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ABSTRACT The article explores the relevance of choosing the optimization algorithm to obtain accurate
parameter estimates in photovoltaic (PV) systems, with the aim of improving the energy efficiency of
solar energy. Advances in photovoltaic module analysis models have resulted in the development of global
non-linear models (GNLM), which offer a more accurate representation of the I-V characteristics under
various environmental conditions. Metaheuristic algorithms have stood out for their ability to handle
the complexity of these nonlinear models. Therefore, the careful choice of the optimization algorithm
is fundamental to guarantee consistent and reliable results in the estimation of the model parameters,
contributing to maximizing energy efficiency. The study seeks to investigate whether different optimization
tools can improve the accuracy and efficiency of parameter estimation, resulting in improved modeling
and performance prediction of PV systems in different conditions.
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I. INTRODUCTION
The use of solar energy is undergoing remarkable global
growth, driven by a significant reduction in the costs of solar
technology [1]. This increase is a result of the introduction
of highly efficient and affordable photovoltaic modules into
markets, stimulated by international government incentives
and intense competition among solar panel manufacturers
[2]. Within this scenario, it becomes clear that the pursuit
of optimizing the utilization of solar energy drives techno-
logical innovation, resulting in a continuous improvement
in the energy efficiency of PV modules and the consequent
reduction of costs associated with this technology.

The purpose of mathematical models for photovoltaic
modules has been to seek a better understanding of their
operation [3]. However, this requires a deep understanding of
the underlying physical processes and key factors influencing
the performance of PV cells [4]. Such models perform
various functions across a wide range of areas related to
PV systems, from planning and simulation to control and
performance evaluation, as well as in site identification
and correct sizing. Therefore, it is important to have an
accurate and reliable model capable of handling a variety
of operational conditions [5].

The classical models used in the performance analysis of
PV modules include the Single Diode Model (SDM), Double
Diode Model (DDM), and Triple Diode Model (TDM) [6].

Among these models, the SDM, as depicted in Fig. 1, stands
out as the most widespread in the literature due to its
simplicity [7]. Classical models are effective in parameter
extraction under standard test conditions (STC); however,
their limitation in handling the variability of characteristic
curves in the face of factors such as temperature (T) and
irradiance (G) has led to the development of global nonlinear
models (GNLM) [7]. This new approach, while generally
maintaining the structure of conventional electrical circuits,
introduces new parameters or electrical sub-parameters re-
lated to T and G, which are expressed through nonlinear
equations. This adaptation enables a more precise and com-
prehensive representation of the behavior of PV modules
under a variety of environmental conditions [3], [8]–[15].

The accurate estimation of unknown parameters is one
of the important steps in modeling PV modules [16]. From
a modeling perspective, there is an unmet expectation due
to the lack of data provided by manufacturers, especially
regarding the resistors of the module’s equivalent circuit,
which imposes considerable challenges on this task [17]. In
this sense, a variety of methodologies are used to solve non-
linear transcendental equations, which can be classified into
three main categories: analytical techniques, deterministic
structures and meta-heuristic structures [4]. Analytical tech-
niques are recognized for their simplicity of implementation,
but often compromise the effectiveness of the model due to
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FIGURE 1. Electrical Circuit of the SDM.

the need for assumptions and the relevance of arbitrarily
designated points. For example, deterministic algorithms
such as Newton-Raphson and Lambert’s W-functions are
based on gradient methods, which makes them susceptible
to inappropriate initial values and prone to getting stuck in
local optima [4].

Thus, metaheuristic algorithms are regarded as a superior
solution for overcoming the limitations of deterministic and
analytical approaches [2]. Through the formulation of an
objective function and careful selection of optimization algo-
rithms, these methods allow for accurate estimation of mod-
ule parameters, even in the face of the inherent complexity of
variable environmental conditions. Some examples of meta-
heuristic algorithms used to solve optimization problems
are swarm-based, such as Bacteria Foraging Optimization
(BFO) [18], Dandelion Optimizer (DO) [19], nature-inspired,
such as Artificial Rabbits Optimization (ARO) [20], African
Vultures Optimization Algorithm (AVOA) [21], Chimp Opti-
mization Algorithm (ChOA) [22], Dingo Optimization Algo-
rithm (DOA) [23], Dung beetle optimizer (DBO) [24], Flying
Foxes Optimization (FFO) [25], Tuna Swarm Optimization
(TSO) [26], Zebra Optimization Algorithm (ZOA) [27];
physics and chemistry-based, such as Transient Search Al-
gorithm (TSA) [28]; population-based, such as Chaos Game
Optimization (CGO) [29].

