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ABSTRACT The control of modern grid-connected converters often relies on Park Transform and
synchronization algorithms. These are highly nonlinear subsystems integrated into even larger systems
that include other nonlinearities. Thus, strictly speaking, large-signal models are required when analysing
and designing such systems. However, a limited number of mathematical tools is available to that end.
This work proposes a nonlinear time-invariant model for the Park Transformation and the Synchronous
Reference Frame Phase-Locked Loop (SRF-PLL), which are based on the Harmonic State-Space (HSS)
in a stationary coordinate frame. The HSS modeling technique is reviewed as a basis for nonlinear models
of functions based on polynomial nonlinear systems. This serves as an appropriate formal basis for the
model of 2-D rotations as means of modeling the SRF-PLL and other similar algorithms. The models
are validated through simulations to verify their accuracy when compared to the original Nonlinear Time-
Periodic (NLTP) Systems.

KEYWORDS ac power electronic systems, control oriented models, dynamic phasor modeling, harmonic
state-space modeling, large-signal modeling, time-periodic systems.

I. INTRODUCTION
The ever increasing demand for power converters to interface
different energy resources with an electric grid paved the
way for the insertion of distributed energy resources and
energy-saving applications, while guaranteeing an appropri-
ate operation for a wide range of conditions. Over the last
few decades, the state-of-the-art evolved in a way dictated
by those trends, with a special focus on the reliability of
renewable power systems, which is dependent on the system
stability and power quality ensured by the control strategies
[1]–[3].

The more commonly employed control strategies can be
separated into multiple-timescale control system as means
of regulating the electrical quantities as means of guaran-
teeing an adequate system behaviour [3]–[5]. These control
dynamics can involve electromechanical dynamics and elec-
tromagnetic transients of power networks, which may lead to
instabilities and/or oscillations, especially when the system
has an increased penetration of power converters [6], [7].

In the recent years, there has been an increase in de-
mand for more faithful mathematical models representing
such effects, which typically discard the eventual presence
of harmonics [8] or take advantage of multiple-frequency
averaging models [9] and Dynamic Phasor (DP) or Har-
monic State-Space (HSS) approaches [10]–[12]. These ap-
proaches aim to perform and analyze the projection of
the infinite-dimensional characteristic of Nonlinear Time-
Periodic (NLTP) systems, which are described relating to

state and input/disturbance variables expressed in terms of
L2(P) functions with respect to a certain set P , into a finite
dimensional time-invariant space which can be complex- or
real-valued depending on the adopted approach.

Furthermore, the state-of-the-art analysis are usually per-
formed over small-signal dynamics [13]–[16], which hinders
the identification of limit-cycles and the presence of multiple
equilibrium points or a possible chaotic behaviour which
can be caused by the inherent nonlinear characteristic of the
control loops while significantly reducing the complexity of
the mathematical models. Concerns can also be raised over
the validity of small-signal models, especially under weak-
grid conditions, which present a higher degree of cross-
coupling between control loops.

An accurate description of the control loops is dependent
on the dynamics of the synchronism loops when considering
grid-following systems. A commonly adopted approach is
to employ linearized models of Phase-Locked Loops (PLLs)
due to the complexity of the trigonometric functions and their
description in the harmonic domain. The validity of the use
of linearization is here again of concern.

Therefore, the contributions aimed by this article are to
demonstrate the model of nonlinear mathematical function
models in the infinite-dimensional harmonic domain, which
can be truncated for a finite number of harmonics. Hence,
a detailed mathematical analysis of such tool is presented
in a first moment as means of providing a framework for
the expansion of the use of HSS modeling technique, as the
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current state-of-the-art mainly focuses on linear analysis, by
applying linearizations to models before calculating a point
of equilibrium, which can lead to subsequent modeling errors
and inaccurate further analysis.

These validated models are then employed with the
objective of modeling 2-D vector rotations and the divi-
sion between two real-valued functions as means of ob-
taining a Nonlinear Time-Invariant (NLTI) model of the
Park-Transformation and the Synchronous-Reference Frame
Phase-Locked Loop (SRF-PLL), which serves as a base for
more complex synchronism strategies [17]–[19]. Thus, each
step is thoroughly validated as means of demonstrating the
effect of truncations on each modeling step, as the final
model contains a large degree-of-freedom, and these steps
should provide a guideline on the number of terms and
number of harmonics required for an accurate description
of the subsequent model.

The use of the modeling strategies here proposed can also
be employed for different applications, as the creation of
a framework is initially intended, and then expanded for
specific applications, in this case a SRF-PLL which consider
multiple harmonics. Note that even though the validations
shown here in the time-variant domain through the recreation
of the time-variant signals, the resulting models are NLTI,
which enables an accurate calculation of the points of
equilibrium, and subsequent stability analysis of system can
be performed following the presented methodology.

In a first moment, an overview of the Harmonic State-
Space models for linear systems and nonlinear polynomial
systems is presented, which serves as a base for the exponen-
tial function model and the division of two signals employed
in the normalisation. The subsequent section demonstrates
the 2-D rotation of a vector employed in the Park Trans-
formation with the objective of modeling the rotation angle
in the HSS. Lastly, a NLTI model of the SRF-PLL model
is expressed with its subsequent validation. Experimental
results employing hardware-in-the-loop simulation of a grid-
connected Voltage Source Inverter with control strategy im-
plemented in an FPGA-Microprocessor and are also shown
as means of validating the discussed models.

II. HARMONIC STATE-SPACE OVERVIEW
The present analysis is divided into a recapitulation of the
HSS and DP modeling, and their application related to more
complex state-space models of nonlinear functions, as means
of obtaining nonlinear models in reference of certain desired
inputs and outputs.

