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ABSTRACT The expansion of great-scale photovoltaic (PV) power plants indicates the need for an
accurate lifetime assessment of inverters to maintain energy supply availability. In this context, the
study contributes in two ways. First, we use machine-learning (ML) models for junction temperature
prediction. Second, we perform reliability assessments using a 10-year mission profile in three Brazilian
cities. The thermal loadings are obtained through a look-up table approach. Although the ML models
exhibit different performances in regression, other factors must be considered, such as easy-to-apply,
interpretability, and generalization capability. The reliability assessment is typically based on an annual
mission profile, assuming damage repeats until failure. However, only the historical series can confirm
whether this choice was acceptable, pessimistic, or optimistic. For instance, in Campos do Jordão-SP, if
the chosen mission profile is 2014, the expected failure of 10% of inverter samples occurs three years
earlier than suggested by the historical series. Regardless of the methodology used to estimate thermal
loading or accumulated damage, the mission profile significantly influences photovoltaic inverter reliability,
indicating that if more data is available, the chosen mission profile should align with the historical series.

KEYWORDS Junction temperature prediction, lifetime assessment, machine-learning models, mission
profile, photovoltaic inverter reliability.

I. INTRODUCTION
The generation of energy from renewable resources has
increased significantly in recent years. The energy transition
boosts the demand for more efficient and reliable power
converters, challenging the state-of-the-art. Reliability is
associated with the expected lifespan of a component, con-
verter, or system. In other words, reliability is defined as the
probability the device will continue to perform its functions
without failure under specified operational or environmental
conditions for a certain period [1]. Therefore, meeting this
constraint becomes more difficult as the functions performed
by the converter and operational conditions are even more
challenging.

The expected lifespan of a photovoltaic (PV) system is
commonly estimated at around 25 years. Manufacturers use
such estimation as a guideline to guarantee that at least
80% of the initial generation from the PV modules will
be maintained. Regarding the degradation of the modules,
it is observed a generation drop between 2-3% after twelve
months and approximately 0.5% in the following years [2].
On the other hand, manufacturers of photovoltaic inverters
typically provide a warranty period of 5 to 10 years, indi-

cating that failures due to aging and wear of the inverter
components are likely to occur after this period [3].

The mission profile should be the basis for lifetime
assessment. In the case of PV generation, irradiance and
ambient temperature affect the energy produced and, con-
sequently, the thermal stress to which the inner components
are subjected [4].

Capacitors and power semiconductor switches are the
components that fail most often inside a PV inverter [5].
Their lifespan is significantly affected by thermal loading,
i.e., junction temperature Tj and hotspot temperature Th [3],
[6], [7]. Effective thermal management aims to maintain
temperatures below their maximum limit while, even more
importantly, controlling thermal loading to ensure the ex-
pected lifetime [8], [9].

The current work is an extension of article [10], where
the authors previously utilized two machine-learning models
to characterize the thermal loading of power switches. The
target variables were the average junction temperature Tjm

and its fluctuation ∆Tj .
This extension incorporated two additional models: an

MLP (multilayer perceptron) and the XGBoost algorithm.
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The latter is a cutting-edge technique and a leading choice in
Kaggle competitions and real-world applications [11], [12].

Typically, reliability assessment begins with a represen-
tative annual mission profile [13], [14]. The damage accu-
mulated over this period is calculated, and assuming the
same wear and tear will be observed in subsequent years, the
expected lifespan is determined. For example, if an electronic
component experiences 10% damage during one year, its
expected lifespan is ten years, meaning its accumulated
damage has reached 100%. The previous premise simplifies
the reliability assessment. However, it is impossible to deter-
mine if the year was an accurate choice with an acceptable
margin of error without examining the historical data.

In energy generation, a common approach to dealing with
lack of data is using a Typical Meteorological Year (TMY).
Numerous studies aim to define the TMY, with data sources
and methods varying from country to country, emphasizing
the need for compatible and standardized databases. For
instance, the work in [15] presents a TMY dataset that
can be useful for reliability studies lacking meteorological
data. However, the TMYs provided have a granularity of
1 hour between two samples. As presented in [16], [17],
an increased sampling time provides an optimistic lifetime
evaluation for power devices.

In this context, this paper also addresses the question:
“How does PV inverter reliability vary when using a one-
year profile, a 10-year mission profile, or a TMY?”. To
answer it, we evaluate the reliability of a PV inverter in
three Brazilian cities. Fig. 1 illustrates the typical ambient
temperature profile in Campos do Jordão-SP, Campinas-SP,
and Teresina-PI.