In [2], the authors present an application of CGO to
estimate the parameters of the TDM photovoltaic model.
The results obtained were compared with six other opti-
mization algorithms, demonstrating that CGO outperformed
in terms of error value obtained and regarding the number
of iterations until convergence. In another study conducted
by [30], GPCSO is introduced with the aim of extracting
parameters from mathematical models of photovoltaic (PV)
cells and modules quickly and accurately. This work includes
comparisons with various analytical, numerical, and hybrid
methods documented in the literature. The results reveal
a higher complexity in extracting PV parameters for the
double diode model, however, this model proves to be
more accurate at low irradiation levels than the single diode
model. Based on a wide range of comparisons, the authors
conclude that the proposed method efficiently and accurately
determines the parameters of the mathematical model that
characterize PV cells and modules. The study presented in

[31] addresses the extraction of PV module parameters using
FFO, which is compared to other well-known metaheuristic
optimizers. The results indicate that, despite requiring more
computational time compared to others, FFO’s ability to
optimize multiple parameters simultaneously results in a
more efficient optimization process. Hence, the literature
demonstrates a growing importance in the accuracy of opti-
mization algorithms, also taking into account the number of
iterations and the speed at which these algorithms perform.
Consequently, the choice of the most appropriate algorithm
for a given task is of paramount importance, as optimization
algorithms exhibit significant variations in various aspects,
such as their ability to handle different types of problems,
computational efficiency, robustness against various forms of
input data, ease of implementation, and ability to deal with
specific constraints. While some algorithms are specifically
developed to solve particular problems, others have a broader
approach and can be applied to a variety of situations [32].

Therefore, the fundamental purpose of this article is to
extend the evaluation of the effectiveness of optimization
algorithms conducted in [33] in the context of the parameter
estimation process of the GNLM proposed by [3]. However,
to maximize the utility of this model and obtain optimized
results of its parameters, it is necessary to explore the
effectiveness of various optimization tools available. There-
fore, the article focuses on a new comparative evaluation
of 12 optimization techniques: ARO, AVOA, BFO, CGO,
ChOA, DBO, DO, DOA, FFO, TSA, TSO, ZOA, compared
to the other algorithms tested in [33]. This analysis aims
to determine which of these optimizers exhibit superior
performance alongside the GNLM in the task of predicting
the energy generated throughout a day.

The article is structured as follows: Section II provides a
detailed description of the GNLM used in this study. Section
III explores the methodology employed used in this study.
The results are presented in Section IV. Finally, Section V
highlights the main conclusions of this work.

II. GLOBAL NON-LINEAR MODELS
Currently, there is a series of works in the literature that
seek to generalize the PV module model [3], [9], [12], [13],
[34], [35], adapting its parameters for any G and T condition.
These models, known as GNLMs, have driven a new research
area due to their ability to adjust the parameters of the SDM
based on transposition equations derived from the physical
behavior of the PV module or mathematical adjustments. It
is noted that the proposed GNLMs have more parameters or
sub-parameters compared to classical models (SDM, DDM,
and TDM). Despite the greater complexity associated with
GNLMs, they have been shown to accurately determine the
behavior of the PV module under various environmental con-
ditions. Additionally, an additional advantage is the ability to
perform the parameter estimation process only once, using a
set of training curves that represent different environmental
conditions.
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Among these models, the GNLM proposed by [3] stands
out by proposing a model based on one of the classic models,
the SDM. Although the adjustments made by this model do
not apply to all SDM parameters, the transposition equations
consider that the parameters G and T have several sub-
parameters, resulting in an increase in the total number of
parameters. Within this expanded set, four are related to
series resistance, three to parallel resistance, and one to
ideality factor. Additionally, the other two parameters that
characterize the behavior of the PV module (Isc and Voc)
are predefined through explicit equations dependent on the
remaining eight parameters. In this way, the complete model
encompasses ten parameters, forming the set Γ = (Rs,ref1,
Rs,ref2, kRs, γRs, Rsh,ref , kRsh, γRsh, nref , Iph, and Isat).