A. A REVIEW OF LINEAR TIME-VARIANT SYSTEMS
Let a linear state-space model of a certain dynamic system
be described by

Dtx = Ax+Bu, (1)

where Dt is the derivative operator with respect to t, A ∈
Rnx×nx , B ∈ Rnx×nu , x ∈ X ⊆ L2(Rnx) and u ∈ U ⊆

L2(Rnu), in a manner that

xi(t) :=

∞∑
k=−∞

xi,k(t) =

∞∑
k=−∞

⟨xi(t)⟩keιkθ(t)

ui(t) :=

∞∑
k=−∞

ui,k(t) =

∞∑
k=−∞

⟨ui(t)⟩keιkθ(t),
(2)

∀i ∈ Znx , where ⟨x⟩k is the kth harmonic dynamic phasor
for an arbitrary angle

θ := θ0 +

∫ t

−∞
ω(τ)dτ (3)

and ι2 := −1. Each dynamic phasor can be interpreted as
the projection of the initial of a signal onto the exponen-
tial function eιkθ,∀k ∈ Z, which can be interpreted as the
coefficients of the Fourier Transform.

Thus, the HSS model of (1) can be written in accordance
with

Dt ⟨x⟩ = (I∞ ⊗A−G) ⟨x⟩+ (I∞ ⊗B) ⟨u⟩
G := diag (Z)⊗ ιωInx

,
(4)

where
{
⟨x⟩ ∈ ℓ2(Cnx) : ⟨x⟩ = (⟨x⟩k)∞−∞

}
is the set of dy-

namic phasors of x and ⊗ is the tensor product. The HSS
model can be truncated for a finite number of harmonics
nh < ℵ0, assuming that the system has a low-pass charac-
teristic when ω → ∞, as the characteristic polynomial of
the HSS system, which is given by

p(λ) = det (λI− (I∞ ⊗A−G))

=

∞∏
k=−∞

det ((λ− ιkω) I−A) ,
(5)

as λk → ιkω for larger values of |k|. In this case,

span (Dt⟨x⟩) =
∞⊕

k=−∞
span (Dt⟨x⟩k)

≈
nh⊕

h=−nh

span (Dt⟨x⟩k) ,
(6)

for

x =

∞∑
h=−∞

⟨x⟩heιhωt+θ0 ≈
nh∑

h=−nh

⟨x⟩heιhωt+θ0 , (7)

where
⊕

is the direct sum operator, as each frequency sub-
space is decoupled, i.e., we can write a separate decoupled
system for each harmonic frequency. This is not always
true for nonlinear systems, as the frequency components are
coupled through the nonlinearities of the systems, as further
discussed in the next subsection.

The HSS and DP models are related by the linear map
f : C2 → R2 such that[

R {⟨x⟩h}
I {⟨x⟩h}

]
=

1

2

[
1 1
−ι ι

] [
⟨x⟩h
⟨x⟩−h

]
(8)

for a certain harmonic component h. Since x ∈ R, we have
that

⟨x⟩−h = ⟨x⟩∗h, (9)
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Γ ◦ ⟨u⟩ =



⟨u⟩0 ⟨u⟩−1 · · · ⟨u⟩−h

⟨u⟩1
. . . . . . . . . . . .

...
. . . ⟨u⟩0 ⟨u⟩−1

. . . . . .

⟨u⟩h
. . . ⟨u⟩1 ⟨u⟩0 ⟨u⟩−1

. . . ⟨u⟩−h

. . . . . . ⟨u⟩1 ⟨x⟩0
. . .

...
. . . . . . . . . . . . ⟨u⟩−1

⟨u⟩h · · · ⟨u⟩1 ⟨u⟩0


(13)

which in turn makes f bijective.
From this, we can define a linear map Ψ : ℓ2(C) → ℓ2(R)

so that (R {⟨x⟩} ,I {⟨x⟩}) = Ψ ◦ ⟨x⟩, where

Ψ =
1

2

 I 0 J
0 1 0
ιI 0 −ιJ

 (10)

and J is an exchange (or backward identity) matrix. We can
also define a linear map Ψn : ℓ2(Cn) → ℓ2(Rn) as

Ψn = Ψ⊗ In, (11)

leading to (R {⟨x⟩} ,I {⟨x⟩}) = Ψnx ◦ ⟨x⟩.
However, the equations presented in (4) and (6) are not

valid for nonlinear systems, since nonlinearities, in general,
introduce a coupling between harmonic components, as
further discussed.

B. ON THE MODEL OF POLYNOMIAL NONLINEAR
SYSTEMS
Let u, v ∈ L2(R). From the convolution properties of
the Fourier Transform, we can write the multiplication of
both signals in the time domain as the convolution in the
frequency domain. Since ⟨xi⟩ ∈ ℓ2(C), ∀i ∈ {1, 2}, the
operation turns into a discrete convolution given by

⟨uv⟩h =

∞∑
j=−∞

⟨u⟩j⟨v⟩h−j (12)

for each harmonic component h ∈ N. We can also employ
the Toeplitz operator Γ(·) defined by (13) as means of
solving (12), resulting in

⟨uv⟩ = (Γ ◦ ⟨u⟩) ◦ ⟨v⟩ . (14)

From (14), we can write the dynamic phasor for the
powers of a signal as

⟨u⟩ =
(
Γ0 ◦ ⟨u⟩

)
◦ ⟨u⟩〈

u2
〉
= (Γ ◦ ⟨u⟩) ◦ ⟨u⟩〈

u3
〉
= (Γ ◦ ((Γ ◦ ⟨u⟩) ◦ ⟨u⟩)) ◦ ⟨u⟩ =

(
Γ2 ◦ ⟨u⟩

)
◦ ⟨u⟩

⟨un⟩ =
(
Γn−1 ◦ ⟨u⟩

)
◦ ⟨u⟩ ,

(15)
which is useful for expressing polynomial dynamical sys-
tems. The following discussions present an approximation
of more complex systems in terms of polynomial systems.

