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Abstract – This paper proposes a new technique to 
compensate fast oscillating reactive power using a multi-
pulse STATCOM. It is shown that the oscillating reactive 
power can be controlled in a simple way by maintaining 
the STATCOM dc voltage constant. A simplified analyti-
cal analysis was performed in a power system with an arc 
furnace and a 12-pulse STATCOM. The study has shown 
that the STATCOM can compensate the furnace reactive 
current, even when fast oscillations occur. The system 
studied was implemented in a detailed EMTP/ATP simu-
lation program. The results show that the reactive power 
oscillations produced by the furnace can be strongly re-
duced. However, due to the fact that arc furnace is an 
unbalanced load, STATCOM dc side capacitor has to be 
designed to supply the corresponding oscillating energy. 

1 
Keywords - Reactive Power Control, Shunt Compensa-
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I. INTRODUCTION 

 To support dynamic disturbances such as transmission 
lines switching, loss of generation, short-circuits and load re-
jection, the reactive control must be fast enough to maintain 
the desired voltage levels and the system stability.  These 
characteristics can be obtained using FACTS (Flexible ac 
Transmission Systems) controllers. Initially, equipment 
based on thyristors has been used (TCR – Thyristor Con-
trolled Reactor, TSC – Thyristor Switched Capacitor and 
SVC – Static Var Compensator) and nowadays, equipment 
based on controlled switches such as GTO, IGBT and IGCT 
have already started to be applied. The Static Synchronous 
Compensator (STATCOM), which is based on voltage 
source converters (VSC), is one of the most used FACTS de-
vices [1]. 

This paper presents a new technique to control fast oscil-
lating reactive power using multi-pulse STATCOMs. The 
proposed technique is applied to control the oscillating reac-
tive power produced by an arc furnace. 

II. REACTIVE POWER IN STATCOM 

The STATCOM is a key FACTS shunt compensator.  
There are many types of STATCOMs, depending basically 
on the control philosophy and application objectives.  Here, a 
multi-pulse STATCOM, based on 6-pulse converters, will be 
used for voltage control.  Each 6-pulse converter switches at 
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fundamental frequency which presents losses during steady-
state operation less than the losses presented by the PWM-
STATCOM [1].  In its dc side, the STATCOM has a capaci-
tor and is connected to the ac system through one or more 
transformers, depending on the number of pulses (6, 12, 24 
or 48 pulses). 

The reactive power in the STATCOM output is controlled 
through the dc capacitor voltage.  In steady-state operation, 
there is no angular difference between the voltage at the 
STATCOM ac side and the system voltage (ideal case).  This 
way, the reactive power in the STATCOM output can be ap-
proximately calculated through (1), according Figure 1. 
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where: 
 

QST – Reactive power at the STATCOM; 
XST – Inductive reactance between the system and 
STATCOM; 
VPCC – Point of common coupling voltage (ac system 
voltage); 
VST – STATCOM ac side voltage. 

 
As it is well known [1], (1) shows that if the STATCOM 

ac side voltage is higher than the system voltage (VPCC), its 
reactive power has capacitive characteristic. On the other 
hand, if the system voltage is higher than VST, the 
STATCOM reactive power has inductive characteristic. 

III. THE PROPOSED CONTROL TECHNIQUE 

The reactive power variation is the primary contributor for 
voltage variations in all points of a power system.    

Equation (1) shows that the difference between 
STATCOM ac side voltage and the system voltage defines 
the reactive power characteristic. Moreover, the higher this 
difference is, more reactive power will be supplied by the 
STATCOM, capacitive or inductive. 
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Fig. 1.  STATCOM reactive power 
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The terminal voltage of a load that needs a variable reac-
tive power (like an arc furnace), will vary as well. Thus, if a 
STATCOM is connected near to this load with a constant ac 
side voltage, the reactive power supplied by the STATCOM 
will follow the reactive power required by the load. Equation 
(1) shows clearly how it works: if VST is a constant and VPCC 
varies, the capacitive or inductive reactive power supplied by 
the STATCOM will change according to the VPCC variations.  

Of course this is a simplified analysis that does not guar-
antee full reactive power compensation. Nevertheless, it 
gives a good insight on the proposed technique. Next sec-
tions will present two analysis of an example case: a simpli-
fied analytical treatment and a detailed analysis using 
EMTP/ATP simulations. 

