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ABSTRACT The growing presence of power ramps, typically caused by the intermittency of renewable
energy sources (RESs), may ultimately threaten the stability and reliability of the power grid. In the
context of power smoothing algorithms such as Moving Average, Ramp Rate and First-Order Low-Pass
Filter have been widely used in reference generation for Energy Storage Systems (ESSs). In this scenario,
this paper analyzes typical metrics used for evaluating power smoothing techniques and comments on their
limitations. Validation of this analysis is conducted using PV generation data sourced from the National
Renewable Energy Laboratory (NREL). The results highlight the need to develop new metrics for a fairier
comparison. Finally, this work also sets a concrete path for the evolution of said metrics.

KEYWORDS Battery energy storage system, power fluctuation, power smoothing, ramp rate.

I. INTRODUCTION
The potential impacts of climate change on various aspects
of human activities are profound, as they can lead to in-
frastructure damage, disrupt water and food availability for
populations, and trigger mass displacements. This situation
becomes particularly alarming when considering that, despite
historical emissions being concentrated in developed coun-
tries, the most vulnerable nations are those with lower per
capita emissions and fewer resources to address the issue [1].

The described scenario invites for global actions with
the aim of minimizing climate change. In this context, the
most recent report released by the Intergovernmental Panel
on Climate Change (IPCC) lists options for climate change
mitigation, categorizing them according to their potential
contributions to short-term emission reductions. These alter-
natives include measures such as energy efficiency, urban
planning, development and application of new materials,
and the transition to renewable energy sources (RES). The
latter, focusing on wind and photovoltaic (PV) generation,
is highlighted in the report as having the greatest potential
for short-term emission reduction [1].

The urgency of reducing greenhouse gas emissions is
compounded by the recent rise in the competitiveness of
technologies linked to renewable sources, as well as by ad-
vancements in legislation. This, combined with the immense
potential yet to be fully explored, has created the perfect
environment for the rapid growth of renewable sources. In
Brazil, this growth is evidenced by the installed capacity of
plants under the centralized and scheduled dispatch control

of the National Electric System Operator (ONS in its Por-
tuguese acronym), as shown in Fig. 1.

However, despite their advantages, these renewable alter-
natives also have some negative characteristics. For instance,
researchers often discuss concerns such as frequency devi-
ations, voltage flickers, and the need for larger power re-
serves, all originating from the unpredictable nature of power
fluctuations [2]. To address some of these issues, system
operators have reviewed and updated their requirements and
standards, also known as grid codes, for the integration of
RES into power grids. In doing so, they ensure that RES
can be incorporated without compromising the stability and
reliability of the electrical system [3].

A grid code is a set of technical specifications and require-
ments that Transmission System Operators define to regulate
the operation, connection, and integration of power plants
and other electricity-generating facilities into the electrical
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FIGURE 1. Installed capacity of wind and PV power plants under the
centralized and scheduled dispatch control of the ONS (Brazil).
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grids. These requirements often involve imposing a limitation
to upward and downward ramp rates in PV and wind power
plants to mitigate the impact of power fluctuations due to
RES generation [4]. Some examples of such limitations are
listed below:

• In China, national standards dictate that the maximum
ramp rate should be less than 10% of the installed ca-
pacity per minute, with additional specifications based
on voltage levels outlined by the State Grid Corporation
of China (SGCC) [5] [6];

• The German grid code stipulates that PV plants must
increase their active power post-reconnection at a rate
not exceeding 10% of the rated power per minute, for
installations exceeding 1 MVA [7]; and

• The European Network of Transmission System Oper-
ators for Electricity (ENTSO-E) allows regional Trans-
mission System Operators to set specific ramp rate
limits as needed [8], not requiring specific upward or
downward rap rates.

These regulations aim to ensure grid stability by controlling
the rate at which active power can increase or decrease,
thereby smoothing out potential fluctuations caused by the
intermittent nature of solar energy [4]. Table 1 summarizes
the regulation of upward and downward ramp rates in various
countries [9].

Both upward and downward ramp rates limits can be
achieved by regulating the power variability of the RES
generation. With this in mind, several solutions have been
proposed in the literature to address the challenges related
with power variability in RES. Conventional methods are
predominantly centered solely on control strategies, such
as pitch angle control, inertia control and DC link voltage
control [10]. However, these approaches frequently result
in power dissipation due to the absence of energy storage
capabilities. Other research focus on employing Energy Stor-
age Systems (ESSs) to implement smoothing approaches,
utilizing technologies such as flywheels, supercapacitors,
superconducting magnets, battery energy storage systems
(BESSs), and hybrid configurations [11].

In recent years, there has been a notable rise in the
competitiveness of BESSs, largely driven by their expanded
utilization in the electronics and automotive industries. Elec-
tric vehicles (EVs) are especially significant in this context

TABLE 1. Maximum active power ramp rate requirements defined in the

grid codes of various countries.