TABLE 1. Exponential Function Parameters for Model Validation

t [ms] 0–50 50–100 100–150 150–200

⟨u⟩0 1 1 1 + 0.2 sin (20πt) 1 + 0.2 sin (20πt)

⟨u⟩1 0.1eι
π
3 0.1eι

π
3 0.1eι

π
3 0.4eι

π
3

⟨u⟩2 0 0.04eι
π
6 0.04eι

π
6 0.16eι

π
6

⟨u⟩3 0 0.02eι
π
12 0.02eι

π
12 0.08eι

π
12

⟨u⟩4 0 0 0 0.04eι
π
6

C. ON THE MODEL OF EXPONENTIAL FUNCTIONS
Let u, v ∈ L2(R), defining the signal v as

v := exp (u) . (16)

We can then rewrite v relating to the dc component ⟨u⟩0 as

v = exp (⟨u⟩0) exp (u−⟨u⟩0) = exp (⟨u⟩0) exp (w) , (17)

where w := u− ⟨u⟩0 and ⟨w⟩ = ⟨u⟩|⟨u⟩0=0. Thus, (17) can
be expressed in terms of its Taylor Series expansion centered
at w = 0 as

exp(u) = exp (⟨u⟩0)
∞∑

n=0

wn

n!
. (18)

From the previous subsection and (18), it is possible to infer
that

⟨exp(u)⟩ = e⟨u⟩0

(
ĥ0 +

∞∑
n=1

1

n!

(
Γn−1 ◦ ⟨w⟩

)
◦ ⟨w⟩

)
,

(19)
which can be truncated to ease the analysis and computa-
tional burden when employing the presented model in a sim-
ulation. Figure 1 shows the behaviour of the approximation
given by (19) for an arbitrary signal considering multiple
truncation values of the Taylor series to verify the validity
of the approximation.

The exponential function serves as a basis for more
complex functions, such as trigonometric functions. These
can constitute rotations of two-dimensional (2-D) vectors,
as in the Park transformation, which is further discussed in
the following section.
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FIGURE 1. Approximation of the exponential function employing the HSS
model truncated at the 9th harmonic for multiple Taylor series truncation
values (N ) with respect to the signal u with amplitudes given by Table 1.
The error is defined as the relative error between the real valued function
and the projection of the approximation onto the L2(R) space.

D. ON THE DIVISION BETWEEN TWO REAL-VALUED
SIGNALS
Let u, v ∈ L2(R), v(t) > 0 ∀t ∈ R. Also, let ⟨v⟩0 > 0 as
the dc component of the denominator, resulting in

u

v
=

u

⟨v⟩0
1

1 +
w

⟨v⟩0
, (20)

where w := v − ⟨v⟩0. We can then express (20) in term of
its Taylor Series as

u

v
=

u

⟨v⟩0

∞∑
n=0

(
w

⟨v⟩0

)n

, (21)

assuming that |w| < ⟨v⟩0 due to the series region of
convergence. Then, from inspection of (21), we can define
the dynamic phasor of the inverse operator as〈

1

v

〉
=

ĥ0

⟨v⟩0
+

∞∑
n=1

(−1)n

⟨v⟩n+1
0

(
Γn−1 ◦ ⟨w⟩

)
◦ ⟨w⟩ (22)

and the dynamic phasor of the division between u and v as

hdiv(u, v) :=
〈u
v

〉
=

∞∑
n=0

(−1)n

⟨v⟩n+1
0

(Γn ◦ ⟨w⟩) ◦ ⟨u⟩ . (23)

Figures 2 and 3 demonstrate the behaviour of the proposed
approximation for the inverse and division of arbitrary sig-
nals, validating the proposed approximation.

Another way of modeling the division of two numbers
would be through the deconvolution, as in〈u

v

〉
=
(
Γ−1 ◦ ⟨v⟩

)
◦ ⟨u⟩ = (Γ ◦ ⟨v⟩)−1 ◦ ⟨u⟩ , (24)

since the inverse of the Toeplitz Operator presents a com-
plex analytic calculation, especially for a large number of
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FIGURE 2. Inverse function HSS model approximation truncated at the
9th harmonic for multiple Taylor series truncation values(N ) with respect
to the signal v given by Table 2. The error is defined as the relative error
between the real valued function and the projection of the approximation
onto the L2(R) space.
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FIGURE 3. Division of two signals employing the inverse function HSS
model approximation truncated at the 9th harmonic for multiple Taylor
series truncation values (N ) with respect to signals u, v given by Table 2.
The error is defined as the absolute error between the real valued function
and the projection of the approximation onto the L2(R) space.

harmonics. Table 3 compiles a collection of harmonic state-
space operations demonstrated in this section.