The new achievements of this paper in relation to [10] can
be summarized as follows:

• A more realistic system in closed-loop operation was
used instead of a toy model (simplistic representation in
open-loop with many details removed). However, it was
necessary to use a look-up table (LUT) based approach.

• Ten years of data were split in training/test for three
cities instead of just one year for one city. Moreover,
two models were included.

• Reliability assessment was executed to evaluate the
impact of choosing different representative years from
2014 to 2023.

The Introduction sets the stage for discussing thermal
loading prediction and mission profile influence on the reli-
ability assessment. It also presents the study’s new achieve-
ments. Section II details the translation of the mission profile
and Section III presents the models trained to estimate
junction temperature. Section IV outlines the reliability
assessment. Section V establishes the connection between
both thermal loading prediction and reliability assessment.
Section VI presents the results and discussions. Finally, in
the Conclusion, the pros and cons of each model and the
mission profile’s influence are reinforced.

(a) Campos do Jordão-SP.

(b) Campinas-SP.

(c) Teresina-PI.

FIGURE 1. The average hourly ambient temperature (Tamb) [18]. Very
cold: 0 °C < Tamb < 7.2 °C, cold: 7.2 °C < Tamb < 12.8 °C, cool:
12.8 °C < Tamb < 18.3 °C, comfortable: 18.3 °C < Tamb < 23.9 °C,
warm: 23.9 °C < Tamb < 29.4 °C, hot: 29.4 °C < Tamb < 35.0 °C and
sweltering: Tamb > 35.0 °C.

II. TRANSLATING MISSION PROFILE INTO THERMAL
LOADING
The reliability assessment of components in a PV system
demands processing irradiance and temperature to quantify
damage over time. This is a time-consuming task that
requires optimizing computational resources [4].

An efficient approach is translating a yearly mission pro-
file into thermal loading using look-up tables (LUTs) [13],
which output conduction and switching losses that serve as
inputs to thermal models. This method bypasses the simula-
tion steps required by converter controllers, streamlining the
analysis process. Besides, the LUTs should include a third
input - the junction temperature - as losses are related to the
silicon (Si) die temperature. When generating the LUTs, the
junction temperature must be fixed in at least two points. In
PSIM software, this can be achieved by removing the thermal
characteristics and connecting a constant voltage source with
the desired junction temperature.

The LUTs will have discrete points requiring interpolation
(or extrapolation) to cover the entire mission profile. In this
work, tables are generated using the following arrays of
irradiance (GHI), ambient temperature (Tamb) and junction
temperature (Tjm):

GHI = (0, 200, 400, 600, 800, 1000) [W/m²]

Tamb = (−10, 10, 30, 50) [ºC]

Tjm = (25, 125) [ºC]

which results in a three-dimensional LUT with 48 points.
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The system illustrated in Fig. 2 was used in the LUTs con-
struction. The converter’s main parameters and the IGBT’s
thermal characteristics are presented in Table 1 and 2,
respectively.

FIGURE 2. Photovoltaic system: PV array, DC link, IGBT bridge,
filters, grid connection, and control.

TABLE 1. PV converter main parameters.

Parameter Symbol Value
Nominal power Pn 40 kW

Switching frequency fsw 15 kHz
PV array maximum power Pmpp 38 kW

PV open circuit voltage Voc 850 V
DC-link voltage reference Vdc 680 V
Line-to-line grid voltage Vg,l−l 220 Vrms

Grid frequency fg 60 Hz
DC-link capacitance Cdc 2.35 mF
AC Filter inductance Lf 4 mH

TABLE 2. Electrothermal description for the power module (part
number: IFS150B12N3E-B31).

Parameter Symbol Value
Collector-emitter voltage Vce 1200 V
Nominal collector current Ic,nom 150 A

Operating junction temperature Tj,op 150°C
Maximum junction temperature Tj,max 175°C

Total power dissipation Ptot 750 W
IGBT J-C thermal resistance* Rqth j−c 0.2 K/W
IGBT C-H thermal resistance* Rqth c−h 0.083 K/W
Diode J-C thermal resistance* Rdth j−c 0.375 K/W
Diode C-H thermal resistance* Rdth c−h 0.155 K/W

*Per IGBT and diode

The total power PTot dissipated by a power switch, pre-
sented in (1), is obtained by summing the conduction losses
Pcond and switching losses Psw given in LUTs.

