

techniques have been developed based on Zadeh’s 

theory [1] and on Sugeno’s approach [2], and were 

considered for applications, such as chemical 

fermentation process [3], automated car parking [4], 

and blast furnace smelting process. The fuzzy approach 

is particularly appropriate where the mathematical 

model of the plant does not exist or is ill-defined, the 

system is nonlinear, complex and multi-dimensional 

and has parameter variation problem, or the system 

generates complex output where simple and 

straightforward estimation is not possible. 

A fuzzy logic system has four blocks as shown 

in Fig. 3. The input variables are evaluated with the 

correspondent membership values for each input fuzzy 

set. The decision-making-logic together with the 

knowledge base determine the outputs of each fuzzy 

IF- 

DECISION 
NS puzzmcATON [ MAXING |-D] DEFUZZIFICATION UT 

IOWLEDGE 
BASE 

Fig. 3 Fuzzy system architecture 

-THEN rules, which are combined and converted to 

crisp values with the defuzzification block. 

Of course, the fuzzy estimation is based on 

heuristic or trial-and-error approach, and therefore, the 

algorithm development may be time-consuming, and 

often the accuracy may be limited. Recently, fuzzy 

Table 1 Com 

logic tools are indicating promise for power electronics 

control and estimation [5]. These have been applied in 

the control of converters and drives [6] [7], modeling 

power system’s load [8]; fuzzy logic has been 

considered also for estimation in power electronics [9] 

and for performance enhancement for ac machines 

drives[10] [11]. Neural networks have been applied for 

control and signal processing in power electronics [12] 

[13]. The estimation of feedback signals in vector- 

controlled drive systems is presented in [14]. 

A fuzzy neural network (FNN) applies neural 

network principles to fuzzy reasoning. It emulates a 

fuzzy logic controller in the neural network topology. 

The FNN has a structure in a such way that it directly 

maps weights of different layers into the required 

membership functions and fuzzy rules, relieving the 

designer of the task of assigning and generating those 

membership functions and fuzzy rules. 

IIL. FUZZY NEURAL NETWORK PRINCIPLES 

The theory of fuzzy logic provides a 

mathematical strength to capture the uncertainties 

associated with human cognitive processes, such as 

thinking and reasoning, by attaching linguistic 

attributes into a rule base framework. While fuzzy 

theory enables such a powerful inference mechanism, 

its main limitations are the trial-and-error procedure 

for design and analysis, the lack of completeness of the 

rule base and the difficulty in a definite criteria for 

selection of the shape of membership functions, their 

degree of overlapping and the levels of quantization. 

The computation with neural networks offer exciting 

advantages such as learning, adaptation, fault- 

tolerance, and generalization. In view of this versatility 

of neural networks, they are potential building blocks 

for a variety of machine learning mechanisms. Table 1 

presents a brief comparison between fuzzy systems and 

neural networks. 

arison of Fuzzy Systems and Neural Networks 

Features Fuzzy Systems Neural Networks 

Knowledge acquisition 

Training method 
Human experts 

Type of uncertainty 

Reasoning Heuristic search 

Language interface Explicit 

Fault tolerance Not evident 
Robustness Very high 

Interaction / induction 

Qualitative / quantitative 

Numerical data 
Algorithms -/ 

weights 

Quantitative 

Parallel computations 

Not evident 
Very high 

Very high 

adjusting 
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The term “fuzzy neural network” (FNN) refers 

to the incorporation of fuzziness into a neural network 

system. One way to introduce fuzziness in a neural 

network is through the fuzzification of the data input. 

As an example, suppose that a neural network receives 

a temperature information ranging from 45 OF to 85 

OF. This input signal is analog, which after 

normalization and scaling ranges from 0 to 1, as the 

temperature varies from 45 OF to 85 OF. The same 

temperature information could be divided into five 

levels, and the neural network would have five binary 

inputs, that would indicate in which region is the 

temperature. Finally, those five crisp inputs could have 

membership functions that define the fuzzy degree of 

each level in the temperature, and the network would 

have five analog inputs. Another way to incorporate 

fuzziness into the neural network is by arranging the 

neural network connections or the transfer functions at 
each neuron to perform some sort of fuzzy operation 

on the numerical information arriving at each node. 

There are several fuzzy-neural-networks approaches, 

but the one proposed by Horikawa [15] seems to be 

interesting because it emulates fuzzy reasoning in a 

neural network topology. After training by 

backpropagation algorithm, the network weights can be 

interpreted, and a rule base and membership functions 

of a regular fuzzy algorithm can be constructed. Since 

in complex systems the creation of rules and 

membership functions are a laborious process, FNN 

takes over the work of developing a fuzzy algorithm, 

by learning the system behavior and generating fuzzy 

rules and membership functions automatically. 

The fuzzy neural network structure can be either 

on rule based topology, where the IF-THEN rules 

relate fuzzy inputs to fuzzy outputs, or on fuzzy 
relational estimation (Sugeno’s method) where the IF 

part of the rules (premises) are fuzzy logic operations 

and the THEN part (consequents) are linear functions 

of the input variables. Fig. 4 shows the principle of 

fuzzy rule based estimation and fuzzy relational 

estimation techniques. 