Country
System

Operator
Upward

Ramp Rate
Downward
Ramp Rate

Germany E.ON 10%/min Not required

Ireland EIRGIRD 30 MW/min Not required

Mexico CENACE 2∼5%/min 1∼5%/min

Puerto Rico PREPA 10%/min 10%/min

European Standards ENTSO-E Not required Not required

since their batteries can be utilized for power smoothing, thus
potentially eliminating the need to install BESSs in certain
contexts. An example of EVs being employed in this manner
can be found in [12]. Within the realm of power fluctuation
management, various BESS-based strategies, also referred to
as power smoothing systems, have emerged in the literature.

The effectiveness of these systems, particularly in their
utilization for power smoothing purpose, strongly depends
on the algorithm employed for reference generation, which,
according to [13], can be classified into the following
families: moving average and exponential smoothing-based
approaches; filter-based methods; and ramp rate control
algorithm-based techniques. However, the performances of
these methods are often evaluated through visual analysis or
employing metrics that may result in unjustified comparisons
or flawed conclusions [11] [2].

In this scenario, the primary objective of this paper is
to examine the most common metrics used to evaluate the
effectiveness of power smoothing schemes. To accomplish
this, three disctint reference generation algorithms are em-
ployed to smooth the power output of two PV power plants,
whose data was generated by NREL (National Renewable
Energy Laboratory). To the best of the authors’ knowledge,
the present paper has the following original contributions:

• A performance comparison among three widely used
power smoothing strategies in the literature, one from
each classification family;

• An evaluation of limitations and a qualitative compari-
son of the main metrics used in the literature to compare
the performance of power smoothing strategies; and

• A guideline for developing new improved metrics, with
statistical significance, for power smoothing applica-
tions.

It is important to indicate that the present work is a
post-conference version of [14]. Compared to the paper
published at the conference, this article broadens the number
of compared power smoothing strategies and deepens the
evaluation of metric limitations. Additionally, this paper
adds on to the original article by including a qualitative
comparison and guidelines for developing new metrics. Since
the present article is focused on evaluating the limitations
of power smoothing metrics, assessing the requirements for
storage systems sizing for different algorithms is not within
its scope.

The paper is structured as follows. Section II presents the
operating principles of power smoothing systems based on
BESS. In Section III, three traditional algorithms commonly
used for reference signal generation in power smoothing
systems are presented. Section IV is focused on the standard
metrics used in the literature to evaluate the aforementioned
algorithms. Subsequently, Section V provides a qualitative
comparison and outlines the limitations of the evaluated met-
rics, while also proposing methodologies for developing new
metrics. Lastly, the conclusions are presented in Section VI.
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II. POWER SMOOTHING SYSTEMS BASED ON BATTERY
ENERGY STORAGE SYSTEMS
As described in Section I, the intermittent nature of RESs
introduces undesirable power fluctuations on the electric
grid to which they are connected. Traditional methods to
minimize this problem rely on operating the interface con-
verters away from the maximum power point (MPP) of
the RES, resulting in the loss of some generated energy.
Examples of power smoothing strategies that do not rely on
the use of ESS can be found in [15]–[17]. However, there are
several alternatives capable of keeping the system operating
at its maximum generation capacity while simultaneously
achieving the power smoothing objective.

In this context, ESSs serve as a vital solution for mitigat-
ing power fluctuations originating from renewable genera-
tion, both in the short and long term, ensuring their operation
at the MPP. In addition to mitigating immediate fluctuations,
ESSs allow for maintaining the operational efficiency of the
renewable source by continuously optimizing its operating
point [10]. This approach significantly enhances the stability
and reliability of the energy system, facilitating a more
effective and sustainable integration of RESs into the energy
matrix. An example of a system incorporating PV generation
and BESS is illustrated in Fig. 2.

As shown in Fig. 2, a power smoothing system based
on BESS consists of an energy storage system and a static
converter connecting it to the point of common coupling
(PCC). This setup is responsible for injecting/absorbing
power at the PCC, ensuring that the power delivered to
the grid is smoothed out in accordance with regulatory
requirements associated with power fluctuations. This setup
includes a reference generator that calculates the reference
active power to be injected by the BESS at the PCC,
denoted as PBESS

∗(t). Once this reference active power is
determined, the static converter, acting as an interface for
the BESS, is controlled to inject/absorb the power PBESS(t)
by defining the duty cycles of its semiconductor switches,
represented here as d(t). It is important to note that the BESS
cannot inject power into the grid if it does not have sufficient
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FIGURE 2. Example of power smoothing system based on BESS.
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FIGURE 3. Simplified block diagram of a conventional power smoothing
control scheme based on the use of BESS.

charge, thus requiring the evaluation of its state of charge
(SoC). Although voltage and current measurements are not
shown in Fig. 2, it must be highlighted that this information
is essential for implementing the converter’s control loops.

The reference generator block is responsible for defining
the power to be injected/absorbed by the BESS in orther
to implement power smoothing. It typically operates as
shown in Fig. 3, i. e., it involves measuring the active
power generated by the reneable energy source, PPV (t),
and appling it on a reference generation algorithm, which
is responsible for smoothing out the active power PPV (t) to
obtain Psmooth

∗(t). Finally, to determine the power reference
for the power smoothing system, one must calculate:

PBESS
∗(t) = Psmooth

∗(t)− PPV (t). (1)

As a consequence, the reference generation algorithm
plays a significant role in this system. However, there is a
wide variety of possible reference generation algorithms for
this application, each generating a different power profile to
be injected at the PCC. In order to observe such variety,
Fig. 4 presents the three families of reference generation
algotithms that are commonly used for power smoothing ap-
plications. In this context, it is important to better understand
the families of reference generation algorithms available
in the literature and the most commonly used metrics for
analyzing and comparing these algorithms.