As mentioned earlier, the GNLM proposed by [3] is based
on the SDM. Therefore, by using the equivalent electrical
circuit of the PV module model, as shown in Fig. 1, it
is possible to obtain the relationship between the current
and voltage of the PV module, which can be expressed as
follows:

I = Iph − Isat

[
e(

V +IRs
nVt

) − 1
]
− V + IRs

Rsh
, (1)

where Iph is the photogenerated current, Rs is the series
resistance, Rsh is the shunt resistance, and ID, which
represents the current flowing through the diode, is defined
by:

ID = Isat[e
(V +IRs

Vt
) − 1], (2)

where Vt, can be written as follows:

Vt =
NsKT

q
, (3)

where Ns is the number of cells in series, K is the Boltz-
mann constant (1.38 · 10−23J/K), q is the electron charge
(1.602 · 10−19C), and T is the cell temperature in Kelvin.

This model consists of two distinct phases: the first one
is dedicated to determining the reference parameters, while
the second one focuses on the training process. It’s worth
noting that [3] opted for the Pattern Search (PS) optimization
algorithm to conduct this process.

A. Determination of reference parameters
For the first stage of the model, aimed at determining the
reference parameters, basic constants such as the Boltzmann
constant (k) and the elementary charge of the electron
(q) are defined, followed by constructive constants of the
photovoltaic modules, the number of PV cells in series in the
module construction (Ns), as well as a reference I-V curve
provided. Through the reference curve that can be under any
conditions of G and T, the quantities Gref , Tref , Imp,ref ,
Vmp,ref , Isc,ref , and Voc,ref are assigned. Then, based on the
quantities obtained from the reference curve, the values of
maximum series resistance (Rs,max) and minimum parallel
resistance (Rsh,min) are calculated as follows:

Rs,max =
Voc − Vmp

Imp
, (4)

where Voc and Vmp represent the open-circuit voltage and
the maximum power voltage, respectively, while Imp is the
maximum power current for the I-V curve analyzed in the
reference stage.

Rsh,min =
Vmp

Isc − Imp
, (5)

where Isc is the short-circuit current for the I-V curve
analyzed in the reference stage.

Thus, in order to constrain the optimization algorithm
search within a zone where the parameters still have physical
meaning according to the module’s characteristics. Finally,
using the previously calculated values as limits, the optimiza-
tion algorithm is used to estimate the remaining parameters
of interest for the first stage: Rs,ref , Rsh,ref , nref , Isc,ref ,
and Voc,ref [3].

B. Training process
In the second stage, a set of six I-V curves, known as training
curves, is defined with different values of irradiance and
temperature, this choice was made based on the work [36],
which showed that a larger number of curves does not bring
sufficient gains relative to the computational cost. After this
definition, the same optimization algorithm used in the first
stage is applied. The measured values of Voc and Isc from
the training curves are compared with the estimated values
obtained by:

Isc = [Isc,ref + αIsc(T − Tref )]

(
G

Gref

)
, (6)

where αIsc is the short-circuit current thermal coefficient.

Voc = Voc,ref + βT (T − Tref ) + βGVtln

(
G

Gref

)
, (7)

where βT is the open-circuit voltage thermal coefficient and
βG is the open-circuit voltage irradiance coefficient.

Thus, the optimization algorithm seeks a value that results
in the smallest sum of errors between the experimental
curves and the estimated curves. To achieve this, an ad-
justment of the thermal and irradiance coefficients values,
αIsc , βT , and βG, is performed using new coefficients that
better fit the curves used in the training stage. This process
minimizes the absolute error between the estimated and
measured characteristics of the N training curves, according
to the equations:

For αIsc :

Nc∑
n=1

errorIsc =

Nc∑
n=1

|Isc,est − Isc,med|, (8)
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for βT and βG:
Nc∑
n=1

errorVoc
=

Nc∑
n=1

|Voc,est − Voc,ref |, (9)

where Nc represents the number of curves evaluated during
training, the subscript “est” denotes the estimated value, and
“ref” indicates the reference value.

Subsequently, another optimization process is initiated
aiming to find the coefficients responsible for modeling Rs

and Rsh. However, the objective function of this optimization
problem is expressed as an error function. In this process,
the Mean Absolute Error in Power (MAEP) is applied as the
stopping criterion, as most applications using an electrical
model of a diode aim for an accurate estimate of the power
generated by the PV module. The MAEP is defined as
follows:

MAEP =

∑Npoints

j=1 |Pj,med − Pj,est|
Npoints

, (10)

where Pmed is the measured power of the curves provided
by the National Renewable Energy Laboratory (NREL)
experimental test, and Pest is the power estimated by the
model, while Npoints is the number of points present on the
measured P-V curve.