PTot = Pcond + Psw (1)

Conduction losses occur when the device is in full con-
duction. The current through the device ic(t) is equal to the
current required for the circuit, and the voltage across its

terminals vce(t) is the drop due to the device itself. These
losses are related to the duty cycle t0/T . On the other hand,
switching losses occur during the transition from the off-state
to the on-state and vice versa. The energy dissipated Eon+off
needs to be multiplied by the switching frequency fsw.

The IGBT can fail due to thermomechanical breakdown,
such as bond wire lift-off or solder cracking [19]. The
thermal representation of the IGBT layers is shown in Fig.
3.

FIGURE 3. Internal structure of a semiconductor device with thermal
representation [20].

Equation (2) shows how to estimate the junction temper-
ature Tj in an IGBT whose thermal resistance from the
junction to the case and from the case to the heat sink is
given by Rqth j−c and Rqth c−h, respectively. The heat sink
temperature is Th, and the average total dissipated power is
equal to PTot.

Tj = PTot · (Rqth j−c +Rqth c−h) + Th (2)

The estimation of junction temperature fluctuation is done
using thermal impedance, which also considers the thermal
capacitance. The thermal impedance is obtained from nor-
malized curves found in datasheets of power semiconductor
components. To represent the heat transfer from the heat
sink to the ambient, we adopted Rth h−a = 0.06 K/W,
corresponding to a typical thermal resistance value with
forced air cooling.

Moreover, the thermal circuit was simplified to accelerate
translating the yearly mission profile into thermal loading.
Although using only thermal resistances allows for a fast
translation, it does not capture thermal cycling ∆Tj , a critical
variable in lifetime models. To address this, we employed the
two-pulse analytical method to estimate short-term thermal
cycling presented in [21] and better discussed in Section IV.
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III. MACHINE-LEARNING MODELS APPLIED ON MISSION
PROFILE AND THERMAL LOADING
A. Linear regressor
A linear regressor is a machine-learning model that predicts
a continuous target based on one or more input features.
The concept behind it is to find the best-fitting straight
line (or hyperplane in higher dimensions) that describes the
relationship between features and the target variable [22].

For a multiple linear regression (multiple input features),
the model can be represented as

ŷ = w0 + w1 · x1 + w2 · x2 + ...+ wn · xn (3)

where ŷ is the predicted target variable, x1, x2, ..., xn are the
input features, w1, w2, ..., wn are the corresponding weights
for each feature, and w0 is the bias (y-intercept).

The goal during the training phase is to find the optimal
values for the weights w1, w2, ..., wn that minimize the
difference between the predicted target values ŷ and the
actual target values y.

This difference is measured using a cost function, an
example is the Mean Squared Error (MSE)

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (4)

where m is the number of training examples, yi is the i-th
actual target value sample, and ŷi is the i-th predicted target
value sample [22].

Equations (5) and (6) show the optimal coefficients and
intercepts obtained for two linear regressor models using
Teresina’s mission profile, global horizontal irradiance (GHI)
and ambient temperature (Tamb), to predict Tjm and ∆Tj

Tjm = 4.329 + 0.0592 · GHI + 0.8276 · Tamb (5)

∆Tj = 0.7807 + 0.0098 · GHI − 0.0315 · Tamb (6)

Four more linear regressor models were trained using the
mission profiles of the other two cities. To predict Tjm, the
intercept and coefficients for GHI and Tamb are -0.1367,
0.0589, and 0.9931 for Campos do Jordão and 0.3128,
0.0591, 0.9714 for Campinas.

As well, to predict ∆Tj , the intercept and coefficients for
GHI and Tamb are 0.0644, 0.0098, and -0.0062 for Campos
do Jordão and -0.0114, 0.0097, and -0.0027 for Campinas.
Although this method is easy to use, its main limitation is
assuming that the relationship between the inputs and the
target variable is linear.

B. Decision tree and XGBoost
A decision tree (DT) is a machine-learning model for clas-
sification or regression tasks. It is a tree-like structure where
each internal node represents a decision based on an input
feature, each brand represents the outcome of that decision
leading to the next node, and each leaf node represents a
predicted outcome.

The goal is to create a tree that best splits the data into
homogeneous subsets. This process involves selecting the

best feature to split the data at each node and determining
the best-split point (or threshold). Two common stopping
criteria are when the tree reaches maximum depth or the
minimum number of samples to split a node. An example
of a decision tree used to predict junction temperature is
provided in [10].