Families of reference generation algorithms
for power smoothing applications

Moving average
and exponential
smoothing-based

approaches

Simple Moving Average (SMA)

Symmetrical MA (SyMA)

. . .

Ramp rate
limiting

algorithms

SoC Based RR Algorithm

Step Ramp Control Algorithm

. . .

Filter-based
methods

Low-Pass Filter (LPF)

Kalman Filter

. . .
FIGURE 4. Families of reference generation algorithms for power
smoothing applications.
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III. REFERENCE GENERATION ALGORITHMS FOR
POWER SMOOTHING APPLICATIONS
In the context of power smoothing, the primary aim is to
reduce the impact of fluctuations in power output. This is
typically achieved by minimizing the rate of change of power
over time, known as the ramp rate (distinct from the set
of techniques referred to as ”Ramp Rate” and denoted in
uppercase letters). While there might be slight variations in
its definition, the ramp rate is commonly employed in various
grid regulations to constrain allowable variations [2] [3]. In
this work, the ramp rate is defined as the average rate of
power change.

In order to align the discussion with the study of increment
statistics – and considering that the rate (∆P /∆t) and
the variation (∆P ) only differ by a constant multiplier –
this work does not consider the rate of change per se,
but rather the differences in power between consecutive
measurements, spaced apart by a time interval ∆t. The
selection of ∆t determines the frequency of analysis and
subsequently influences the nature of the phenomenon under
scrutiny. In the following sections, consider a collection
of power measurements denoted as P = {P1, P2, ..., PN},
taken at intervals of ∆t, for which the changes in power
are represented by ∆P = Pk −Pk−1. These increments can
be positive or negative, contingent upon the direction of the
change.

As briefly introduced in Section I, several power smooth-
ing strategies based on BESS can be found in the literature.
These strategies are commonly classified by the algorithm
family used in their reference generation block, as illustrated
in Fig. 4. According to this classification, the reference
generation algorithms can be divided into three distinct cate-
gories [13]: (i) moving average and exponential smoothing-
based approaches; (ii) ramp rate limiting algorithms; and
(iii) filter-based methods.

In the following subsections, a summary of one reference
generation algorithm from each of the aforementioned fam-
ilies is presented. These algorithms are used in this paper to
analyze the metrics used for evaluating reference generation
algorithms in power smoothing systems.

A. Simple Moving Average – SMA
The moving average is a statistical method that achieves
energy smoothing by computing the average value within
a specified rolling window of data [18]. The Simple Moving
Average (SMA) is the most common method of applying
the moving average to a data sequence, and it consists
of calculating the arithmetic average of a window of n
sequential elements from a data set, considering this moving
window over time. The mathematical representation of the
SMA, for a window of n elements, adapted from [19], is
given by:

PSMA, k =
1

n

n−1∑
j=0

Pk−j , (2)

in which n ≤ k, where k is an index of the data sequence
comprising the sample space, and j is an auxiliary index used
for calculating the moving average. The maximum possible
variability (∆Pmax) is a fraction of the maximum natural
variability (∆P nat

max) of the power plant [20], as in:

∆Pmax =
1

n
∆P nat

max. (3)

B. Ramp Rate – RR
The RR method controls power generation variability by
restricting the rate at which the power output can change
within a specific time period [21]. Therefore, in general,
when a large variation in power generation occurs, one can
make the rate of growth/decrease in injected/absorbed power
from the grid remains constant. In doing so, the energy
production becomes limited to the maximum allowable ramp
rate (±λ).

Then, the RR method can be represented by:

PRR, k =


PRR, k−1 + λ, if ∆P > λ;

PRR, k−1 − λ, if ∆P < −λ;

Pk, otherwise;
(4)

and its maximum possible variability is given by:

∆Pmax = λ. (5)

C. First-Order Low-Pass Filter – LPF
Filters are widely used to attenuate or enhance certain char-
acteristics of signals, such as amplitude, phase or frequency
response. Depending on the characteristic, the filter may
allow the passage of certain frequency bands of the signals.
A typical example is low-pass filters, which retain harmonic
content below the cutoff frequency, fc, while attenuating
signal harmonic components with higher frequencies.

The representation of the first-order low-pass filter (LPF)
can be obtained by applying the Laplace transform to a first-
order ordinary differential equation with linear coefficient
and constant. Thus, the transfer function of the LPF can be
represented as:

HLPF (s) =
1

τs+ 1
, (6)

in which τ represents the time constant of the first-order LPF
in seconds. When discretized using foward Euler method, the
first-order LPF can be implement as follows:

PLPF, k =

(
1− ∆t

τ

)
PLPF, k−1 +

∆t

τ
Pk−1, (7)

where ∆t is the sampling period. The maximum possible
variability obtained by applying this reference generation
strategy is given by:

∆Pmax =
∆t

τ
∆P nat

max. (8)
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IV. COMMON POWER SMOOTHING METRICS
The choice and evaluation of power smoothing algorithms
are inherently interrelated tasks. Power smoothing analysis
can be understood as a comparative analysis of power
variability before and after the application of the smoothing
methods. As it is a complex phenomenon, power variability
cannot be analyzed in a one-dimensional manner. To prevent
this from happening, power smoothing can be analyzed
through the categorization of power variability effect time
range, the severity of the variability and/or its probability [2].