IV. THE STUDIED CASE: ANALYTICAL MODEL 

In order to study the STATCOM multi-pulse application 
to control reactive power oscillations, a simple circuit was 
analyzed (Figure 2).  This circuit is composed by an ideal 
source in 230 kV, a 200 km transmission line and a wye-
delta transformer (230-18 kV). On the 18 kV bus, a 12-pulse 
STATCOM and an arc furnace are connected. The arc fur-
nace is rated at 73 MVA and its nominal voltage is 426 V.  

The equivalent circuit of the studied system is presented in 
Figure 3, where all components are represented in a simpli-
fied way.  The STATCOM is represented by an ideal voltage 
source (without harmonics). The transmission line and the 
transformer are represented by a single inductive reactance 
(X).  The arc furnace is modeled by an inductive reactance 
(XL, representing the transformer and the reactance of the 
flexible cable of the furnace) in series with a variable resis-
tance (R, representing the electric arc and the flexible cable 
resistance). The inductance of flexible cable provides a delay 
in the furnace current, returning a more stable arc [2]. Fi-
nally, the converter transformer is also represented by its re-
actance (XST). 

The circuit shown in Figure 3 can be analyzed through a 
Thévenin equivalent circuit that includes the ac source and 
the STATCOM, as seen from the arc furnace. This way, the 
Thévenin voltage and impedance are given by (2):   
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where: 
 

Vth – Thévenin equivalent voltage; 
Zth – Thévenin equivalent impedance. 

 
In general, the STATCOM impedance (XST) is larger than 

the system impedance (X). However, if they were in the same 
order of magnitude, a reduction of 50% in the equivalent im-
pedance at the point of common coupling is obtained. Natu-
rally, the smaller the XST, the smaller will be the equivalent 
impedance Zth.  It means that the STATCOM approximates 
the load to the rest of the ac system. 

Figure 3 shows also the currents components in dq0 
frames, which flow through the system. Here, Id is phase dis-
placed by 90o from Iq.  Furthermore, the direct component Id 
represents the active part of total current, while the quadra-
ture component Iq indicates the reactive part of total current. 
The active power consumption nature of the arc furnace is 
represented by a variable resistor R. In fact, each phase has a 
different value of R. However, in this simplified analytical 
study, the arc furnace was considered a balanced load.  

As the firing is done in order to produce zero angular dif-
ference between VST and VPCC, only reactive current will flow 
between the converter and the system.  Moreover, the current 
Id demanded by the arc furnace must be supplied by the ac 
source through the transmission line. If the compensation is 
perfect, the load reactive current Iq is totally compensated by 
the STATCOM current Iq2. If compensation is partial, some 
reactive current Iq1 will flow from the ac source. 

Changing the arc resistance R, the reactive current de-
manded by the furnace Iq and the reactive current effectively 
supplied by the converter Iq2 can be calculated. The calcula-
tion methodology is described in the Appendix. All the sys-
tem parameters can be found in Table I. The per unit values 
were calculated taking 100 MVA and 18kV as the basis for 
power and voltage at PCC, respectively. 

Figure 4 shows Iq (furnace) and Iq2 (STATCOM) currents 
as a function of the furnace resistance R. The STATCOM 
current always closely keeps up with the furnace current.  
However, an error exists, which depends on system parame-
ters, furnace power and also on STATCOM voltage. An ade-
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Fig. 2.  Single-line diagram of studied system  
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Fig. 3.  Single-line diagram of analytical study 
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quate converter voltage level can bring better results. For the 
case represented in Figure 4, the worst case occurs for the 
smallest resistance value, achieving an error of 10.5%.  At 
this point, the furnace would demand a reactive current equal 
to 0.468 pu and the STATCOM will deliver 0.363. The dif-
ference (0.105 pu) would have to come from the source. 

In the previous case, the STATCOM voltage was fixed in 
1.05 pu. If, for instance, the STATCOM voltage is fixed in 
1.10 pu, the reactive current profiles would be displaced, as 
shown in Figure 5. In this case, the maximum error is equal 
to 16.3%. We can see that, for high reactive current values, 
the error is small. On the other hand, as the level of reactive 
power required by the load decrease, the compensation error 
increase. It means that that STATCOM is working well in 
the more critical situations. 

The results show that the choice of the STATCOM volt-
age is essential for adequate system performance.  However, 
the reactive current supplied by the converter will always 
keep up with the demanded furnace current. 

V. THE STUDIED CASE: DIGITAL TRANSIENT 
MODEL 

The system shown in Figure 2 was implemented in a de-
tailed way using EMTP/ATP program.  Here, a brief descrip-
tion of each model as well as the STATCOM control system 
is described. 

