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Abstract – Permanent Magnet Synchronous Motors
(PMSMs) are widely used mainly due to their high torque
per volume, high efficiency and low maintenance cost,
among other advantages. To perform vector control on
rotor speed and stator currents, the feedback of those
variables is necessary, which can be done directly or by
estimation. Measuring rotor position and speed directly
requires the use of a mechanical device attached to the
motor shaft, increasing the drive system volume and
its maintenance cost. To overcome such disadvantages,
many sensorless methods for speed estimation have been
proposed. Among those methods, various strategies based
on Artificial Neural Networks (ANNs) can be found. This
paper presents a back-electromotive force estimator based
on Fully Connected Cascade ANNs (FCC-ANNs). From
the estimator, rotor position and speed can be obtained.
Simulation and experimental results using automatically
generated C code functions for the FCC-ANNs using fixed
point notation provided rotor position estimation with
simple implementation.

Keywords – Artificial Neural Networks, Back-EMF
Estimation, Permanent Magnet Synchronous Motor,
Position Estimation.

NOMENCLATURE

vα,β α and β axis voltages.
va,b,c a, b and c phase voltages.
iα,β α and β axis currents.
ia,b,c a, b and c phase currents.
Eα,β α and β axis back-EMFs.
Ea,b,c a, b and c phase back-EMFs.
ωr Rotor electric angle frequency.
ωm Rotor mechanical angle frequency.
θr Rotor electric angle position.
L Phase inductance.
TL Load torque.
LM Phase mutual inductance.
Te Eletromagnetic torque.
R Phase resistance.
P Number of poles.
h Viscous friction coefficient.
J Total inertia.
ke,t Back-EMF and torque coefficients.

Manuscript received 17/04/2017; first revision 06/06/2017; accepted for
publication 19/08/2017, by recommendation of Editor Marcelo Cabral
Cavalcanti.

I. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) are
widely employed due to their advantageous features,
comparing with other types of motors. Among such features,
the reduced volume, low maintenance cost and high efficiency
can be mentioned. PMSMs are employed in systems where
high dynamic performance is required, such as robotics,
and for energy saving in home appliances, automotive
applications, among others, due to their high efficiency
[1]. To perform current and speed control, information
of rotor position and voltage and current measurements are
necessary. Such information can be obtained directly or
indirectly. The use of mechanical devices such as encoders or
resolvers enables the direct position feedback, but causes an
increase in the drive system volume, in addition to increasing
maintenance and manufacturing costs [2]. PMSMs are usually
divided into sinusoidal PMSM, in which the magnets are
distributed in a manner that the back-EMFs have sinusoidal
waveforms and non-sinusoidal PMSM, in which the back-
EMFs present trapezoidal waveforms [3].

Sensorless techniques aim to eliminate the need of
mechanical sensors, reducing the drive maintenance and
acquisition cost. For a sensorless method to be accepted in
industry, it has to fulfill some requirements. Among such
requirements, it must not increase the drive cost with the need
of more powerfull and expensive computational technology
[4].

In the indirect form, many methods can be used to estimate
the motor electric angle position and speed, such as model-
reference adaptive system (MRAS), sliding mode observer
(SMO) and estimators based on artificial neural networks
(ANNs) [2], [5], [6]. The main advantages in using ANNs are
the nonlinear input-output mapping achieved through training
and the generalization characteristic, allowing the ANN to
predict the motor dynamics in different conditions, using only
sample data.

Other types of nonlinear mapping involve lookup tables
and support vector regression. Such methods, however, have
a larger computational burden than feedforward ANNs [6].
Many applications of sensorless control to electric machinery
can be found, mainly for induction motors (IMs). For IM drive
systems, ANNs can be used to estimate rotor resistance and/or
rotor speed, rotor flux and obtaining the electrical position
based on such variables [7], [8]. Other strategies for IM drives
can be found, such as the use of a Luenberger observer and
MRAS strategy for Direct Torque Control (DTC) [9].

As for the use of ANNs as state estimators, several works
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can be found in literature. One example is the application
diagonal recurrent neural networks, used to compose the
observer [2]. In such work, two neural observers and a position
estimation correction block are used. One neural observer is
used to estimate stator current and the second observer is used
to estimate speed from measured stator currents and voltages.
The estimated rotor speed is then integrated for obtaining rotor
position.