As done in [14], the present paper only investigate metrics
that are associated with the severity and the probability of the
variations. This happens because the time range of the study
(and its effects) are predefined by the sampling frequency of
the dataset. Additionally, as emphasized in [14], it is essential
to recognize that a robust metric should possess the following
characteristics:

• The ability to encapsulate the relevant characteristics
of the observed phenomena regarding their frequency
and/or intensity;

• Applicability to systems with distinct generation
sources or systems with multiple generation sources;

• The ability to allow comparison of results from different
locations and dimensions; and

• Low sensitivity to variations of the number of samples.

In face of this, the most common power smoothing metrics
used in the literature are briefly described below.

A. Standard Deviation
One of the most common ways to characterize stochastic
phenomena is through the use of probability. Probabilistic
percentiles can be employed to evaluate power variability
issues, such as the effectiveness of power smoothing methods
or the sizing of operational reserves necessary to ensure the
proper functioning of the grid. Given this, in a significant part
of the literature associated with power smoothing, standard
deviation (σ) ends up being a frequently used metric.

The significance of the standard deviation becomes more
relevant only when the dataset follows a Gaussian distri-
bution. When this happens, approximately 68,27% of the
samples are contained within one standard deviation from the
mean (µ). In the context of power smoothing, the calculation
of the standard deviation for evaluating a dataset of power
variations (σ∆) can be performed as follows:

σ∆ =

√√√√ 1

N − 1

N∑
j=1

(Pj − µ∆)
2
, (9)

where

µ∆ =
1

N

N∑
j=1

Pj . (10)

Examples of the use of standard deviation in power smooth-
ing applications can be seen in [20] [22]–[24].

B. Maximum Variability
From the perspective of regulatory entities, the intensity of
power variations is a common concern. Thus, it important
that there exist power smoothing metrics capable of consider-
ing the calculation of active power variation rates at the point
of connection to the grid. In this context, the maximum vari-
ation of power observed between sequential measurements
within a predefined interval (∆Pmax) is typically used to
characterize the effectiveness of power smoothing methods.

When using the ∆Pmax metric, the time interval be-
tween measurements (sampling period) is commonly asso-
ciated with the phenomenon under analysis or imposed by
operational constraints. However, regardless of the choice
of sampling period, the evaluation window used for this
analysis in studies focusing on power smoothing analyses is
frequently a daily interval. The employed smoothing method
is considered satisfactory when it can keep the value of
∆Pmax below a predefined limit throughout the day (or
another evaluation window). Examples of its utilization for
this purpose can be observed in [19], [25], [26].

C. Visual Analysis
Visual analysis provides alternative means of evaluating
power smoothing strategies, distinct from numerical metrics
like standard deviation and maximum variability. This ap-
proach requires plotting the smoothed power profile gener-
ated by the studied power smoothing methods onto the orig-
inal generation profile graph, enabling a visual assessment
of the smoothing characteristics. Typically, it is conducted
on a daily basis, similar to the common use of the ∆Pmax

metric. However, it’s worth noting that if a longer power
profile is utilized for visual analysis of a power smoothing
method, its effectiveness decreases. Fig. 5 shows an example
of visual analysis. Further examples of the of visual analysis
application in the literature can be found in [27]–[29].

D. Irradiance-based Metrics
There are also metrics focused on measuring variability
specifically aimed at photovoltaic generation. In these cases,
variability is generally calculated based on the deviation of
irradiance from the irradiance generated by the clear sky
model. An example can be seen in [30]. However, this
type of metric is fundamentally limited as it is based on
a characteristic unique to photovoltaic generation, which

06:00 08:00 10:00 12:00 14:00 16:00 18:00
0

0.2

0.4

0.6

0.8

1
Natural
Smoothed

FIGURE 5. Example of Visual Analysis in power smoothing applications.

Eletrônica de Potência, Rio de Janeiro, v. 29, e202423, 2024. 5

https://creativecommons.org/licenses/by/4.0/


de Souza et al.: An Analysis of the Limitations of Power Smoothing Metrics and Future Perspectives for their Evolution in The Context of BESS-Based Systems

makes comparisons with other generation sources or between
smoothed power curves unfeasible. For this reason, metrics
of this nature will not be considered in this work.

V. ANALYSIS OF THE LIMITATIONS OF COMMONLY
USED POWER SMOOTHING METRICS
In this study, a subgroup of algorithms – representative
of the three categories of algorithms used for reference
generation in power smoothing applications – is applied to a
dataset derived from experimental measurements. Based on
the results, the limitations of most commonly used metrics
for evaluating power smoothing are examined.