XGBoost is an open-source implementation designed to
enhance the performance and speed of gradient-boosting
algorithms. It sequentially builds an ensemble of weak learn-
ers, typically decision trees, to correct errors and improve
prediction accuracy [12].

In Section VI, we will present that since the problem has
only two features, both the decision tree and XGBoost (an
ensemble model of DT) exhibited similar performance. The
latter could be better utilized in a more complex problem,
such as using more features or expanding the scope to predict
accumulated damage, as done in [23] with two cascaded
neural networks.

C. Multilayer Perceptron (MLP)
The multilayer perceptron (MLP) is an artificial neural
network for classification and regression tasks. It consists
of multiple layers of neurons, each connected to the neurons
in the subsequent layer. The MLP contains an input layer
that receives the input features, one or more hidden layers
that process inputs, and an output layer that produces the
final prediction [24].

Each layer in the MLP (except for the input layer) applies
a transformation to its input, typically involving a weighted
sum followed by a non-linear activation function. Passing
input data through the network to obtain the output is called
forward propagation.

The forward propagation step for the hidden layers can be
expressed as:

z(l) = W(l)a(l−1) + b(l) (7)

where z(l) as the weighted sum for layer l, W(l) as the
weight matrix for layer l, a(l−1) is the output for layer l−1,
b(l) as the bias vector for layer l.

The activation function ϕ is then applied to the weighted
sum:

a(l) = ϕ(z(l)) (8)

where a(l) is the output for layer l. ReLU, Sigmoid, and Tanh
are examples of activation functions that can be applied to
introduce non-linearity [24].

Combining these steps for a hidden layer:

a(l) = ϕ(W(l)a(l−1) + b(l)) (9)

During the training phase, the goal is to find the optimal
weight matrix W and bias vector b that minimize the error
between the prediction ŷ and the actual target y. This goal is
achieved through backpropagation combined with Gradient
Descent.
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The entire process is repeated: forward propagation, com-
pute the loss function (4), use backpropagation, and up-
date weight to reduce MSE over some epochs or until
convergence is reached. MLPs are widely used in junction
temperature prediction, such as in [23], [25], [26].

IV. RELIABILITY ASSESSMENT IN POWER
ELECTRONICS
The mission profiles used in this study were acquired from
the Solcast database [27] and consist of 105,120 and 105,408
samples (a 5-minute granularity) in a regular and leap year,
respectively. Each sample includes values of irradiance in
W/m² and ambient temperature in ºC.

After constructing the lookup tables, the mission profile
can be used to convert power losses into thermal loading.
The total average power losses Pavg (conduction + switching
losses) can be applied to a thermal network (e.g., Cauer or
Foster) [28].

In the Cauer network, each layer has a physical meaning,
providing an accurate initial temperature estimate. However,
it converges slowly, resulting in longer simulation times to
reach the steady state. Contrarily, the Foster network lacks
physical representation; its parameters are derived from the
thermal response to a power pulse (e.g., T3STER from
Siemens [29]). Despite an error in the initial estimate, the
steady-state value is reached more quickly.

Given these limitations, two approaches are viable. The
first uses a hybrid thermal network, leveraging both Foster
and Cauer networks [30], offering a suitable junction tem-
perature description for initial and steady-state values. The
second option is a network comprising thermal resistances,
yielding an average junction temperature Tjm profile. The
junction temperature fluctuation ∆Tj can be calculated from
(10), as detailed in [21].

∆Tj = Pavg · Zth

(
1

8f0

)
+ 2Pavg · Zth

(
1

4f0

)
(10)

where Pavg denotes the total average power losses, Zth

represents thermal impedance, and f0 is the grid frequency.
The second option is the adopted choice in this work.

The reliability assessment of a power switch comprises
other steps such as the cycle counting algorithm, the lifetime
estimation model, and Miner’s rule. The whole process is
presented in Fig. 4.

The thermal loading is composed of two components.
The first part is called short-term or fundamental frequency
loading. It is formed by junction temperature mean value
Tjm obtained by the thermal model formed by thermal
resistances, ∆Tj obtained via (10), heating time defined as
t0 = 1/(2f0), and the number of cycles nc between two
samples equal to 60× 60× f0 ×m, where m is the number
of minutes between two samples. The second part is called
long-duration or low-frequency loading and carries directly
only the information of Tjm and the sampling time Ts.