A review on sensorless control techniques for non-
sinusoidal PMSM (the Brushless DC motor) drive can be
found in [5]. Among the presented estimation techniques,
the ANN approach is mentioned. The authors comment on
the ANN capability for approximating nonlinear functions
and cite some applications in motor drives, such as online
parameter (resistance and inductance) and torque estimation
in vector-controlled induction motor drives, which can be also
applied in PMSM drives.

Another ANN-based rotor position estimation, for a 8/6
solid rotor switched reluctance motor, is presented in [10].
Such type of motor is utilized mainly due to its robustness and
fault tolerance. ANNs are used to estimate rotor position from
phase flux linkage and phase current input data. The utilized
drive consists in four different operating regions. Thus, four
ANNs are utilized, one for each operating region. The authors
comment on an important characteristic of the ANN approach,
which is the automatic consideration of nonlinear effects, such
as mutual inductance and eddy currents effects, in the input-
output mapping.

In addition to acting as observers, ANNs have also been
used within the control algorithm for nonlinear control of
eletric machinery. In [11], an ANN was combined with a
fuzzy logic to develop a speed controller for a non-sinusoidal
PMSM. The obtained dynamic response was compared to
other controllers, such as the conventional proportional-
integral and other fuzzy strategies. The authors commented
that the proposed ANN-fuzzy controller outperformed the
others in terms of dynamic characteristics, as settling time and
overshooting. Another model-based ANN control approach
using ANN is presented in [12]. Two ANNs are used in the
control loop of a DC motor drive, in which one network is used
to estimate the drive dynamics and the other is used to generate
voltage input signals to the drive. Different applications
of ANNs in engineering include system identification, fault
detection and power electronics applications, among others
[13]–[15].

Although methods used in previous works present
satisfactory results, the objective of this paper is to present
a simpler ANN-based observer, providing the used training
data, simulation and experimental results, without using online
training. The main idea of the work presented here is to
estimate rotor position for then obtaining the speed estimation,
in a manner that the estimator has low computational cost and
be of easy implementation, exploiting the advantages of ANNs
mentioned in the literature to obtain a simple, fast and straight-
forward estimator. Without using integration of estimated
speed to obtain the electrical position, the position correction
block is eliminated. Based on a Luenberger observer, which
takes the voltages and currents in the αβ reference-frame
(stationary) to estimate the α and β back-electromotive

forces (back-EMFs), the use of an ANN for estimate each
back-EMF is proposed [16]. Using such estimations, it is
possible to obtain the estimated rotor angle position. After
training the networks, C code functions using fixed point
notation with integer bases are automatically generated and
the implementation consists in uploading such functions to
the microcontroller. Thus, the ANNs are coded as black-box
functions, which take as inputs the measured stator currents
and applied voltages and return the estimated back-EMFs.
Another objective of this work is to present the application of
Fully Connected Cascade (FCC) ANNs, which can achieve,
with fewer hidden neurons, the same performance of a typical
Multi Layer Perceptron (MLP) network, thus reducing the
computational burden.

The procedure for training the ANN is to apply several
speed reference steps, using an encoder to measure rotor
position, and organizing the acquired data to train the ANNs.
With the trained ANNs, the encoder can be replaced by the
ANN-based estimator. It is interesting for a sensorless method
that parameter tuning be as less manual as possible, reducing
instalation time [4]. The proposed estimation method in this
work has this advantage. Once the ANN architecture and
a minimal number of neurons is defined, the procedure for
training the ANN-based estimator for other different PMSM is
similar. As mentioned before, another advantage of an ANN
approach is the automatic treatment of the drive nonlinearities.
Thus, it is possible to highlight the main features of the
presented observer as:

• Use of FCC topology, reducing the number of
connections and computational burden if compared to
classical MLP networks [17];

• The PMSM parameters do not need to be identified
individually;

• The position estimation does not depend directly on
the signals amplitude, since it is obtained based on the
position of the estimated back-EMFs in αβ notation,
which is useful for dealing with load disturbances and
nonlinearities;

• C code functions using fixed point notation are
automatically generated after training, which simplifies
implementation on a low cost microcontroller (see Figure
27 in Appendix section for an example of automatically
generated code).

The use of an encoder in the training process is necessary
since the alternative would be to utilize another estimator to
generate the data for training, which would require an entire
tuning process. Additionally, in industry applications, the
encoder is also utilized for tuning other types of observer,
because it is necessary not only to identify model parameters
but also to validate the results from the observer with a reliable
sensor. Thus, the use of the encoder in training process of
the method described in the present paper does not represent
a drawback in comparison to other observer methods applied
industrially.