The equation that describe Rs as a function of G and T
are:

Rsh = Rsh,ref [1 + κRsh(T − Tref )]

(
G

Gref

)γRsh

, (11)

where, Rsh,ref represents the portion of Rsh for the refer-
ence condition, kRsh is the coefficient of variation of Rs

with temperature and γRsh is the coefficient of variation of
Rs with irradiance, where γRsh ≤ 0.

The equation that describe Rsh as a function of G and T
are:

Rs = Rs,ref2[1 + κRs(T − Tref )] +Rs,ref1

(
G

Gref

)γRs

,

(12)
where, Rs,ref1 and Rs,ref2 represent plots of Rs,ref in
relation to the variation of irradiance and temperature, re-
spectively:

Rs,ref = Rs,ref1 +Rs,ref2, (13)

γRs, kRs are the coefficients of variation of Rs with irradi-
ance and temperature, in that order, where γRs ≤ 0.

In the model proposed by [3], it is assumed that the ide-
ality factor remains constant under different environmental
conditions. Therefore, the value obtained during the first
stage will be used in all other environmental conditions to
which the module is subjected, i.e.:

n = nref . (14)

Thus, the complete model encompasses eight parameters
(Rs,ref1, Rs,ref2, kRs, γRs, Rsh,ref , kRsh, γRsh, and nref )
that are estimated. The two remaining parameters of the
SDM are calculated explicitly based on the other parameters,
with their equations represented as follows:

Iph = Isc

(
1 +

Rs

Rsh

)
, (15)

Isat =
Ig − Voc

Rsh

e
Voc
Vt

−1
. (16)

Finally, Fig. 2 illustrates the graphical representation of
the steps to perform the Silva model.

Start

Add Gref , Tref , the reference P-V
curve, and the constants k, q, and Ns

Define the lower and upper lim-
its of the optimization algorithm

Find Rs,ref , Rsh,ref , nref through PS

Calculate
Iph,ref , Isat,ref

Load set of training curves

Find values of αIsc , βT , and βG through PS

Finally, find values of Rs,ref1, Rs,ref2, kRs,
γRs, Rsh,ref , kRsh, and γRsh through PS

End

FIGURE 2. Flowchart of the Silva model through PS.

III. METHODOLOGY
In order to ensure uniformity in the comparison of opti-
mization algorithms, it is necessary to maintain the proce-
dures established previously, as detailed in [33]. Modeling
PV modules often involves optimization challenges, where
model parameters are adjusted to minimize discrepancies be-
tween theoretical and experimental curves, performed under
different environmental conditions [13]. Therefore, the im-
portance of selecting a robust optimization algorithm capable
of generating consistent and reliable results is emphasized,
especially when optimizing parameters to maximize model
efficiency. Thus, it is fundamental to establish quantitative in-
dicators that allow the comparison of optimization algorithm
performance and, among the analyzed algorithms, identify a
potential optimizer capable of solving nonlinear problems
with high efficiency.
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A. Simulation Conditions
In this article, experimentally obtained I-V curves were
adopted, which are publicly available at the NREL [37]. This
database is widely recognized and used in research related
to modeling and parameter extraction due to its transparency
and impartiality, as seen in [3], [8]–[14].

Similar to [33], the same reference and training curves
were chosen for three distinct technologies: monocrystalline
silicon (xSi), located in Golden, Colorado, USA, polycrys-
talline silicon (mSi), located in Cocoa, Florida, USA, and
cadmium telluride (CdTe), also located in Cocoa, Florida,
USA, as presented in Table 1. The curves highlighted in
bold in the table correspond to those used in the reference
phase.

TABLE 1. Curves selected for reference stage and model training

.

mSi460A8 xSi11246 CdTe75368
G(W/m2) T (◦C) G(W/m2) T (◦C) G(W/m2) T (◦C)

1270 36 1122 58 1310 42
1001 60 964 57 1106 40
828 35 754 51 951 47
687 37 595 46 715 44
491 33 392 43 565 33
277 29 283 42 356 36

The top three optimization algorithms undergo a valida-
tion phase, where they will be evaluated under two main
conditions:

• Profile of a sunny day, Fig. 3 and 4;
• Profile of a cloudy day, Fig. 5 and 6.