To accomplish this, the experimental data needed to be
acquired, preprocessed, and used to validate the power
smoothing algorithms. In order to do so, the following six
steps were performed:

1) Acquisition of the Experimental Dataset
In order to conduct the study presented in this paper, data
from two photovoltaic modules located in different sites
with distinct climatic characteristics are used. Both datasets
were acquired through the project titled ”Data for Validating
Models for PV Module Performance”, coordinated by the
National Renewable Energy Laboratory (NREL) [31].

The main advantage of using NREL datasets for this
purpose is their public availability, which facilitates any
further validation. The two datasets obtained for the current
study, with their characteristics summarized in Table 2,
correspond to:

• A monocrystaline PV module installed at the Florida
Solar Energy Center, in Cocoa (Florida, USA), where
a subtropical climate is experienced; and

• A monocrystaline PV module installed at the University
of Oregon, in Eugene (Oregon, USA), which is charac-
terized by a marine west coast climate.

2) Preprocessing the Experimental Database
In addition to the processing conducted in the original
project [32], extra processing steps were necessary due to
the dataset’s characteristics.

The time interval between measurements in the dataset is
5 minutes, however, there are gaps in the measurements due
to equipment failures, maintenance activities, and potentially
shifted intervals. In order to accomplish the objectives of this
work, only data points with a difference of 5 minutes were
used to populate the processed dataset, ensuring a uniform
temporal resolution. Subsequently, the number of points in
the dataset for Cocoa and Eugene was reduced to 29.372 and
39.357, respectively.

It is important to disclose that the dataset used for the
development of this study does not account for failures that
may occur in real-time data acquisition. Thus, it should be
recognized that the evaluated algorithms were not assessed
regarding their performance in managing such real-time
failures.

3) Evaluation of the Natural Variability
With the aim of analyzing the efficiency of power smoothing
algorithms and, consequently, evaluating commonly used
metrics, it is necessary to compare the probability distri-
bution before and after the application of the smoothing
methods. With this in mind, using the data processed in Step
2, two diagrams are generated with the per unit variations of
power for a 5-minute interval between measurements. These

COCOA, FL

FIGURE 6. Histogram of active power variations normalized for probability
density for Cocoa.

EUGENE, OR

FIGURE 7. Histogram of active power variations normalized for probability
density for Eugene.

TABLE 2. Characteristics of the datasets.

Site name Prated [W]
Approx. location Period of Time between Number of PV module

coordinates measurement measurements data points technology

Cocoa 46.1 28.39 N, 80.75 W Jan 21, 2011 - Feb 24, 2012 5 min 35,841 Monocrystalline

Eugene 46.1 44.05 N, 123.07 W Dec 20, 2012 - Jan 19, 2014 5 min 43,174 Monocrystalline

P.S.: The datasets used in this article are publicly available.
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FIGURE 8. Example of daily generation profile before and after smoothing
using SMA method. Results for Cocoa on July 13th, 2011.
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FIGURE 9. Example of daily generation profile before and after smoothing
using RR method. Results for Cocoa on July 13th, 2011.

0

0.5

1 Natural
LPF

06:00 08:00 10:00 12:00 14:00 16:00 18:00
Jul 13, 2011   

-1

-0.5

0

0.5

1

FIGURE 10. Example of daily generation profile before and after
smoothing using LPF method. Results for Cocoa on July 13th, 2011.

diagrams depict the natural variability of Cocoa and Eugene
and can be observed in Fig. 6 and Fig. 7.

4) Implementation of the Power Smoothing Algorithms
The three power smoothing algorithms evaluated, defined in
(2), (4) and (7), were applied to generate power-smoothed
profiles from the experimental dataset. These algorithms
were implemented using scripts in Matlab and were param-
eterized to ensure that approximately 99% of the variations
after the smoothing remained below the predetermined limit
of 0.1 p.u., corresponding to a ramp rate of 0.02 p.u./min.
To achieve this:

• For the SMA algorithm, a window of n = 6 samples
(30 min) was used for Cocoa, while a window of n = 5
samples (25 min) was used for Eugene;
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FIGURE 11. Example of daily generation profile before and after smooth-
ing using SMA method. Results for Eugene on April 13th, 2013.
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FIGURE 12. Example of daily generation profile before and after smooth-
ing using RR method. Results for Eugene on April 13th, 2013.
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FIGURE 13. Example of daily generation profile before and after smooth-
ing using LPF method. Results for Eugene on April 13th, 2013.

• For the RR algorithm, a ramp rate of λ = 0.1 p.u. was
applied for both locations; and

• For the LPF algorithm, a filter with a time constant of
τ = 1050 seconds was used for Cocoa, while a time
constant of τ = 850 seconds was applied for Eugene.

5) Results After Power Smoothing
After applying the power smoothing algorithms, a day with
severe power variability events was chosen from the dataset
for each location for evaluation using visual analysis. Fig. 8,
Fig. 9 and Fig. 10 present a daily generation profile before
and after applying the evaluated power smoothing techniques
algorithms. On the other hand, Fig. 11, Fig. 12 and Fig. 13
present similar results for Eugene. These figures display two
graphs: the top one shows the evaluated generation profiles,
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while the bottom one presents the power variations before
and after the application of smoothing methods. Measure-
ment gaps were filled by substituting missing values with the
last recorded measurement to ensure a complete generation
profile. However, when considering numerical indicators,
only uninterrupted sequences were taken into account. To
facilitate visual analysis, the results presented in Figs. 8, 9,
and 10 were grouped into a single figure, as shown in Fig. 14.