In Section II, the dynamic model for the PMSM is
presented. The design and implementation aspects of the
estimator are presented in Section III. Simulation results are
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shown in Section IV the experimental results in Section V.
Conclusions are discussed in Section VI.

II. SINUSOIDAL PMSM DYNAMICS

The electrical dynamics for a balanced three-phase wye-
connected sinusoidal PMSM can be writen by terms of phase
variables as [18]:

va = Ria +(L−Lm)
dia
dt

+Ea (1)

vb = Rib +(L−Lm)
dib
dt

+Eb (2)

vc = Ric +(L−Lm)
dic
dt

+Ec (3)

where Ea, Eb and Ec are the phase back-EMFs, given by:

Ea = keωr sin(θr) (4)

Eb = keωr sin(θr −120o) (5)

Ec = keωr sin(θr +120o) (6)

in which ωr is the rotor electrical speed and θr is the rotor
electrical position.

The conversion of a set of balanced three-phase variables
fa, fb and fc to two-phase variables fα and fβ is made using
Concordia’s Transform [19], to eliminate lineary dependent
variables:
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The opposite process is made through the inverse of the
transformation matrix utilized in (7).

Considering the αβ reference-frame and using (7), the
following equations can obtained to represent the electrical
dynamics of the PMSM:

vα = Riα +(L−Lm)
diα
dt

+Eα (8)

vβ = Riβ +(L−Lm)
diβ
dt

+Eβ . (9)

The produced torque can be written in terms of phase
currents and back-EMFs as:

Te =

(
kt
ke

)(
P
2

)
Eaia +Ebib +Ecic

ωr
. (10)

The mechanical dynamics are given by:

J
dωm

dt
= Te −TL −hωm (11)

where h is the friction coefficient of the mechanical coupling.
The relation between the electrical frequency and the

mechanical frequency is given by:

ωr =
P
2

ωm. (12)

III. BACK-EMF ESTIMATOR USING FCC ARTIFICIAL
NEURAL NETWORKS

In this section, the used estimator based on FCC-ANNs
is presented. Firstly, the estimation strategy is presented,
indicating the role of the ANNs in such strategy. Then,
the ANN architecture, topology and other parameters are
commented.

A. Estimation Strategy
A flowchart for the proposed position and speed estimator

is shown in Figure 1. The method consists in performing the
back-EMFs estimation in the αβ system to first obtain the
position and then speed. The observer is composed by a pair of
neural networks. Each network receives as inputs the voltages
and currents α and β , and estimates each one of the back-
EMFs. The estimated back-EMFs are calculated by an arc-
tangent algorithm. The angular frequency, namely speed, is
then estimated by the position variation rate.

The derivative terms in (8) and (9) are not used in the
training process. This was done because of the ANNs
capability of estimating the back-EMFs without such terms,
due to their memorization characteristics. Also, the derivative
terms insert a high noise level in practice.

As the electrical dynamics of the motor is fast, compared
to the mechanical dynamics, the information of lead/lag and
relative amplitude between voltage and current are sufficient
for the back-EMFs estimation. Information of phase and
amplitude difference of the voltage and current signals due
to inductances and resistances are implicitly learned by
the network during the training. This way, one of the
advantages of using neural networks is evident, which is the
parameter independency. In other words, the estimation can
be performed from experimental data without knowing the
motor parameters, such as phase equivalent resistance and
inductance.

B. ANNs for the Estimator
The utilized neural network architecture is the FCC-ANN,

trained with Neuron by Neuron (NBN) algorithm [17]. Each
hidden layer in a FCC-ANN has only one neuron. The
output of each neuron is connected to all of the forward
neurons. Such architecture was used for having better
performance with a lower number of neurons and synaptic
connections if compared to the traditional MLP, provided
that the training is adequate [20]. The reduced number of
neurons and connections contributes with the implementation
in a microcontroller device, given the limited memory and
processing performance of the device. The topology consist
in 4 data inputs plus 1 bias input, 4 hidden neurons and

Back-EMF
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iα
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vα

vβ
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Eα θe

Fig. 1. Estimator flowchart. Based on [16].
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diagonal recurrent neural networks, used to compose the
observer [2]. In such work, two neural observers and a position
estimation correction block are used. One neural observer is
used to estimate stator current and the second observer is used
to estimate speed from measured stator currents and voltages.
The estimated rotor speed is then integrated for obtaining rotor
position.