B. Evaluation criteria
In [32], the three main criteria that can be used for the
evaluation and comparison of optimization algorithms are
presented:

• Efficiency: This criterion is directly related to the
amount of computational resources required to achieve
a solution. Essentially, efficient algorithms are those
that operate more quickly. Efficiency is generally as-
sessed considering two main aspects: the number of
evaluations and the execution time. A lower number of
evaluations and shorter execution time indicate higher
efficiency of the algorithm.

• Reliability: This criterion concerns the consistency of
the algorithm in solving different optimization prob-
lems. The success rate is the most common parameter
used to assess reliability, measuring how many prob-
lems are successfully solved within a predefined toler-
ance. Additionally, the average of the objective function
values and constraint violations are also considered to
measure the reliability of the algorithm.

• Quality of Algorithmic Output: This criterion is
important for evaluating the ability of an optimization
algorithm to produce high-quality solutions for different
types of problems. Generally, there are two main crite-
ria employed to assess this quality: known solution and
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FIGURE 3. Variations in irradiance and temperature on a sunny day (mSi
and CdTe).
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FIGURE 4. Variations in irradiance and temperature on a sunny day (xSi).
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FIGURE 5. Variations in irradiance and temperature on a cloudy day (mSi
and CdTe)

06:00 08:00 10:00 12:00 14:00 16:00 18:00

Time (h) Jun 24, 2013   

0

100

200

300

400

500

600

700

800

900

1000

Ir
ra

d
ia

n
c
e
 (

W
2
/m

)

10

15

20

25

30

35

40

45

50

55

60

T
e
m

p
e
ra

tu
re

 (
°C

)

FIGURE 6. Variations in irradiance and temperature on a cloudy day (xSi).
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unknown solution. The former refers to the quality of
the solution produced by the algorithm compared to the
already known solution to the problem, while the latter
addresses the quality of the solution generated when
the expected solution for a problem is unknown.

As highlighted in [33], this work chose to select two
fundamental metrics to evaluate the comparisons made: the
average value of the objective function and the quality of the
solution produced by the algorithm. This choice is supported
by the nature of the GNLM modeling process, which is run
only once, allowing the parameters to be extrapolated to
other environmental conditions. In other words, for this type
of problem, the optimization algorithm must seek maximum
accuracy in the model under analysis.

Therefore, for the metric of the average of the objective
function values, the Normalized Mean Absolute Error in
Power (NMAEP) was chosen as the figure of merit, as
normalizing the power errors for various environmental con-
ditions transforms the error into a comparable representation
across different power levels:

NMAEP =
MAEP

Pmp
· 100%. (17)

For the metric of solution quality, the decision was made
to evaluate the performance of the three optimization algo-
rithms that demonstrated the highest effectiveness during the
training stage. This validation process selected the sets of
environmental conditions from Fig. 3-6.

Overall, other important aspects were considered in the
optimization algorithms, as described in the Table 2.

TABLE 2. Properties applied to all optimization algorithms.

Properties Values
Maximum number of iterations 10,000

Function value termination tolerance 2.22× 10−16

Max stall iteration 500

IV. RESULTS
In [33], several optimization algorithms were analyzed,
including the Artificial Bee Colony (ABC) [38], Artificial
Ecosystem-based Optimization (AEO) [39], Adaptive Wind
Driven Optimization (AWDO) [40], Drone Squadron Op-
timization (DSO) [16], Guaranteed Convergence Particle
Swarm Optimization (GCPSO) [41], Grey Wolf Optimizer
(GWO) [42], Pattern Search (PS) [43], Particle Swarm
Optimization (PSO) [41], Wind Driven Optimization (WDO)
[44], Whale Optimization Algorithm (WOA) [45]. This study
extends this evaluation to include twelve new algorithms
(ARO, AVOA, BFO, CGO, ChOA, DBO, DO, DOA, FFO,
TSA, TSO, ZOA), totaling 22 optimization algorithms an-
alyzed. Most algorithms used in this work are available
on the MathWorks forum. However, GPCSO was built as
mentioned by [30], and the PSO and PS algorithms are native

to MATLAB itself. Thus, the study aims to identify the best
optimization algorithms to predict the energy generation of
PV modules of three different technologies using the GNLM
proposed by [3].