A. The STATCOM Model 
The STATCOM model is described in detail in [3]. It is a 

12-pulse converter and its main characteristics are presented 
in Table II. The converter valves are represented in detail, in-
cluding the GTOs and diodes, and also the snubber circuits. 

In order to analyze the proposed control methodology 
apart from the unbalance problem, the dc capacitor was re-
placed by an ideal dc voltage source. 

B. The Arc Furnace Model 
The arc furnace model was described and validated by 

Sollero et al. [2].  This model is based on [4] which suggests 
that the arc resistance changes, at each semi-cycle, following 
a normal distribution.  So, this is a random process, which 
emulates the arc furnace behavior.  The model was imple-
mented using the EMTP/ATP program, as presented in [2]. 

This model allows for the calculation of the arc resistance 
values for each phase, representing the furnace as an unbal-
anced load. 

C. The Control System 
In order to guarantee that the STATCOM voltage is con-

stant, the original control system, presented in [3], was modi-
fied. In the original control system, the control signal is the 
difference between the reactive current in the output of the 
converter and a reference current (in this case, the load reac-
tive current).   In an arc furnace, the reactive current presents 
very high variations, because of the arc instability.  So, with 
this kind of control, the STATCOM does not lead to good re-
sults, because it can not respond to the high frequency varia-
tions in furnace reactive current. 

To implement the methodology proposed here, the control 
signal is the instantaneous active power at the output of the 
converter. The controller operates to maintain a null average 
active power flow between the STATCOM and the ac sys-
tem, except for the losses in the STATCOM. In this way, the 
dc capacitor voltage should stay constant, with negligible 
voltage ripple in actual cases. Then, the STATCOM ac volt-
age is constant.  Besides, there is a PLL (Phase Locked 
Loop) circuit, which synchronizes the firing to the switches, 
and guarantees that no displacement angle appears between 
the STATCOM and the system voltages. 

TABLE I 
Simplified System Parameters 

Parameter Value 
ac system equivalent reactance (X) 0.326 pu 
equivalent reactance of STATCOM (XST) 0.400 pu 
ac system voltage (VS) 1.000 pu 
arc furnace equivalent reactance (XL) 0.318 pu 
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Fig. 4.  Results obtained from the analytical study – VST = 1.05 pu 
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Fig. 5.  Results obtained from the analytical study – VST = 1.10 pu 

TABLE II 
STATCOM Parameters 

Parameter Value 
ac nominal voltage 18 kV 
fundamental frequency 60 Hz 
total apparent power 50 MVA 
number of pulses 12 
dc rated voltage (without compensation) 11.54 kV 
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Figure 6 shows the complete control system. The first 
block receives the voltages and currents in the output of the 
converter and calculates the instantaneous active power. This 
value is compared with a null reference, producing an error 
signal, which is the input of a PI (proportional-integral) con-
troller. Finally, the controller gives a displacement angle nec-
essary to lead or lag the ac converter voltage and obtain the 
desired reference.  Furthermore, the PLL circuit, which is 
composed by a phase comparator, a PI controller and a volt-
age controlled oscillator, is also shown.  

This kind of controller would work well if the furnace 
were a balanced load.  As a multi-pulse STATCOM can gen-
erate only balanced voltages (this is an inherent characteristic 
of the STATCOM being considered), it is not possible to ob-
tain a total compensation.  It is not possible to maintain al-
ways the three-phase voltages of the converter in phase with 
the three system voltages. In this case, an oscillatory active 
power flow will always be present between the STATCOM 
and the system. Depending on the unbalance level, this active 
power can achieve high levels and the dc capacitor has to be 
very large to keep the voltage constant (or close to constant). 
At the end of this paper a more precise discussion about the 
capacitor size is presented. 

D. The Transmission Line and Transformers 
The transmission line was modeled using distributed pa-

rameters that correspond to a typical 230 kV line. 
The power transformer (230-18 kV), the STATCOM 

transformer and the furnace transformer were represented us-
ing only their leakage impedance. 

VI. SIMULATION RESULTS 

Using the models described in the previous section, simu-
lations were performed using the EMTP/ATP program. Ini-
tially, the STATCOM was removed from the system to show 
the reactive current characteristics. Then, the STATCOM 
with the proposed control technique was introduced, showing 
that reactive power oscillations are compensated. In all 
analysis, the simulation time step was equal to 10 µs. 