Rule based estimation 

IF W=PS AND H=VB H 
Relational estimation 
THEN l,,,= 0.8 +0.3W +0.7H 

PREMISE CCONSEQUENT 

Fig. 4 Principle of rule based and relational fuzzy 

estimation 
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Since the fuzzy relational approach is a hybrid 

method which combines fuzzy reasoning with 
mathematical relationships, the size of the rule table is 

more compact than a regular rule based method. 

However, the fuzzy relational approach can only be 

used if input/output data is available for identification, 

and multi-regression of such data is performed. 

In the FNN topology the membership functions 

are Gaussian-type, constructed by sigmoid functions. 

The neural structure for such a membership function is 

shown in Fig. 5, where the weight &, controls the 

spacing, whereas the weight wg controls the slope of 

the membership functions. 

@y o 

BIAS Ul 
e ® G Membership 

INZUT_ 2 e 2 o - Function p,(H) 

Fig. 5 Neural structure for membership function of a 

FNN 

Fig. 6 shows the neural structure for 

arrangement of fuzzy premises. In such a figure there 
are three fuzzy sets for the variable W (Small, 

Medium, and Big) and three fuzzy sets for the variable 

H (Small, Medium, and Big). It is good to emphasize 

that although there are four nodes in the neural network 
input layer, they represent three membership functions 

because the fuzzy sets Small and Big are considered to 

have shoulders to the sides. The node indicated with 
the letter n is a neuron that makes the multiplication of 

the incoming signals. Since multiplication is a #-norm, 

it can also perform the fuzzy and operation. Therefore, 

the results for the and operation of the nine possible 

combinations for each input fuzzy set are given in the 

correspondent outputs of 

Small W and Small H 

Small W and Medium H 

Small W and Big H 
Medium W and Small H 

Medium W and Medium H 

Medium W and Big H 
Big W and Small H 

Big W and Medium H 

Big W and Big H 

Fig. 6 Neural structure for premises of a FNN 
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Fig. 6. Each output is the truth value (confidence in the 

rule being true) for each and premise. 

The rule based fuzzy neural structure is shown 

in Fig. 7. It is based on the height defuzzification 

method, since the weights of are the fuzzy singletons 

for the consequents and, the output is the summation 

over each rule truth value multiplied by the 

correspondent singleton of. 

Fig. 7 Rule based fuzzy neural network 

To implement the relational based fuzzy neural 

network it is necessary to use the neural structure for 
relational consequents given in Fig. 8, where the linear 

equation parameters are given by the weights Oao, 

@3], and 022. 

, oo O 
W B> D=0, + 0,V + o 

Fig. 8 Neural structure for relational consequents. 

IV. FUZZY NEURAL NETWORK ESTIMATION 
FOR RECTIFIER LINE CURRENT 

Fig. 9 shows the full-fledged relational based 

fuzzy neural network used for estimation of total rms 

value (Ig) and fundamental rms value (If) with width 

(W) and height (H) as inputs. The top of the figure is 

the implementation of the premises with three fuzzy 

sets and the bottom shows the linear relational 
structures for Ig and If estimation. There are nine rules, 

each one fires a linear relation of the input variables W 

and H. The neural network of Fig. 9 was trained with 

the help of NeuralWorks Professional II/Plus [16] by 

back-propagation training algorithm. After 12,000 

training steps the index of performance, i.e., the total 

network rms error in per-unit was 0.05. 

w(b- 

Hos) 

Fig. 9 Topology of fuzzy neural network 

used for estimation. 

The resulted input membership functions for W 

and H are shown in Fig. 10. The estimated values are 

compared with the actual values in Fig. 11, where the 

increasing machine load of Fig. 1 provided currents in 

successive experiments with increasing W and H 

values. The horizontal variable in Fig. 11 is an 

experimental sequence, where for each experiment 

number the machine load determined how much 

current was flowing in the front-end rectifier. The 

fuzzy neural network is very powerful because it 

combines the numerical processing features of a neural 

network with linguistic descriptions of fuzzy logic. 

Such fuzzy model can advance the design of a fuzzy 

controller as a mathematical model is helpful in the 

design of a conventional controller. 
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Fig. 10 Membership functions learned by FNN 

(a) Pulse width (W), (b) Peak value (H). 

INCREASING MACHINE LOAD (EXP %) 

Fig. 11 Fuzzy estimation accuracy for rectifier input 

current wave (a) RMS current (Is), 

(b) Fundamental RMS current (If). 
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V. CONCLUSION 

This paper presented a fuzzy-neural-network 

(FNN) where a neural network topology emulated 

fuzzy reasoning. Such neural network permitted 

automatic identification of fuzzy rules and tuning of 

membership functions. The distorted line current 

waves in a three-phase diode rectifier feeding an 

inverter-machine load have been taken into 
consideration and a FNN has been applied to estimate 

rms current and fundamental rms current. The results 
of the estimation have been compared with the actual 

values, and indicated good accuracy. Such technique 

can be extended to more complex waveforms and in 

the estimation of signals of scalar or vector-control 

drives. 
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