In the first stage of the evaluation, an analysis of the
average performance of the generated models was performed
using training curves. In summary, the goal was to determine
which model achieved the lowest local minimum among
all considered algorithms. During this evaluation process,
the average NMAEP value obtained by the optimization
algorithms was examined in 10 distinct repetitions for each
of the studied technologies. The use of these multiple
repetitions is to mitigate any potential biases introduced by
the inherent randomness of most optimization techniques.
Therefore, conducting 10 repetitions contributed to ensuring
a more accurate and unbiased evaluation of the performance
of the evaluated algorithms.

In this context, Table 3 provides a detailed analysis of
the average NMAEP for each optimization algorithm when
applied to the model, focusing on the training curves of
xSi, mSi, and CdTe modules, respectively. In each of these
technologies, Table 3 highlights the three best average values
obtained in green and the three worst in red for each of
the technologies. Then, the average performance of each
of the results is summed, and from the lowest value, a
ranking is made in ascending order. Additionally, a column
has been introduced to denote the algorithm speed applied
to the model as follows: completion within less than 15
minutes categorized as “high”; between 15 and 30 minutes
labeled as “medium”; and exceeding 30 minutes classified as
“low”. Moreover, it’s pertinent to mention that the computer
utilized for this task is equipped with 16 GB of RAM and
has a 7th generation Intel Core i7 7500U processor. By
adopting as a selection criterion the top three optimization
algorithms according to the overall ranking, it emerges that
the FFO, ARO, and GCPSO techniques stand out as the
most effective in this initial evaluation phase. Thus, it is
also analyzed that algorithms such as ABC, ChOA and
WDO did not show satisfactory performance in most of the
evaluated technologies, standing out negatively and reaching
the last positions in the overall ranking compared to the other
analyzed optimization methods.

In the second phase of this study, a performance evaluation
of the FFO, ARO, and GCPSO optimizers was conducted
under the climatic conditions illustrated in Fig. 3 - 6, and
for each of the technologies the worst optimization algorithm
was also used for comparison purposes. This stage aims to
assess the ability of GNLM, in conjunction with the top-
performing optimization algorithms, to accurately estimate
the power output closest to the reference power. The module
temperature and irradiance conditions on the evaluated day
serve as inputs to the model generating the complete I-V
curve of the module under those conditions. However, only
the maximum power point will be evaluated to verify the
efficiency of GNLM in predicting generation output. It is
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TABLE 3. Average NMAEP by optimization algorithm and Performance Ranking of optimization algorithms for each PV module technology applied in

Silva’s model.

OPTIMIZATION ALGORITHM
SPEED

xSi mSi CdTe SUM OF
AVERAGES

RANKING

FFO MEDIUM 0.42196 0.35600 0.36951 1.14747 1

ARO HIGH 0.42197 0.35598 0.36995 1.14789 2

GCPSO MEDIUM 0.42197 0.36163 0.36518 1.14877 3

DSO LOW 0.42205 0.35672 0.37012 1.14889 4

BFO LOW 0.42197 0.35975 0.36995 1.15166 5

TSA LOW 0.42287 0.35837 0.37163 1.15288 6

DO LOW 0.42695 0.35685 0.36972 1.15353 7

PSO HIGH 0.45777 0.36351 0.36994 1.19123 8

AVOA HIGH 0.44653 0.36559 0.39733 1.20944 9

DBO MEDIUM 0.43017 0.35766 0.42416 1.21198 10

CGO LOW 0.42470 0.36540 0.42416 1.21426 11

WOA LOW 0.45607 0.36667 0.42187 1.24460 12

PS HIGH 0.52450 0.35438 0.36876 1.24764 13

GWO MEDIUM 0.43124 0.36416 0.46027 1.25567 14

TSO HIGH 0.44234 0.36070 0.52853 1.33157 15

AEO MEDIUM 0.49571 0.41702 0.74713 1.65986 16

ZOA MEDIUM 0.49294 0.61577 0.55388 1.66259 17

DOA HIGH 0.53147 0.42506 1.08991 2.04645 18

AWDO HIGH 0.59242 2.04191 0.59123 3.22556 19

WDO LOW 1.37024 0.42327 1.51014 3.30365 20

CHOA HIGH 1.18928 1.08943 1.14430 3.42301 21

ABC LOW 1.37437 0.71578 1.53231 3.62247 22

important to note that the reference data used during this
stage are publicly provided by NREL.