To evaluate the probability percentiles of the smoothed
profiles, new histograms were generated for Cocoa while
considering the SMA (Fig. 15), the RR (Fig. 16) and the LPF
(Fig. 17) methods. The histograms for Eugene were omitted
due to page restriction; however, its numerical indexes were
computed for evaluation in Step 6.

6) Analysis of the Metrics Limitations
From the results obtained in Step 5, numerical indexes
before and after power smoothing were computed, and they
are summarized in Table 3. These indexes were calculated
considering the entire timeframe available for each location.
Based on these results, the limitations of standard deviation,
maximum variability and visual analysis are discussed in the
following subsections.

A. Standard Deviation Limitations
After evaluating the results presented in Table 3, it is possible
to observe some relevant findings. For the same design
requirements, the σ∆ values differ significantly among the
smoothing methods. This occurs even when the analysis is
restricted in various ways, as exemplified below:

• When restricting the analysis to the same location:
The results in Table 3 indicate that, for Cocoa, the
σ∆ values are 0.0229 p.u., 0.0379 p.u. and 0.0231, for
SMA, RR and LPF methods, respectively. For Eugene,
it is observed that σ∆ is equal to 0.0216 p.u. for the
SMA method, 0.0340 p.u. for the RR method and
0.0217 for the LPF method;

• When restricting the analysis to the same method:
As presented in Table 3, for Cocoa, the σ∆ value using
the SMA method is 0.0229 p.u., while for the same
method in Eugene results in 0.0216 p.u.. On the other
hand, when considering the RR method, the σ∆ value
is 0.0379 p.u. for Cocoa and 0.0340 p.u. for Eugene.
Finally, when considering the LPF method, the σ∆

value is 0.0231 for Cocoa and 0.0217 for Eugene.
In summary, when applying the power smoothing al-

gorithms, the σ∆ values were reduced by 77.8% (SMA),
66.2% (RR) and 77.6% (LPF) in Cocoa, and by 71.2%
(SMA), 54.7% (RR) and 71.1% (LPF) in Eugene. It is
evident that, although reductions were observed for both
locations after smoothing, the value of σ∆ is not only a
function of the methods applied but also of the natural
variability of the location. This highlights the limitations of
using σ as a metric for directly comparing results between
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FIGURE 14. Example of daily generation profile before and after
smoothing using SMA, RR and LPF methods. Results for Cocoa on July
13th, 2011.
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FIGURE 15. Histogram normalized for probability density before and after
smoothing using SMA method — Cocoa.
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FIGURE 16. Histogram normalized for probability density before and after
smoothing using RR method — Cocoa.
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FIGURE 17. Histogram normalized for probability density before and after
smoothing using LPF method — Cocoa.

different plants, in addition to its inability, as an indicator,
to determine compliance with a given design requirement.
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TABLE 3. Numerical indexes before and after power smoothing.

Location Scenario
σ∆ ∆Pmax σ∆,99.73% Reduction

[p.u.] [p.u.] [p.u.] of σ∆
1

Cocoa

Natural 0.1031 0.953 0.777 –

SMA 0.0229 0.148 0.125 77.8%

RR 0.0379 0.100 0.100 66.2%

LPF 0.0231 0.189 0.137 77.6%

Eugene

Natural 0.0750 0.983 0.736 –

SMA 0.0216 0.229 0.153 71.2%

RR 0.0340 0.100 0.100 54.7%

LPF 0.0217 0.252 0.150 71.1%

TABLE 4. Probability of occurrence of extreme events, P(|∆P | ≥ x).

Event
Gaussian Cocoa Eugene

(%) (%) (%)

|∆P | ≥ 3σ 0.27 2.53 1.56

|∆P | ≥ 5σ 5.73 · 10−5 1.53 0.93

|∆P | ≥ 7σ 2.56 · 10−10 0.51 0.61

TABLE 5. Ratio between the probability of occurrence of the event in the

empirical distribution and in an equivalent Gaussian distribution.

Event Cocoa/Gaussian Eugene/Gaussian

|∆P | ≥ 3σ 9.37 5.78

|∆P | ≥ 5σ 26,700 16,230

|∆P | ≥ 7σ 1,992,200,000 2,382,800,000

Alternatively, it is worth noting that σ∆ can be used to
evaluate, within the same location, which method requires
a larger battery or smaller operational reserves. For the
examples studied, the RR method was able to achieve the
same design requirements with a higher σ∆ compared to
the SMA and LPF methods. Consequently, this suggests that
while the RR method may require a smaller battery, it will
demand larger operational reserves.