A review on sensorless control techniques for non-
sinusoidal PMSM (the Brushless DC motor) drive can be
found in [5]. Among the presented estimation techniques,
the ANN approach is mentioned. The authors comment on
the ANN capability for approximating nonlinear functions
and cite some applications in motor drives, such as online
parameter (resistance and inductance) and torque estimation
in vector-controlled induction motor drives, which can be also
applied in PMSM drives.

Another ANN-based rotor position estimation, for a 8/6
solid rotor switched reluctance motor, is presented in [10].
Such type of motor is utilized mainly due to its robustness and
fault tolerance. ANNs are used to estimate rotor position from
phase flux linkage and phase current input data. The utilized
drive consists in four different operating regions. Thus, four
ANNs are utilized, one for each operating region. The authors
comment on an important characteristic of the ANN approach,
which is the automatic consideration of nonlinear effects, such
as mutual inductance and eddy currents effects, in the input-
output mapping.

In addition to acting as observers, ANNs have also been
used within the control algorithm for nonlinear control of
eletric machinery. In [11], an ANN was combined with a
fuzzy logic to develop a speed controller for a non-sinusoidal
PMSM. The obtained dynamic response was compared to
other controllers, such as the conventional proportional-
integral and other fuzzy strategies. The authors commented
that the proposed ANN-fuzzy controller outperformed the
others in terms of dynamic characteristics, as settling time and
overshooting. Another model-based ANN control approach
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to estimate the drive dynamics and the other is used to generate
voltage input signals to the drive. Different applications
of ANNs in engineering include system identification, fault
detection and power electronics applications, among others
[13]–[15].

Although methods used in previous works present
satisfactory results, the objective of this paper is to present
a simpler ANN-based observer, providing the used training
data, simulation and experimental results, without using online
training. The main idea of the work presented here is to
estimate rotor position for then obtaining the speed estimation,
in a manner that the estimator has low computational cost and
be of easy implementation, exploiting the advantages of ANNs
mentioned in the literature to obtain a simple, fast and straight-
forward estimator. Without using integration of estimated
speed to obtain the electrical position, the position correction
block is eliminated. Based on a Luenberger observer, which
takes the voltages and currents in the αβ reference-frame
(stationary) to estimate the α and β back-electromotive

forces (back-EMFs), the use of an ANN for estimate each
back-EMF is proposed [16]. Using such estimations, it is
possible to obtain the estimated rotor angle position. After
training the networks, C code functions using fixed point
notation with integer bases are automatically generated and
the implementation consists in uploading such functions to
the microcontroller. Thus, the ANNs are coded as black-box
functions, which take as inputs the measured stator currents
and applied voltages and return the estimated back-EMFs.
Another objective of this work is to present the application of
Fully Connected Cascade (FCC) ANNs, which can achieve,
with fewer hidden neurons, the same performance of a typical
Multi Layer Perceptron (MLP) network, thus reducing the
computational burden.

The procedure for training the ANN is to apply several
speed reference steps, using an encoder to measure rotor
position, and organizing the acquired data to train the ANNs.
With the trained ANNs, the encoder can be replaced by the
ANN-based estimator. It is interesting for a sensorless method
that parameter tuning be as less manual as possible, reducing
instalation time [4]. The proposed estimation method in this
work has this advantage. Once the ANN architecture and
a minimal number of neurons is defined, the procedure for
training the ANN-based estimator for other different PMSM is
similar. As mentioned before, another advantage of an ANN
approach is the automatic treatment of the drive nonlinearities.
Thus, it is possible to highlight the main features of the
presented observer as:

• Use of FCC topology, reducing the number of
connections and computational burden if compared to
classical MLP networks [17];

• The PMSM parameters do not need to be identified
individually;

• The position estimation does not depend directly on
the signals amplitude, since it is obtained based on the
position of the estimated back-EMFs in αβ notation,
which is useful for dealing with load disturbances and
nonlinearities;

• C code functions using fixed point notation are
automatically generated after training, which simplifies
implementation on a low cost microcontroller (see Figure
27 in Appendix section for an example of automatically
generated code).

The use of an encoder in the training process is necessary
since the alternative would be to utilize another estimator to
generate the data for training, which would require an entire
tuning process. Additionally, in industry applications, the
encoder is also utilized for tuning other types of observer,
because it is necessary not only to identify model parameters
but also to validate the results from the observer with a reliable
sensor. Thus, the use of the encoder in training process of
the method described in the present paper does not represent
a drawback in comparison to other observer methods applied
industrially.