A. Case #1: Without STATCOM   
Figure 7 shows the reactive current provided by the ac 

system (iq1) when the STATCOM is not connected. It shows 
the instantaneous value and an average value computed along 
the simulation, in a cumulative mode. The cumulative aver-
age value was computed using (3): 

ττ d )(i
t
1)t(i

t

o
1q1q ∫=     (t > 0), (3)

where ‘τ’ is the integration variable (time). 
Equation (3) gives the average of current iq1 from zero to 

time t. The use of conventional average or rms value was not 
considered here because the period of the oscillations was a 
completely random variable. 

As the STATCOM is not connected, all the reactive cur-
rent required by the load (the arc furnace) is supplied by the 
ac system. Because of the random arc characteristic, the reac-
tive current oscillates very much. The average value is close 
to 0.2 pu. 

B. Case #2: With STATCOM 
Figure 8 shows again the reactive current provided by the 

ac system, but now, in t = 1.0 s, the STATCOM is connected. 
In Figure 8, the cumulative average value is also shown. It 

is important to say that this average value was calculated for 
two distinct periods: from 0.0 to 1.0 s (without STATCOM) 
and from 1.0 to 2.0 s (with STATCOM). When the converter 
is connected, the average value stays close to zero 

Figure 9 shows the STATCOM (iq2) and the furnace (iq) 
reactive currents obtained in this simulation. As expected, the 
converter tracks the fast variations in the furnace reactive 
current. It is possible to see that some errors appear in a few 
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Fig. 6.  The completed control system 
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Fig. 7.  System reactive current: without STATCOM 
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Figure 8.  System reactive current 

36 Eletrônica de Potência, Vol. 10, nº 2, Novembro de 2005



 

points. These errors are function of the switching, load un-
balance and the chosen dc voltage value. 

The authors presented [3] a detailed frequency response of 
this 12-pulse STATCOM, considering a direct control of re-
active current. It was shown that, if the reactive current is 
used as the control signal, the converter can respond to fre-
quencies up to 20 Hz. When the reactive current is not di-
rectly controlled, and the control system acts in order to 
maintain the STATCOM voltage constant, automatic control 
of the reactive current is obtained, as shown in Figure 9. In 
the case of an arc furnace, the main reactive current oscilla-
tions appear at a frequency close to 100 Hz. Using, the con-
ventional control philosophy, these results could not be 
achieved. Therefore, the proposed technique provides an 
evolution in the range of frequencies controlled by the 
STATCOM. 

Reactive currents presented in Figure 9 do not include any 
kind of filtering, so it is possible to see some harmonic com-
ponents in the STATCOM current, due to the switching. If a 
24-pulse or a 48-pulse configuration is used, this noise could 
be reduced. 

In order to quantify the compensation level of the reactive 
power provided by the STATCOM, a “compensation index - 
CI” can be defined as (4): 
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where: 
 

ti – Initial time of the analyzed period; 
tf – Final time of the analyzed period; 
iq_LOAD (t) – Reactive current of the load in time t; 
iq_STATCOM (t) – Reactive current of the converter in time t; 

( ) tttN if ∆−= , t∆  is the simulation time step. 
 

Considering the simulation period shown in Figure 9, (4) 
provides a compensation index of 93%. This result was ob-
tained with a STATCOM ac side voltage (VST) equal to 
1.1 pu. This value is a consequence of the selected dc voltage 

value, which depends on the amount of reactive power to be 
compensated. 

Another important result refers to the voltage at  the point 
of common coupling VPCC. Figure 10 shows its rms value, 
which was computed for each waveform cycle. The average 
rms value is also shown for both periods (with and without 
STATCOM). Because of the very random arc behavior, the 
rms voltage oscillates too much. However, it can be seen 
that, when the STATCOM is connected (t = 1.0 s), these os-
cillations are reduced. Without STATCOM, the average 
value of the rms voltage is 10.2 kV and the maximum ripple 
achieves 5.8%. After converter connection, the average value 
of rms voltage increases to 10.8 kV and the maximum ripple 
is 2.8%. 

Schauder [5] shows very interesting results about the ap-
plication of STATCOMs for compensation of large electric 
arc furnace installations. However, the author does not give 
clear information about the topology and the control system 
employed. 

C. Capacitor Sizing 
The active power control response is presented in Figure 

11. As expected, the average value is close to zero.  How-
ever, there is an oscillatory active power, which achieves 
high values (about 0.17 pu).  This fact shows that the 
STATCOM is compensating not only the reactive power, but 
also the oscillatory active power required by the arc furnace. 

Active filters would be a better solution to compensate the 
oscillatory component of active power. In [6], Casaravilla et 
al. use a shunt active filter to reduce the harmonic distortion 
in an arc furnace installation. Often, hybrid configurations 
can be the choice to obtain a complete compensation. 