The values of σ∆ and σ∆,99.73% demonstrate that the
distribution of power variations is not adequately represented
by a Gaussian distribution (for which σ∆,99.73% = 3σ), both
before and after smoothing. This finding has a significant
impact on the analysis of the probability of occurrence of
extreme events. For instance, for a 3σ∆ event, the natural
occurrence probability for Cocoa and Eugene is, respectively,
9.37 times and 5.78 times higher than that of the equivalent
event in a Gaussian distribution, as shown in Table 4 (in
absolute terms) and Table 5 (in relative terms).

Since empirical distributions concentrate relatively more
probability in their tails, the larger the deviation analyzed,
the greater the discrepancy, as can be seen in Table 4
and Table 5. It is thus understood that due to the lack
of knowledge regarding which probability distribution ad-
equately represents the natural behavior of the locality, it

is inadequate to evaluate the probability of a given set of
variation values based solely on the σ∆ value.

B. Maximum Variability Limitations
As discussed in Section IV, the utilization of ∆Pmax typ-
ically involves assessing the highest value over a specific
24-hour period. However, it’s important to determine the
extent to which the maximum values are influenced by
sample size and whether the chosen interval of one day holds
statistical significance. This concern was addressed through
a simulation experiment using experimental samples. This
simulation entailed the random selection of one value from
the power variations dataset 1,000 times, with the highest
value recorded at each iteration. In order to produce multiple
∆Pmax curves (and reduce bias), the simulation was then
repeated 5,000 times. The resulting curves for Cocoa and
Eugene (obtained by averaging the 5,000 runs) can be seen
in Fig. 18 and Fig. 19, respectively. The figures also include
σ∆ at each iteration for reference.

The results depicted in Fig. 18 and Fig. 19 reveal a
tendency for ∆Pmax to exhibit a slower convergence towards
its true value, i.e., the maximum variability observed across
the entire dataset, in contrast to σ∆. Considering that each
data point in the figure represents a sample, it becomes
possible to estimate the anticipated value of ∆Pmax for a
given measurement duration by examining the graph at a
corresponding iteration count. It’s important to highlight that
a day’s worth of measurements, covering a 12-hour genera-
tion period with samples taken every 5 minutes, consists of
around 144 samples. Fig. 18 and Fig. 19 demonstrate that
both σ∆ and ∆Pmax display significant variability across
the measured sequences over a one-day period. Notably,
∆Pmax’s values continue to exhibit considerable variability
even after 1000 iterations, which corresponds to approxi-
mately a week’s worth of data. This observation prompts the
question of how many samples are required for the values
of ∆Pmax to converge towards a more reliable measure of
the maximum variation present in the dataset.

The potential underestimation of ∆Pmax can have varying
implications depending on the algorithm employed. In the
case of SMA, underestimating ∆Pmax leads to the selection
of a smaller moving window than required, resulting in more
frequent occurrences of variations exceeding the permissible
limit. In the RR algorithm, the intensity of variations does
not impact the method’s parameterization. In this case, the
consequences of underestimating ∆Pmax manifest as an
underestimation of the necessary battery capacity for the
algorithm to operate effectively.

C. Visual Analysis Limitations
As previously noted in discussions regarding ∆Pmax values,
visual analysis usually focuses on a single day or a small
set of days. Despite the constraints associated with this
approach, it conveys important information about smoothing
methods. For example, it enables confirmation of the inherent
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FIGURE 18. Expected values at each iteration (σ∆ and ∆Pmax) — Cocoa.
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FIGURE 19. Expected values at each iteration (σ∆ and ∆Pmax) —
Eugene.

delay present in the SMA method. This delay can result in
the smoothed curve being either lower or higher than the
original curve, depending on the timing, which is a phe-
nomenon not observed with the RR method. It is important
to note, however, that relying solely on visual analysis of a
single day may not offer an accurate representation of the
entire dataset. Moreover, such an approach is susceptible
to subjective interpretations by the observer. For example,
readers may infer from a comparative examination of Fig.
8 and Fig. 9 (or Fig. 11 and Fig. 12) that the RR method
appears to outperform the SMA method, which is not cor-
rect, since both methods adequately fulfilled the operational
requirements set forth in the study. It could also be inferred
that the SMA method yields a higher σ∆ value than the RR
method. However, contrary to expectation, the reality is quite
the opposite, which may initially seem counterintuitive.

VI. QUALITATIVE COMPARISON AND GUIDELINES FOR
THE EVOLUTION OF METRICS
As mentioned in [14] and further discussed in this article, the
metrics currently used in the literature for comparing power
smoothing techniques have significant limitations. In order
to determine guidelines for the evolution of these metrics, a
set of criteria should be established. In this context, a metric
can be judged by its:

[I] Ability to rank smoothing methods according to
their impact on the need for operating reserves, even
if it does not provide relevant information for their
sizing;

[II] Ability to rank smoothing methods according to
their impact on the need for operating reserves,
while also providing relevant information for their
sizing;

[III] Possibility of being used to compare results from
different locations and sizes;

[IV] Degree of sensitivity to variations caused by the
number of samples.

An overview of the performance of the presented metrics
concerning these criteria is depicted in Table 6. The limita-
tion of metrics used for probability assessment, namely σ∆

and σ∆,99.73%, stem from their inability to adequately model
the variations of power, which results in poor comparison
capabilities. There is also a need for evolution in metrics
dedicated to assessing the severity of the variations, such
as ∆Pmax, due to its high dependence on the number of
samples.