The following section demonstrates a spacial rotation of
a two dimensional vector as means of computing the Park
transformation of a three-phase electrical system.
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TABLE 2. Parameters for Division Model Validation

t [ms] 0–50 50–100 100–150 150–200

⟨u⟩0 0 0 10 sin (20πt) 10 sin (20πt)

⟨u⟩1 100eι
π
3 100eι

π
3 100eι

π
3 100eι

π
3

⟨u⟩2 0 40eι
π
6 40eι

π
6 40eι

π
6

⟨u⟩3 0 20eι
π
12 20eι

π
12 0.20eι

π
12

⟨u⟩4 0 0 0 10eι
π
6

⟨v⟩0 200 200 200 + 80 sin (20πt) 200 + 80 sin (20πt)

⟨v⟩1 eι
π
4 10eι

π
4 10eι

π
4 10eι

π
4

⟨v⟩2 0 5eι
π
6 5eι

π
6 50eι

π
6

⟨v⟩3 0 2.5eι
π
12 2.5eι

π
12 2.5eι

π
12

⟨v⟩4 0 0 0 eι
π
6

III. PARK TRANSFORMATION THROUGH A HARMONIC
STATE-SPACE APPROACH
A. SPACIAL ROTATION OF A TWO-DIMENSIONAL
VECTOR
Let uabc ∈ R3 a generic three-phase electrical quantity. Let
us also define a complex voltage signal ū, which results from
the projection of a three-phase electrical quantity vector onto
the αβ plane through the Clarke Transformation as in

ū :=
[
1 e−ι 2

3π eι
2
3π
]
uabc (25)

in its complex form, or

u := (R {ū} ,I {ū}) = (uα, uβ) (26)

in its real form. We can then write ū ∈ L2(C) such that

ū =

∞∑
n=−∞

⟨uα⟩neιnωt + ι⟨uβ⟩neιnωt

= ⟨uα⟩0 + ι⟨uβ⟩0

+ 2

∞∑
n=1

R
{
⟨uα⟩neιnωt

}
+ ιR

{
⟨uβ⟩neιnωt

}
.

(27)

Thus, the dynamic phasor of each component can be written
as

⟨u⟩n = (⟨uα⟩n, ⟨uβ⟩n) ∈ ℓ2(C2),∀n ∈ Z.
From this, let us define the the Park transformation as the
projection of ū onto the rotating frame eιθδ as

ūdq := ūe−ιθδ = ud + ιuq, (28)

where

θδ =

∫ t

0

ωdt+ δ.

We can also write udq := (ud, uq) as a real-valued vector.
Hence, the rotation of a complex valued signal solves for

(29) in the time-domain, which is defined at the top of the
following page, and results in two frequency components
related to the adjacent harmonics dependent on the positive
and negative sequences. Subsequently, we can define two
distinct dynamic phasors the these adjacent frequencies of
the dq components as

⟨udq,k⟩ := (⟨udq⟩k+1, ⟨udq⟩k−1) ∈ ℓ2(C4),∀n ∈ Z (30)

where

⟨udq⟩k := (⟨ud⟩k, ⟨ud⟩k) ∈ ℓ2(C2),∀k ∈ Z.

Thus, we can define a linear map f ∈ L(C2,C4), such that
⟨udq,k⟩ = f ◦ ⟨u⟩k as

[f ] =
1

2


eιδ −ιeιδ

ιeιδ eιδ

e−ιδ ιe−ιδ

−ιe−ιδ e−ιδ

 , (31)

with rank(f) = 2. We can also define the inverse linear map
f+ through the Moore-Penrose pseudo-inverse of f as[

f+
]
=

1

2

[
e−ιδ −ιe−ιδ eιδ ιeιδ

ιe−ιδ e−ιδ −ιeιδ eιδ

]
, (32)

since f is not bijective. Note that f+ = fH .
We can then decompose f into two different components

f−,f+ ∈ L(C2,C2), the first one restricted to ⟨udq⟩n−1

and the other restricted to ⟨udq⟩n+1, defined as

[f+] =
1

2

[
1 −ι
ι 1

]
eιδ, [f−] =

1

2

[
1 ι
−ι 1

]
e−ιδ, (33)

which can be called the negative and positive sequence
functionals, respectively. We can then write the signal kth

harmonic components in dq coordinates as

⟨udq⟩k = f+ ◦ ⟨u⟩k−1 + f− ◦ ⟨u⟩k+1 (34)

Let us define ⟨u⟩ := (⟨u⟩k)∞k=−∞ as the set of DPs in
αβ coordinates and ⟨udq⟩ := (⟨udq⟩k)∞k=−∞ the set of DP
for dq coordinates. Consequently, we can express the linear
map g ∈ L(ℓ2(C2), ℓ2(C2)) such that ⟨udq⟩ = g ◦ ⟨u⟩ as

[g] =



. . .

. . . f−

. . . 0 f−
f+ 0 f−

f+ 0 f−
f+ 0 f−

. . . . . . . . .


(35)

which can be truncated for a given number of harmonics.
Note that f+ = f∗

−, thus the equality given by

⟨udq⟩−h = ⟨udq⟩h∗ (36)

is still valid. The linear map Ψ2 defined in (10) can also be
employed as means of obtaining a real valued system.

With this, we can write the spacial rotation of a two-
dimensional signal in the Harmonic State-Space with respect
to an arbitrary angle δ, and consequently the Park transfor-
mation, as

⟨udq⟩ = g(δ) ◦ ⟨u⟩
⟨u⟩ = gH(δ) ◦ ⟨udq⟩ .