In Section II, the dynamic model for the PMSM is
presented. The design and implementation aspects of the
estimator are presented in Section III. Simulation results are
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one output neuron. The activation is the Symmetric Elliot’s
function, mainly for being of easy implementation in fixed
point notation, given by:

Elliot(x) =
2ax

1+ |ax|
. (13)

In the simulations with floating point, the Symmetric
Sigmoid function presented the best performance, but it takes
approximations or iterative calculations to be implemented in
the utilized hardware, which prevented its use. The parameter
a represents the function steepness and x is the activation
potential (inputs weighted sum with the synaptic weigths of
the neuron inputs). The implementation was made using
SuperNN library [21].

The training was performed using the measurements of the
α and β voltages and currents and rotor position and speed
using an encoder. Such data was acquired with the mechanical
speed varying from 30 RPM to 120 RPM. The back-EMFs
signals for the training are obtained through the product
of the sines and cosines of the position and the measured
speed, taking the back-EMF constant unitary. The back-EMF
coefficient value is not necessary once the position in given
by an arctangent function which takes the ratio between the
two back-EMFs. However, it is necessary to generate the
back-EMFs amplitude variating with the speed for the network
to be trained appropriately. The experimental training data
set and the simulation training data set were assembled with
approximately 3000 samples each.

Figure 2 shows the ANNs structure. Note that each of
the ANNs produces only one output, Eα or Eβ . Using
only one ANN with two outputs highly increased the number
of necessary neurons and connections to achieve a similar
performance than with two separated ANNs.
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vβ
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Out
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Out

Out

Eα , Eβ
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Out

Fig. 2. ANNs FCC topology.

IV. SIMULATION RESULTS

The motor parameters are given in Table I. It is a motor
utilized in washing machines, with a high number of poles, in
a manner that the operating mechanical rotation is relatively
low comparing to the drive frequency.

TABLE I
Motor Parameters

Parameter Value Unit
R 15.5 Ω
L 76 ×10−3 H

Lm 38×10−3 H
J 0.1566 Kg×m2

β 0.98×10−3 N × s/m
P 48 -
ke 0.117 V × s / rad
kt 0.117 N× m / A

The simulated data for training was obtained by controlling
the simulated motor dynamics over several speed reference
steps, with and without load. To consider the presence of noise
in currents and voltages, to verify the estimator robustness,
a random relative noise of 40% was added to the measured
voltages and currents.

A. Simulations without Load
The back-EMFs estimation for the motor rotating at

frequencies of 30 RPM, 50 RPM and 100 RPM are depicted
in Figures 3, 4 and 5, respectively. In all three cases it can be
observed that the α and β estimated back-EMFs have a 90o

phase shift, with amplitude variations caused by the inserted
noise in current and voltage. The amplitude and the frequency
of the signals increase proportionally with the speed.

From the estimated back-EMFs, rotor electrical position
can be obtained. Simulation results are shown in Figures 6,
7 and 8.
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Fig. 3. Simulation: back-EMF estimation at 30 RPM.
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Fig. 4. Simulation: back-EMF estimation at 50 RPM.

B. Simulations with Load
Simulations with the application of a 2 Nm load step, at

t = 2.5 s were performed to evaluate the estimator under load
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disturbance. Figures 9, 10 and 11 present the estimated and
simulated positions at mechanical speeds of 30 RPM, 50 RPM
and 100 RPM respectively. At the insertion of the load, it
is possible to observe oscillations in the estimated position,
which were stabilized with time. After stabilization, the
estimations with load presented coherent behaviors with the
tests without load. However, a higher noise can be observed at
30 RPM than in the test without load, since current increases
with load and a proportional noise was used in simulation.
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Fig. 9. Simulation: position estimation at 30 RPM with load.
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Fig. 10. Simulation: position estimation at 50 RPM with load.
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Fig. 11. Simulation: position estimation at 100 RPM with load.

V. EXPERIMENTAL RESULTS

Experimental results were obtained using a PMSM drive
with vector control. The ANNs were executed along with
the readings of an encoder, to verify the results. In this
section, training procedures are first presented, followed by
experimental results obtained in the execution phase.

A. Training
Several speed reference steps were applied to obtain a

data set with information of the motor behavior from 30
RPM up to 120 RPM. Due to hardware limitations in the
acquisition system, only four variables could be obtained
simultaneously. The chosen variables are: β voltage, β
current, electrical position and speed. The α variables are
then obtained by shifting the β variables by 90o. Figure 12
shows the assembled data set for voltages while Figure 13
shows the data set for currents. The value ranges are related
to internal microcontroller variables. The ANN topology is
the same as the mentioned in Section III, Subsection B, with 4

one output neuron. The activation is the Symmetric Elliot’s
function, mainly for being of easy implementation in fixed
point notation, given by:

Elliot(x) =
2ax

1+ |ax|
. (13)

In the simulations with floating point, the Symmetric
Sigmoid function presented the best performance, but it takes
approximations or iterative calculations to be implemented in
the utilized hardware, which prevented its use. The parameter
a represents the function steepness and x is the activation
potential (inputs weighted sum with the synaptic weigths of
the neuron inputs). The implementation was made using
SuperNN library [21].