As mentioned in Section III, each evaluated technology
will be subjected to an irradiance profile both on sunny and
cloudy days, being evaluated to demonstrate the accuracy of
the best optimization algorithms obtained in the first phase.
Initially, the results will be analyzed to determine the differ-
ence between the reference power and the power estimated
by the selected optimization algorithms. Through this point-
to-point power difference, it is possible to determine the
energy error throughout the day, as well as calculate the
Integral Absolute Error (IAE).

In Fig. 7-9, the results obtained for the three technologies
are presented, using the GNLM together with the best
optimization algorithms and the worst optimization algo-
rithm for each of the technologies, evaluated in a sunny
profile. When analyzing these figures, it is observed that
the maximum power errors are around 3W, especially at the
beginning and end of the day, periods of low irradiance, in
which the model exhibits behavior above the expected. It
is important to note that, as the model proposed by [3] is
based on SDM, it is natural for the model to present slightly

higher errors under low irradiance conditions.Furthermore,
regarding the optimization algorithms used and the applied
metrics, it is noted that ARO and GCPSO demonstrate quite
similar behaviors, while FFO presents a slight discrepancy
compared to the others. In sunny profiles, for xSi and
mSi technologies, GCPSO and ARO demonstrate superior
performance. However, for CdTE technology, it is noted that
FFO exhibits a slightly more pronounced difference, making
it more suitable for this specific application.

In Fig. 10-12, the results obtained for the three tech-
nologies are presented, using the GNLM together with the
best algorithms and the worst optimization algorithm for
each technology, evaluated in a cloudy profile. As in sunny
days, the results reveal that the power errors and IAE
obtained, when compared to the best result among the best
optimization algorithms, are around 1%. When comparing
the best result with the worst optimization algorithm, in
the worst scenario this percentage difference extrapolates
to about 48.83%. Additionally, it is observed that, similar
to the sunny profile, ARO and GCPSO demonstrate quite
similar behaviors, while the FFO shows a slight discrepancy
compared to the others. However, it is worth noting that,
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FIGURE 7. The estimated power compared to the reference power on a
sunny day for the xSi PV module.
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FIGURE 9. The estimated power compared to the reference power on a
sunny day for the CdTe PV module.
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FIGURE 10. The estimated power compared to the reference power on a
cloudy day for the xSi PV module.
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FIGURE 11. The estimated power compared to the reference power on a
cloudy day for the mSi PV module.
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cloudy day for the CdTe PV module.
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in this condition evaluated for all technologies, the FFO
exhibits a slightly more pronounced difference, indicating
that the algorithm can achieve superior performance com-
pared to the other evaluated algorithms. Another point of
this analysis is that the direct comparison of IAE values
showed that, both in the sunny and cloudy situations, the
best optimization algorithms perform better than the worst
algorithm established in the previous stage.

V. CONCLUSION
In summary, after a detailed analysis of the model proposed
by [3], the present study extended the analysis of various
optimization algorithms applied to the first GNLM focusing
on predicting the energy generation of PV modules of three
different technologies. Initially, 22 algorithms were evalu-
ated, and the results indicated that FFO, ARO, and GCPSO
stood out as the most effective, while others such as AEO,
ABC, and ChOA showed unsatisfactory performance. In a
second phase, the FFO, ARO, and GCPSO optimizers were
subjected to varying environmental conditions, demonstrat-
ing that while ARO and GCPSO exhibited similar behaviors,
FFO showed a slight advantage under certain conditions,
especially in CdTe technology. The results also revealed that
the errors associated with the use of the best optimizers
were similar compared to the energy generated throughout
the day, both in sunny and cloudy conditions. Thus, this
study provides significant insights into the effectiveness of
optimization algorithms in predicting PV energy generation,
contributing to the identification of opportunities for ap-
plying more advanced methods capable of enhancing the
optimization process of the GNLM developed by [3]. Ad-
ditionally, such findings may suggest promising candidates
for optimizing future GNLM developed by other researchers.
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the Universidad de Alcalá, Spain between September 2012 and August
2013. His research interests are the application of power electronics in
photovoltaic systems and power quality, including pulse width modulation
and converter topologies. Dr. Marcelo C. Cavalcanti is a member of
SOBRAEP’s deliberative council. From 2016 to 2017 he was editor of
SOBRAEP’s Power Electronics magazine and from 2018 to 2019 he was
president of SOBRAEP.
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