(37)

Figure 4 shows a comparison for arbitrary u and δ using the
time-variant and HSS based approaches to compute the Park-
transformation with a time-variant angle, which validates the
previously described equations. In this case, a time-variant
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ud =
1

4

∞∑
k=−∞

(
(R {⟨uα⟩k}+ I {⟨uβ⟩k}) cos ((k + 1)ωt+ δ) + (−I {⟨uα⟩k}+R {⟨uβ⟩k}) sin ((k + 1)ωt+ δ)

+ (R {⟨uα⟩k} − I {⟨uβ⟩k}) cos ((k − 1)ωt− δ) + (I {⟨uα⟩k}+R {⟨uβ⟩k}) sin ((k − 1)ωt− δ)
)

uq =
1

4

∞∑
k=−∞

(
(−I {⟨uα⟩k}+R {⟨uβ⟩k}) cos ((k + 1)ωt+ δ) + (−R {⟨uα⟩k} − I {⟨uβ⟩k}) sin ((k + 1)ωt+ δ)

+ (I {⟨uα⟩k}+R {⟨uβ⟩k}) cos ((k − 1)ωt− δ) + (R {⟨uα⟩k} − I {⟨uβ⟩k}) sin ((k − 1)ωt− δ)
)

(29)

δ was employed, as a detailed analysis of δ is explored in
the following subsection.

From (34), we can also define the gj,k,∀j ∈ {d, q} such
that

⟨ud⟩k =
1

2

[
eιδ −ιeιδ e−ιδ ιe−ιδ

] [⟨u⟩k−1

⟨u⟩k+1

]
= gd,k ◦ ⟨u⟩

⟨uq⟩k =
1

2

[
ιeιδ eιδ −ιe−ιδ e−ιδ

] [⟨u⟩k−1

⟨u⟩k+1

]
= gq,k ◦ ⟨u⟩

(38)
as means of obtaining a single harmonic component.

However, (37) still considers a time-variant angle δ ∈ R,
hence the following subsection aims to obtain a large-signal
model in terms of the harmonic components of δ.

B. PARK TRANSFORMATION LARGE-SIGNAL HSS
MODEL
Let δ ∈ L2(R) such that

δ :=

∞∑
k=−∞

⟨δ⟩keιkωt (39)

be given by the projection of the DPs onto the real plane,
which in turn defines

ξ̄ := exp {−ιδ}

:= exp

{
−ι

∞∑
n=−∞

⟨δ⟩neιnωt

}
(40)

as a complex rotation dependent on the dynamic phasor of
the angle displacement. We can then apply the procedure

TABLE 3. Dynamic Phasor Function Approximations

Operation Symbol Expression

Multiplication ⟨uv⟩ (Γ ◦ ⟨u⟩) ◦ ⟨v⟩

Exponentiation ⟨un⟩
(
Γn−1 ◦ ⟨u⟩

)
◦ ⟨u⟩ = (Γ ◦ · · · ◦ (Γ ◦ ⟨u⟩) ◦ ⟨u⟩) ◦ ⟨u⟩

Exponential Function hexp(⟨u⟩) e⟨u⟩0

(
ĥ0 +

∞∑
n=1

1

n!

(
Γn−1 ◦ ⟨u⟩

∣∣∣∣
⟨u⟩0=0

)
◦ ⟨u⟩

∣∣∣∣
⟨u⟩0=0

)

Division hdiv(u, v)
∞∑

n=0

(−1)n

⟨v⟩n+1
0

(
Γn ◦ ⟨v⟩

∣∣∣∣
⟨v⟩0=0

)
◦ ⟨u⟩

Synchronous Rotation gδ(⟨δ⟩0) See (33) and (35)

Park Transformation hδ(δ)
∞∑

n=0

1

n!

((
Γn ◦ ⟨δ⟩|⟨δ⟩0=0

)
⊗ I2

)
◦ gδ

(
⟨δ⟩0 + nπ

2

)

d-Axis Component hd(δ) (INh
⊗ [1 0]) ◦ hδ(δ)

q-Axis Component hq(δ) (INh
⊗ [0 1]) ◦ hδ(δ)

PLL Feedback hpll(uαβ , δ) hdiv

(
hq(δ) ◦ uαβ ,hd(δ) ◦ uαβ

)

VCO Signal hvco(⟨δ⟩)
(
I∞ ⊗

[
1 0

])
◦ hH

d (δ) ◦ ĥ0
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FIGURE 4. HSS model validation of the spatial rotation of a 2-D
time-variant vector u = (uα, uβ) by the time varying angle δ ∈ L2(R)
defined by Table 4.

TABLE 4. Parameters for Park Transformation Model Validation

t [ms] 0–50 50–100 100–150 150–200

⟨uα⟩0 0 0 0.05 sin (20πt) 0.05 sin (20πt)

⟨uα⟩1 0.5 0.5 0.5 0.5

⟨uα⟩2 0 0.2eι
π
6 0.2eι

π
6 0.2eι

π
6

⟨uα⟩3 0 0.1eι
π
12 0.1eι

π
12 0.1eι

π
12

⟨uα⟩4 0 0 0 0.05eι
π
6

⟨uβ⟩0 0 0 0.05 sin (20πt) 0.05 sin (20πt)

⟨uβ⟩1 0.5e−ιπ
2 0.2e−ι 2π

5 0.2e−ι 2π
5 0.5eι

π
2

⟨uβ⟩2 0 0.2eι
π
6 0.2eι

π
6 0.2eι

π
6

⟨uβ⟩3 0 0.1eι
π
12 0.1eι

π
12 0.1eι

π
12

⟨uβ⟩4 0 0 0 0.05eι
π
6

⟨δ⟩0 π
12

π
12

π
12

π
3

⟨δ⟩2 0 0 π
72

e−ιπ
2 π

72
e−ιπ

2

⟨δ⟩4 0 0 π
100

e−ιπ
3 π

100
e−ιπ

3

⟨δ⟩6 0 0 π
120

eι
π
5 π

120
eι

π
5

adopted in (18) to (40), which results in

ξ̄ = exp (−ι⟨δ⟩0)
∞∑

n=0

(ιw)
n

n!