Based on the limitations of the metrics and on the quali-
tative evaluation presented in Table 6, some suggestions and
guidelines for the evolution of these metrics are discussed
below:

• The evolution of metrics used for probability assessment
demands a better, more rigorous statistical analysis
of the phenomena of power variations. This could be
achieved through the analysis of the probability density
functions (PDFs) and the percentiles of the empirical
distribution;

• Still within the domain of probability, another path for
evolution can be seen in the characterization of power
variability through classical probability distributions,
which is a field of study on its own;

• Metrics aimed at evaluating the extent of variations also
require evolution. One solution is, through mathematical
tools such as Monte Carlo Simulations, determining the
number of samples needed for a statistically significant
value for ∆Pmax;

TABLE 6. Qualitative comparison of metrics aimed at analyzing the proba-

bility or the severity of power variations.

Metrics

Criteria
[I] [II] [III] [IV]

σ∆ ! ✗ ✗ low

σ∆,99.73% ! ✗ @@! low

∆Pmax ✗ ✗ ! high

! → Fully meets the evaluated criterion;

@@! → Partially meets the evaluated criterion;

✗ → Does not meet the evaluated criterion.
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• Alternatively, a second solution could focus on model-
ing in order to predict the value of ∆Pmax with fewer
samples.

Finally, one may argue that the phenomena observed in
this article may be restricted to the sampling interval of the
datasets used (5 min). Firstly, it is important to understand
that the sampling used is directly associated with the phe-
nomenon under study, and the interval chosen for this work
is suitable for, specifically, the study of power smoothing (in
order to understand the role of power smoothing in reducing
power reserve requirements see [2] and [33]).

Furthermore, it is indeed possible to argue that the results
obtained are generalizable to other sampling frequencies,
as related literature demonstrates that, within a reasonable
range, the sampling rate only affects the intensity of ramps,
but not the probability density functions that describe them.
In other words, it only affects the value of the parameters,
but not the underlying distribution [34] [35]. This means
that the obtained results would be valid, even for different
sampling periods.

To reassure the reader of the validity of this statement,
probability distributions were also obtained for intervals of
10 and 15 min (through downsampling), as can be seen in
Figure 20. This figure shows similarities between the three
probability distributions, as expected, even when obtaining
results with different sampling periods.

VII. CONCLUSION
In this paper, a brief description of ramp rate requirements
on various power grids and the general structure of a power
smoothing system based on BESS was presented. Further-
more, typical metrics used to examine power smoothing
algorithms were reviewed and compared based on experi-
mental results. The following conclusions can be drawn from
the results presented in this work:

1) As a metric, σ∆ is limited in its ability to estimate
the probability of variations and should not be used to
compare results from different locations;

2) The statistical significance of ∆Pmax is highly corre-
lated with the number of samples, making it unsuitable
for comparisons in small datasets;

-0.5 -0.25 0 0.25 0.5
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10-1 5 min

10 min
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FIGURE 20. Histogram of active power variations normalized for
probability density. Data from Cocoa with sampling times of 5, 10, and 15
min.

3) Visual analysis is susceptible to subjective interpreta-
tions from the observer due to its lack of a numerical
index, although it can offer insights into delaying ef-
fects; and

4) The variations in power cannot be properly character-
ized by a Gaussian probability distribution.

As a consequence, future works in this field of research
should consider the following facts:

1) There is a gap in the literature that could be addressed
by a more rigorous statistical analysis of power varia-
tions in power smoothing settings and their characteri-
zation through probability distributions; and

2) There is a need in the literature for alternative methods
to estimate ∆Pmax, either through anticipation or by
determining the number of samples needed for a statis-
tically significant value (which could be achieved with
Monte Carlo Simulations).

Collectively, these observations contribute to a deeper
understanding of the challenges related to power smoothing
algorithm evaluation and, more importantly, offer a roadmap
for the evolution of its metrics.
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[34] M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D. Heine-
mann, M. R. R. Tabar, J. Peinke, “Short term fluctuations of wind
and solar power systems”, New Journal of Physics, vol. 18, no. 6, p.
063027, jun 2016, doi:10.1088/1367-2630/18/6/063027.

[35] B. M. Mazumdar, M. Saquib, A. K. Das, “An empirical model for ramp
analysis of utility-scale solar PV power”, Solar Energy, vol. 107, pp.
44–49, 2014, doi:https://doi.org/10.1016/j.solener.2014.05.027.

BIOGRAPHIES

Ricardo M. de Souza was born in Recife, Brazil, in 1998. He received
his B.Sc. and M.Sc. degrees in electrical engineering from the Federal
University of Pernambuco, Recife, Brazil, in 2021 and 2024, respectively.
Currently, he is pursuing his Ph.D. degree at the same institution. His
research interests include power electronics, renewable energy systems,
energy storage systems, and applied probability.

Felipe J. P. Ferreira was born in Recife, Brazil, in 2000. He received the
B.Sc. degree in control and automation engineering from the Universidade
Federal de Pernambuco, Recife, Brazil, in 2024. Currently, he is pursuing his
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