The training was performed using the measurements of the
α and β voltages and currents and rotor position and speed
using an encoder. Such data was acquired with the mechanical
speed varying from 30 RPM to 120 RPM. The back-EMFs
signals for the training are obtained through the product
of the sines and cosines of the position and the measured
speed, taking the back-EMF constant unitary. The back-EMF
coefficient value is not necessary once the position in given
by an arctangent function which takes the ratio between the
two back-EMFs. However, it is necessary to generate the
back-EMFs amplitude variating with the speed for the network
to be trained appropriately. The experimental training data
set and the simulation training data set were assembled with
approximately 3000 samples each.

Figure 2 shows the ANNs structure. Note that each of
the ANNs produces only one output, Eα or Eβ . Using
only one ANN with two outputs highly increased the number
of necessary neurons and connections to achieve a similar
performance than with two separated ANNs.
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The motor parameters are given in Table I. It is a motor
utilized in washing machines, with a high number of poles, in
a manner that the operating mechanical rotation is relatively
low comparing to the drive frequency.
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The simulated data for training was obtained by controlling
the simulated motor dynamics over several speed reference
steps, with and without load. To consider the presence of noise
in currents and voltages, to verify the estimator robustness,
a random relative noise of 40% was added to the measured
voltages and currents.

A. Simulations without Load
The back-EMFs estimation for the motor rotating at

frequencies of 30 RPM, 50 RPM and 100 RPM are depicted
in Figures 3, 4 and 5, respectively. In all three cases it can be
observed that the α and β estimated back-EMFs have a 90o

phase shift, with amplitude variations caused by the inserted
noise in current and voltage. The amplitude and the frequency
of the signals increase proportionally with the speed.

From the estimated back-EMFs, rotor electrical position
can be obtained. Simulation results are shown in Figures 6,
7 and 8.
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Fig. 4. Simulation: back-EMF estimation at 50 RPM.

B. Simulations with Load
Simulations with the application of a 2 Nm load step, at

t = 2.5 s were performed to evaluate the estimator under load
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hidden neurons. Training was performed through 300 epochs
with NBN algorithm.
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Such data sets were used as inputs for the training of both
neural networks. The desired output data sets are Eα , for
the first network, and Eβ , for the second network. Using the
acquired position and speed, the back-EMFs were obtained as
described in Section III and are shown in Figure 14.
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Fig. 14. Experimental α and β back-EMF data for training.

B. Execution
The proposed estimation system was tested experimentally

in a set composed by a PMSM with parameters given by
Table I, a STM32F103C8T6 microcontroller and an 220V,
200W inverter. The ANNs were trained with floating point
variables and exported to C codes with fixed point variables
using multiplications by integer bases. Next, tests without load
are firstly presented, followed by tests with the application of
load torque steps. The utilized experimental setup is shown in
Figure 15.

C. Tests without Load

Fig. 15. Experimental setup: (1) PMSM, (2) control, signal
acquisition and drive for PMSM, (3) load drive, (4) load.

Figures 16, 17 and 18 show the back-EMF estimations
for the motor rotating at 30 RPM, 50 RPM and 100 RPM,
respectively. It can be noticed that both the distortion level in
the waves amplitudes and harmonic distortions reduce as the
rotor speed increases. This is due to the relative noise level in
the currents which is reduced as the speed increases.
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Fig. 16. Back-EMF estimation at 30 RPM.
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Position estimations from the back-EMFs shown in Figures
16, 17 and 18 are depicted in Figures 19, 20 and 21,
respectively. It is possible to observe that for a rotation of
100 RPM, the estimation performance is better than in lower
speeds, due to the networks inputs noise level.
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Fig. 19. Position estimation at 30 RPM.
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Figure 22 shows the error per sample. Table II shows
the absolute mean and the squared mean estimation errors.
For both cases, the estimation error is lower at 100 RPM.
Considering the mean squared error, the estimator performed
better at 50 RPM than at 30 RPM. Considering the absolute
squared error, however, the estimator performed better at
30 RPM than at 50 RPM. Roughly speaking, this means that
at 50 RPM, the estimation error has smaller peak values than
at 30 RPM, which can be interpreted as a more behaved
estimation, but with a larger dc error, which can be associated
with the training process.