=

∞∑
n=0

exp
(
−ι
(
⟨δ⟩0 + n

π

2

)) wn

n!
,

(41)

where w = δ − ⟨δ⟩0. Note that each term of the sum
corresponds to a rotation of a two dimensional signal, with
its formulation given by (47). From inspection of (19), we
can write ⟨udq⟩ :=

〈
ūξ̄
〉

as

⟨udq⟩ =
∞∑

n=0

1

n!

((
Γn ◦ ⟨δ⟩|⟨δ⟩0=0

)
⊗ I2

)
◦

◦ g
(
⟨δ⟩0 + n

π

2

)
◦ ⟨u⟩

=: hδ (u, δ) .

(42)

Since ⟨udq⟩ concatenates the d and q axis, we can define
the linear maps Td,Tq ∈ L(C2nh ,Cnh) as

[Td] := Inh
⊗
[
1 0

]
, [Tq] := Inh

⊗
[
0 1

]
, (43)

such that ⟨uj⟩ = Tj ◦ ⟨udq⟩ ,∀j ∈ {d, q}, which leads to

hj := Tj ◦ hδ,∀j ∈ {d, q} (44)

as means of directly obtaining each dq-axis component.
Figure 5 demonstrates the model validation for arbitrary

⟨δ⟩ and ⟨u⟩, with explicit values given by 4.

IV. SYNCHRONOUS-REFERENCE FRAME
PHASE-LOCKED LOOP MODEL
Let the input signal u ∈ C be defined by (27). Hence we
can write the SRF-PLL dynamic equations according to

υpll =
I
{
ūe−ιθδ

}
R {ūe−ιθδ}

ẋpll = Apllxpll +Bpllυpll

δ̇ = Cpllxpll +Dpllυpll

θδ = ωgt+ δ

ω̂ = δ̇ + ωg

, (45)

where ωg is the PLL feedforward frequency, which can be
fixed or adaptive as means of improving the PLL perfor-
mance, and the set Mpll := {Apll,Bpll,Cpll,Dpll} is
the state-space model of the loop filter. The loop filter was
chosen arbitrarily in a first moment, with its block diagram
shown in Fig. 6, while considering the input normalization
given by the d-axis component. A more thorough approach
would be to normalize the imaginary component as in

υ′
pll =

I
{
ūe−ιθδ

}
|ūe−ιθδ | =

I
{
ūe−ιθδ

}
∥u∥2

, (46)

solving for the normalization approach described by (45)
when R {ūdq} ≫ I {ūdq}. This is mostly true since the
synchronism loop forces I {ūdq} to a null value, whereas
R {ūdq} converges to ∥u∥2 if no disturbances in the syn-
chronism loop are considered.

If the description of the input u belongs to a dynamic
system in dq components, while leaving out harmonics of the
electrical quantities, the analysis can be simplified, since uq

is not time-varying, as shown in [8]. However, if the model
description for u is time-varying, the approach presented in
the previous sections can be employed as means to obtain
a large-signal time-invariant nonlinear model. From this, we
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FIGURE 5. Validation of the harmonic domain-based Park Transformation model for arbitrary signals ⟨δ⟩ and ⟨u⟩ with the dynamic phasor amplitudes
given in Table 4. The error is defined as the absolute error between the real valued function and the projection of the approximation onto the L2(R)
space.

I{·}

R{·}
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Filter

exp{·} −ι

ū θδυ

ξ̄

ωpll

ωg

FIGURE 6. Block diagram of the SRF-PLL with a generic Loop Filter.

can adopt two different approaches, which are described in
the sequence.

A. DISCUSSION ON SMALL-SIGNAL ANALYSIS
In a first moment, we can assume that ∥δ∥ is small enough
such that the linearization for δ̄ = δ|δ̇=0 for a certain δ̄ ∈

[0, 2π) is valid, hence we can write udq as

udq ≈
√
2 ∥⟨u⟩1∥2

(
1, δ̄ + δ̃

)
, (47)

where δ̃ = δ − δ̄ and the approximation for ud is the grid
or power converter ac rated voltage, and a small enough δ̄
which can be modelled as a disturbance. Note that if (47) is
applied to (45), we have that both systems are coupled by
the disturbance δ̄, which has no explicit formulation, i.e., the

TABLE 5. SRF-PLL Loop Filter Parameters

Description Parameter Value

Feedforward Frequency ωg 2π50 rad/s

Sampling frequency ∆t 100 µs

PI Proportional Gain kp 56.2

PI Integral Gain ki 1784
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FIGURE 7. Block diagram of the proposed SRF-PLL model with a generic loop filter base on the dynamic equations described in (49).

TABLE 6. Parameters for Park Transformation Model Validation

t [ms] 0–160 160–480 480–800

⟨uα⟩1 50 50 50

⟨uα⟩2 0 5eι
π
6 5eι

π
6

⟨uα⟩3 0 2.5eι
π
12 2.5eι

π
12

⟨uα⟩4 0 0 1.25eι
π
6

⟨uβ⟩1 50e−ιπ
2 20e−ι 2π

5 50e−ιπ
2

⟨uβ⟩2 0 5eι
π
6 5eι

π
6

⟨uβ⟩3 0 2.5eι
π
12 2.5eι

π
12

⟨uβ⟩4 0 0 1.25eι
π
6

synchronism electrical quantity u and reference generation
dynamic systems are mostly independent. Thus, equation
(47) can be used in conjunction with the concepts of DP
or HSS and the Toeplitz operator to obtain a description
of the system, which is mostly valid as δ̄ approaches zero,
corroborating the small signal analysis presented in [12],
[20], [21].