If a capacitor is to be used in place of the ideal source, its 
size could be calculated according to the amount of energy in 
a semi-cycle (Area A in Figure 11). The dc capacitor energy 
variation is given as a function of the active power in the ac 
side by (5): 
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A – Area shown in Figure 11 (a “typical” block of energy 
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Fig. 9.  STATCOM and arc furnace reactive currents 
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Fig. 10.  Point of common coupling voltage, VPCC 
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flowing into the dc capacitor);   
t1 and t2 – Initial and final time, respectively, as indicated 
in Figure 11; 
V1 and V2 – Capacitor voltage at t1 and t2, respectively; 
p(t) – Instantaneous active power. 

With (5) it is possible to determine the capacitor size. In 
this study, a capacitance of 26500 µF (11.54 kV) would be 
necessary to guarantee a maximum dc voltage variation of 
2%. If 5% voltage ripple is allowed at the dc capacitor, a ca-
pacitor of 10600 µF would be enough. 

In [7], Akagi shows that a flywheel energy storage system, 
using a doubly-fed machine operating as a variable speed 
synchronous condenser, can be a good alternative when the 
system needs a device with the capability of repetitively re-
leasing or absorbing active power in time period around 
100 ms. 

VII. CONCLUSIONS 

The paper has showed that, maintaining constant the dc 
capacitor voltage of a STATCOM, it is possible to compen-
sate fast oscillating reactive power. The technique is based 
on the simple fact that the reactive power supplied by the 
STATCOM is directly related to the difference between the 
STATCOM ac side voltage and the ac system voltage. 

The proposed technique was tested using a simple circuit 
where a 12-pulse STATCOM and an arc furnace were con-
nected. A simplified analytical study and a detailed analysis 
with EMTP/ATP simulations were performed. 

The presented results have shown that by fixing the ac 
STATCOM voltage, an automatic compensation for the reac-
tive current of some loads can be achieved.  However, there 
is always an error associated with this compensation, which 
can be minimized through a correct choice of the dc capaci-
tor voltage.  Moreover, in the case of arc furnaces, which are 
deeply unbalanced loads, an oscillatory active power appears 
between the STATCOM and the ac system.  The adequate 
compensation of this power is possible, but it requires a high 
capacitance value. 

The method was tested in a 12-pulse STATCOM, but it 
should present better results when applied in a 24 or 48-pulse 
STATCOM or even in a PWM device. The contribution of 
this work is the proposal of maintain the STATCOM voltage 

constant, which improves its performance in compensating 
fast varying reactive power. The use of a conventional or a 
variable speed synchronous machine (doubly-fed machine), 
operating with constant voltage, can produce similar results. 

APPENDIX 

To compute the STATCOM and arc furnace reactive cur-
rent, it was assumed that there is no angular difference be-
tween the furnace terminal voltage (VPCC) and the 
STATCOM ac side voltage (VST). It means that no active 
power is supplied from or to the STATCOM. Moreover, the 
magnitudes of STATCOM ac side voltage VST and the system 
voltage VS were considered constants. 

In the following equations, complex quantities were dis-
tinguished from the real ones by using a “dot”. 

Currents in the equivalent system 

The current that flows from the STATCOM can be written 
as: 
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Kirchhoff’s current law 

By the Kirchhoff’s current law: 
 

⎪
⎩

⎪
⎨

⎧

−
+

−
=

+

+=

ST

PCCSTPCCS

L

PCC

STSF

jX
VV

jX
VV

jXR
V

III
&&&&&

&&&

 . (iv) 

Using the STATCOM voltage (and consequently the fur-
nace voltage) as angular reference, we can write: 
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Rewriting (iv) using (v): 
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Computing the magnitude of VS and simplifying the result: 
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Fig. 11.  Oscillatory active power 
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BAVS +=  (vii) 

( )[ ]
( )

( )[ ]
( )⎪

⎪

⎩

⎪
⎪

⎨

⎧

+
++−

=

+
+−

=

2
ST

2
L

2

2
LLSTSTPCCLST

2
st

2
L

2

2
STPCCST

2

X XR
XXXXXXVXXV

B

X XR
XXVXVR

A
(viii) 

In the above expression, all terms are constants, except the 
resistance R and the furnace bus voltage VPCC. This way, for 
each value of R, it is possible to calculate the corresponding 
value of VPCC. 

Then, the STATCOM reactive current Iq2 and the furnace 
reactive current Iq are given as: 
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