TABLE II
Absolute and Squared Mean Position Estimation Errors

Error/Speed 30 RPM 50 RPM 100 RPM
Squared 112.37 92.47 38.22
Absolute 7.95 8.78 4.96
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From the estimated position, rotor speed is estimated. A
test at speeds of 50 RPM, 100 RPM and 30 RPM is shown in
Figure 23. It can be observed that the real speed converges to
the reference speeds. The estimated speed, however, presents
a high noise level due to derivative calculations, with the
occurrence of an offset around 30 RPM.
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Fig. 23. Rotor speed estimation during reference steps.

D. Tests with Load
The load for the following tests were generated by inserting

a DC current of approximately 1.5 A in a three-phase
induction machine through two phases, with the third phase
blocked, which generates a load torque of approximately
2 Nm. The load was inserted in each test by applying a step
from a voltage source, after the PMSM reached the reference
speed.

Figure 24 presents the measured and estimated positions at
a reference speed of 30 RPM. The load torque was inserted
at time t = 2.65 s, approximately. In the position curves it
can be observed that the motor speed was decreased during
the transient caused by the load step, and returns to the initial
speed. The estimated position remained close to the measured
position even during the load insertion. A similar behavior
can be observed in Figure 25, with the application of load at
t = 1.82 s for a 50 RPM reference speed, and Figure 26,
with the application of load at t = 2.04 s for a 100 RPM
reference speed. Comparing to the simulation results, it is
possible to observe that in the experimental results smaller
oscillations were observed. This can be attributed to the load
steps being filtered by the electric current transient response of
the induction machine, since a step voltage is applied.

hidden neurons. Training was performed through 300 epochs
with NBN algorithm.
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Such data sets were used as inputs for the training of both
neural networks. The desired output data sets are Eα , for
the first network, and Eβ , for the second network. Using the
acquired position and speed, the back-EMFs were obtained as
described in Section III and are shown in Figure 14.

-60

-40

-20

0

20

40

60

80

0 500 1000 1500 2000 2500 3000

Eα
,β

Sample
 

E
α,

β

80
60
40

20

0

-20

-40
-60

0 500 1000 1500 2000 2500 3000

Sample
 

Eβ
Eα

Fig. 14. Experimental α and β back-EMF data for training.

B. Execution
The proposed estimation system was tested experimentally

in a set composed by a PMSM with parameters given by
Table I, a STM32F103C8T6 microcontroller and an 220V,
200W inverter. The ANNs were trained with floating point
variables and exported to C codes with fixed point variables
using multiplications by integer bases. Next, tests without load
are firstly presented, followed by tests with the application of
load torque steps. The utilized experimental setup is shown in
Figure 15.

C. Tests without Load

Fig. 15. Experimental setup: (1) PMSM, (2) control, signal
acquisition and drive for PMSM, (3) load drive, (4) load.

Figures 16, 17 and 18 show the back-EMF estimations
for the motor rotating at 30 RPM, 50 RPM and 100 RPM,
respectively. It can be noticed that both the distortion level in
the waves amplitudes and harmonic distortions reduce as the
rotor speed increases. This is due to the relative noise level in
the currents which is reduced as the speed increases.
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VI. CONCLUSION

An approach for speed and position estimation from
back-EMF estimations using FCC-ANNs was presented.
Simulation and experimental results are indicatives of the
effectiveness of such approach.

It was verified that the training of the networks was simple,
performed from a data set taken with varied speed. The
networks were training using an open source library and
automatically exported to C codes in the form of functions.
The obtained networks are executed in a microcontroller
device with suitable computational cost, with satisfactory
performance when executed with fixed point variables.
Concerning to the quality of the estimated information, there
was no clear gain comparing to traditional methods found
in literature, such as MRAS and SMO, once the focus
of the proposed approach is to simplify the design and
implementation of the estimator.

The use of the position estimator has several advantages
over the use of a mechanical sensor, such as an encoder.