However, a correct choice of δ̄ is necessary to define the
correct point of operation, as means of coupling the outer
system that defines u and the synchronism loop small-signal
model, which is discussed in [22] as the initial angle prob-
lem. Nevertheless, such approach is inaccurate, as δ̄ should
be the solution of the system at its fixed point. Furthermore,
the existence of this fixed point is not guaranteed due to
the nonlinear characteristic of said system. For example, an
instability of the PLL control loop leads to a chaotic orbit
(which can be periodic), as the feedback is bounded.

On a side note, the phase angle and the voltage ampli-
tude employed for the normalization of the synchronism
electrical quantity is extremely dependent on the active and
reactive power processed by power converters under weak-
grid conditions. Hence, this linearization is not adequate for
the characterization of the fixed points as means of asserting
the system’s stability under weak grid conditions.

Concurrently, the frequency coupling terms given by
higher order terms of the Taylor series expressed in (42) will
lead to a synchronization deviation such that the estimation
error eδ does in fact converges to a value ϵ ∈ R under
distorted grid conditions. This effect can also be amplified
by the normalisation of the PLL input, as the approximation

given by (23) can also lead to a coupling between two
distinct harmonics and ⟨δ⟩0.

B. SRF-PLL LARGE-SIGNAL MODEL APPROXIMATION
Another alternative is to consider the nonlinear characteristic
of the SRF-PLL equations in (45). From (42), (44) and (23),
we can employ the previously defined linear maps hd,hq,
as well as the division operator hdiv as means of computing
the normalization. Thus, the set of DPs of υpll can be written
as a function of the set of dynamic phasors of the input ⟨u⟩
and the estimated displacement angle ⟨δ⟩ according to

hpll(u, δ) := ⟨υpll⟩ = hdiv (hq(u, δ),hd(u, δ)) . (48)

Consequently, the PLL dynamic equations can be expressed
as
Dt ⟨xpll⟩ =

(
INh

⊗Apll − diag (H)⊗ ιωInpll

)
⟨xpll⟩

+ (INh
⊗Bpll)hpll(u, δ)

Dt ⟨δ⟩ = (INh
⊗Cpll) ⟨xpll⟩+ (INh

⊗Dpll)hpll(u, δ)

+ ⟨ωg⟩ − ωĥ0 − ιωdiag (H) ⟨δ⟩

,

(49)
where H is the set of harmonics considered in the analysis
and nh := dim(H). A block diagram of the proposed HSS
model is presented in Fig. 7.

A simplification can be adopted as means of reducing the
complexity of the model presented in (49) letting ⟨δ⟩j =
0,∀j ̸= 0, while also normalizing the PLL input signal by
the dc component of the d-axis signal, resulting in

Dt⟨xpll⟩0 = Apll⟨xpll⟩0 +Bpll

gq,0(⟨δ⟩0) ◦ ⟨u⟩
gd,0(⟨δ⟩0) ◦ ⟨u⟩

Dt⟨δ⟩0 = Cpll⟨xpll⟩0 +Bpll

gq,0(⟨δ⟩0) ◦ ⟨u⟩
gd,0(⟨δ⟩0) ◦ ⟨u⟩

+ ⟨ωg⟩0 − ω

, (50)

which is mostly valid when employing control techniques
to mitigate disturbances of the electrical quantities sig-
nals mainly caused by negative sequence components and
harmonic distortions. Note that g(δ) presents a bounded
behaviour for the feedback, since

∥g(δ)∥2 = ∥⟨udq⟩∥2 ∥⟨u⟩∥
−1
2 = 1, ∀u ̸= 0, δ ∈ R, (51)

which in turn takes into account an eventual loss-of-lock
and the possibility of a re-synchronization. This poses as an
advantage of truncating (35) at the first term, otherwise the
harmonic content of δ can lead to a positive feedback, i.e,

Eletrônica de Potência, Rio de Janeiro, v. 29, e202417, 2024. 9

https://creativecommons.org/licenses/by/4.0/


Grabovski et al.: Large-Signal Models of the Park Transformation and Phase-Locked Loop Algorithms

a reduction in the stability margin of the PLL control loop.
This simplified model can also be employed for stability
analysis of power converter systems for the investigation and
identification of loss-of-lock and subharmonics, especially
when operating under weak-grid conditions.

Another advantage of this procedure is that the dynamic
phasor frequency was written as a system disturbance, with
the assumption that ω̇ vanishes, hence frequency distur-
bances are also fed back into the dynamic system, which is
useful for obtaining frequency dependent models for power
system analysis. The following section presents a numerical
simulation of the proposed model while employing a tradi-
tional control strategy as means of validating the proposed
model and assert the dependence of the proposed model with
respect to the truncation of the infinite dimensional model,
which is related to the number of harmonics and terms of
the Taylor series expansion.

C. Numerical Example
Assume the loop filter as a PI controller, such that

Apll = 0, Bpll = 1, Cpll = ki, Dpll = kp, (52)

where kp and ki are the proportional and integral gains,
respectively. Hence, equation (49) can be rewritten as

Dt ⟨xpll⟩ = −ιωdiag (H) ⟨xpll⟩+ hpll(u, δ)

Dt ⟨δ⟩ = −ιωdiag (H) ⟨δ⟩+ ki ⟨xpll⟩+ kphpll(u, δ)

+ ⟨ωg⟩ − ω

.

(53)
The truncated model has three degrees of freedom: Nh,

Ndiv and Ng, related to the number of harmonics of the set
H, the number of Taylor series terms of the normalization
procedure and to the number of Taylor series terms of the
2-D rotation operation, respectively. An adequate choice of
these parameters is critical due to the increased complexity
related to the number of operations. Let nh the number of
harmonics such that H = {h ∈ Z : −nh ≤ h ≤ nh}, which
leads to Nh = 2nh+1. Based on this, the simulation results
presented in Fig. 8 demonstrates the validation of the SRF-
PLL with parameters defined in Table 5 for an arbitrary input
signal with its set of dynamic phasors defined in Table 6. In
this case, the choice of nh was not as significant as the choice
of Ndiv due to the large amplitude of the voltage unbalance
during the time-interval t ∈ (180, 480] ms, which is limited
by the convergence of the inverse function Taylor series.

However, the time-interval t ∈ (480, 800] ms demonstrates
the need for a higher Nh as means of accurately expressing
the d-axis components as well as the frequency estimation.
Note that the amplitude of the distortions should be lower
for an adequate choice of loop filter, which can lead to a
lower number of components needed to accurately express
these signals.

The number of terms of the rotation Ng was not significant
since in this case the amplitude of the displacement angle
dynamic phasor ⟨δ⟩h,∀h ̸= 0 is sufficiently small.

V. EXPERIMENTAL RESULTS
The Large Signal SRF-PLL model was employed together
with a thorough HSS model of a grid-connected converter.
The converter model is here suppressed, as it is the scope
for future works. A state-feedback control with resonant
controllers and a nonlinear state estimator was employed for
the current control strategy, and a weak-grid with a Short
Circuit Ratio (SCR) of approximately 1.5 for 10 kW/380 V
base values, assuming 1 p.u. voltage. A 2DOF-PI controller
was used for active power generation in a grid following
control strategy. Results were obtained in the 8 kW range
due to instabilities observed in the 10 kW range, resulting
in a SCR of approximately 1.875. The control strategy was
implemented in an FPGA-Microprocessor implementation,
and the converter model was simulated via an OPAL-RT
Hardware-in-the-loop due to the characteristic of the test
conditions. The time constants were scaled by a factor of 100
to accurately represent the switched characteristic of power
converter systems. Figure 9 depicts the converter model. The
dc bus was composed by a constant current source and a dc
bus capacitor.

Figure 10 demonstrates multiple unbalance steps, with a
more detailed picture depicted by Figures 11 and 12. A minor
deviation of ⟨δ⟩0 can be seen due to the losses caused by
the switched characteristic of power converters, which in turn
reduces the power injection, reducing the angle between grid
and filter capacitor voltages, combined with modeling errors
due to truncation, as discussed in the previous section. In
this case, the PLL models had a total of three harmonic
components nh = 3, with the number of terms of the
normalization Ndiv = 2 and the number of terms for the
rotation Ng = 2. Small deviations in the dc bus voltage are
caused by the truncation of the number of harmonics.

The model results enable a representation of the coupling
between harmonics, as unbalanced voltages causes double
harmonics in the PLL control loop, which are also fed
back into the system. These results aim to demonstrate the
accuracy of the PLL models for grid converter applications,
which are suitable for further analysis.
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FIGURE 8. Validation of the proposed harmonic domain-based SRF-PLL model with a PI loop filter with gains given by Table 5 for an arbitrary input
signal u with its phasors amplitudes and phases given by Table 6. The error is defined as the absolute error between the real valued function and the
projection of the approximation onto the L2(R) space.
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FIGURE 10. Mathematical model validation via hardware-in-the-loop for voltage unbalances, with β-axis voltage amplitude step from 1 p.u. to 0.85 p.u.
in steps of 0.5 p.u. The subscript dp denotes the projection of the simulation values over the L(R) space.
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FIGURE 11. Mathematical model validation via hardware-in-the-loop for voltage unbalances, with β-axis voltage amplitude step from 1 p.u. to 0.95 p.u.
The subscript dp denotes the projection of the simulation values over the L(R) space.

VI. CONCLUSIONS
This work demonstrated a Harmonic State-Space modeling
procedure for complex nonlinear functions as means of
polynomial nonlinear systems with the objective of obtaining
nonlinear large-signal models for the Park Transformation
and the SRF-PLL. This was performed in terms of the
dynamic phasors of an input in the αβ coordinates and leads
to fairly general models that can be used to address control
analysis and synthesis for grid connected power electronic
systems. These models are useful for different time-variant
dynamical systems as means of obtaining a time-invariant de-
scription, which can be employed for obtaining equilibrium

points. They are specially useful for studies on stability and
bifurcation analysis.

An analysis of the dynamical system perturbations and
responses is required to define the number of harmonics,
as well as of the number of terms in the Taylor Series
that employed for modeling the more complex functions.
Once this is performed, the resulting analytical models
also provide a straightforward and fast evaluation of the
steady state performance of the system under study without
requiring the execution of lengthy simulations. Thus, this
enables the generation of automatic design tools that consider
both controller tuning and the impact of varying physical
parameters of the system.
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FIGURE 12. Mathematical model validation via hardware-in-the-loop for voltage unbalances, with β-axis voltage amplitude step from 0.9 p.u. to 0.85 p.u.
The subscript dp denotes the projection of the simulation values over the L(R) space.
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14 Eletrônica de Potência, Rio de Janeiro, v. 29, e202417, 2024.

https://doi.org/10.1109/JPROC.2017.2696878
https://doi.org/10.1109/TSG.2018.2812712
https://creativecommons.org/licenses/by/4.0/


Eletrônica de PotênciaOriginal Paper
Open Journal of Power Electronics

[3] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares,
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