Among such advantages, the lack of construction and
maintenance cost, increase of physical robustness of the drive
system and reliability can be mentioned. The mentioned
advantages are specifically important in PMSM applications
such as in white good appliances, where the reduced volume
is a requirement, and in hermetic compressors, in which
the motor is drowned in oil, which could compromise
the functionality of the mechanical sensor. Simulation
and experimental tests could be performed with the use
of automatically generated C code functions, making it
practical to embed the trained FCC-ANNs in a fixed point
microcontroller. Such approach shows up as an option for
position estimation in low cost PMSM drive systems, such
as for washing machines applications, with easy tuning and
implementation.
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APPENDIX

Figure 27 presents excerpts from the generated C code for
Eα . Firstly, the necessary variables are declared as 32 bit
integers and the inputs are scaled. The propagation starts with
applying the weighted inputs to all neurons. From the second
layer on, the activation function value is calculated and the
neuron outputs are propagated forward. The numeric values
are the synaptic weights generated from training.

void neural_run_ealpha(int32_t V_Alpha, int32_t V_Beta, ...){
 int 32_t mem[10], from_min[5], from_max[5], ...
 from_min[0] = -362250; from_max[0] = 368250;
 from_min[1] = -362250; from_max[1] = 368250;
 ...
 mem[0] = ((to_max[0] - to_min[0])*(V_Alpha*base ...
 mem[1] = ((to_max[1] - to_min[1])*(V_Beta*base ...
 ...
 mem[5] += (-26*mem[0]) /base; //layer 1
 mem[6] += (459*mem[0]) /base; //layer 1
 ...
 mem[5] = elliot_sym2(mem[5], 300); //layer 2
 mem[6] += (-3798 * mem[5]) /base; //layer 2
 mem[7] += (-8219 * mem[5]) /base; //layer 2
 ...
 e_alpha_temp = (((from_max[4] - from_min[4])*(mem[9] - ...
 *e_alpha = (int16_t) e_alpha_temp; }

Fig. 27. Excerpts from generated code. The “...” symbol stands for
omitted code.
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VI. CONCLUSION

An approach for speed and position estimation from
back-EMF estimations using FCC-ANNs was presented.
Simulation and experimental results are indicatives of the
effectiveness of such approach.

It was verified that the training of the networks was simple,
performed from a data set taken with varied speed. The
networks were training using an open source library and
automatically exported to C codes in the form of functions.
The obtained networks are executed in a microcontroller
device with suitable computational cost, with satisfactory
performance when executed with fixed point variables.
Concerning to the quality of the estimated information, there
was no clear gain comparing to traditional methods found
in literature, such as MRAS and SMO, once the focus
of the proposed approach is to simplify the design and
implementation of the estimator.

The use of the position estimator has several advantages
over the use of a mechanical sensor, such as an encoder.

Among such advantages, the lack of construction and
maintenance cost, increase of physical robustness of the drive
system and reliability can be mentioned. The mentioned
advantages are specifically important in PMSM applications
such as in white good appliances, where the reduced volume
is a requirement, and in hermetic compressors, in which
the motor is drowned in oil, which could compromise
the functionality of the mechanical sensor. Simulation
and experimental tests could be performed with the use
of automatically generated C code functions, making it
practical to embed the trained FCC-ANNs in a fixed point
microcontroller. Such approach shows up as an option for
position estimation in low cost PMSM drive systems, such
as for washing machines applications, with easy tuning and
implementation.
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APPENDIX

Figure 27 presents excerpts from the generated C code for
Eα . Firstly, the necessary variables are declared as 32 bit
integers and the inputs are scaled. The propagation starts with
applying the weighted inputs to all neurons. From the second
layer on, the activation function value is calculated and the
neuron outputs are propagated forward. The numeric values
are the synaptic weights generated from training.

void neural_run_ealpha(int32_t V_Alpha, int32_t V_Beta, ...){
 int 32_t mem[10], from_min[5], from_max[5], ...
 from_min[0] = -362250; from_max[0] = 368250;
 from_min[1] = -362250; from_max[1] = 368250;
 ...
 mem[0] = ((to_max[0] - to_min[0])*(V_Alpha*base ...
 mem[1] = ((to_max[1] - to_min[1])*(V_Beta*base ...
 ...
 mem[5] += (-26*mem[0]) /base; //layer 1
 mem[6] += (459*mem[0]) /base; //layer 1
 ...
 mem[5] = elliot_sym2(mem[5], 300); //layer 2
 mem[6] += (-3798 * mem[5]) /base; //layer 2
 mem[7] += (-8219 * mem[5]) /base; //layer 2
 ...
 e_alpha_temp = (((from_max[4] - from_min[4])*(mem[9] - ...
 *e_alpha = (int16_t) e_alpha_temp; }

Fig. 27. Excerpts from generated code. The “...” symbol stands for
omitted code.
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