As presented in Fig. 4, short-duration loading can be
directly applied to lifetime models during the calculation
of accumulated damage since all necessary information is
already described. On the other hand, long-duration cycling
is not defined, requiring a cycle counting step.

A. Lifetime models and cycle counting algorithm
Several models are available in the literature to estimate
the lifetime of power devices subjected to thermal cycling
[31]. Regardless of the model adopted, the process can be
summarized in two steps.

First, thermal loading cycles during device operation are
counted and categorized by intensity and duration, typically
using the Rainflow algorithm. We utilized MATLAB’s na-
tive function rainflow() to analyze the long-term thermal
loading in Fig. 4. However, the original rainflow() has
some limitations, particularly in calculating the heating time
(ton) used in the Bayerer model. Recently, the authors of
[32] introduced an improved cycle counting algorithm that
accurately calculates ton and removes half-cycles from the
standard rainflow() output.

Second, the damage experienced by the component is
calculated using a lifetime model. The device fails when
the accumulated damage surpasses a defined threshold. This
article uses the Bayerer model, also known as the CIPS 2008
model, as shown in (11) [33].

Nf = A · (∆Tj)
β1 · e

β2
Tjm · tβ3

on · Iβ4 · V β5 ·Dβ6 (11)

where Nf is the number of cycles to failure, A is the
technology factor, β1 to β6 are curve fitting parameters
which values are in Table 3, ∆Tj is the junction temperature
oscillation, Tjm is the mean junction temperature, ton is the
heating time, I is the current per bond foot, V is the blocking
voltage divided by 100, and D is the bond wire diameter.

TABLE 3. Curve fitting parameters and experimental conditions [33].

Parameter Value Exp. Condition
A 9.34E14 -
β1 -4.416 45 K ≤ ∆Tj ≤ 150 K
β2 1285 20ºC ≤ Tjm ≤ 120ºC
β3 -0.463 1 s ≤ ton ≤ 15 s
β4 -0.716 3 A ≤ Ib ≤ 23 A
β5 -0.761 6 V ≤ V/100 ≤ 33 V
β6 -0.5 75 µm ≤ D ≤ 500 µm

B. Miner’s rule
In 1945, M. A. Miner popularized a rule initially proposed
by A. Palmgren in 1924. This rule, known as Miner’s Rule
or the Palmgren-Miner linear damage hypothesis, has since
become a fundamental concept in fatigue analysis. It is given
by (12):

LCIGBT =

j∑
i=1

n[i]

Nf [i]
(12)
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FIGURE 4. Flowchart used to compute the accumulated damage.

where LCIGBT is the IGBT’s lifetime consumption, n[i] is
the number of observed cycles and Nf [i] is the expected
number of cycles to failure. IGBT failure occurs when
LCIGBT reaches unity.

The Miner’s rule in reliability assessment is based on the
premise that a component will degrade linearly. In other
words, the resulting thermal loading will incur damage
equivalent to the summation of the calculated damage of
its parts. The work in [34] presents experimental results
aiming to evaluate the linear superposition premise for power
modules. Additionally, seven samples of commercial power
modules were subjected to thermal cycling tests. According
its results, Miner’s rule is aligned with the experimental
behavior obtained for mixed stress conditions.

C. Monte Carlo analysis
Numerous uncertainties exist throughout the approach pre-
sented in Fig. 4, including variations in component man-
ufacturing and different types of stress. Thus, more than
a deterministic scenario is usually needed. It is critical to
incorporate parametric adjustments to improve the reliability
assessment.

One option is the Monte Carlo Static Parameter Method
(MC-SP) [35], which estimates a histogram for lifespan
rather than providing just a fixed value. In this paper, the
original thermal loading is converted into an equivalent
thermal loading (ETL) with static parameters T

′

jm and ∆T
′

j

in order to obtain the same damage previously calculated.
Once, there are numerous combinations of ETL. For

simplicity, t
′

on is defined as 0.01667s, T
′

jm represents the
average junction temperature of the original loading, and the
number of cycles per year ncycles is calculated as 365 days
× 24 hours × 60 minutes × 60 seconds × 60 cycles per
second.

As indicated in [13], a 3σ normal distribution variation of
±20% was applied in the technology factor A in (11) whose
mean value was presented in Table 3. Moreover, a variation

of ±5% following a normal distribution was adopted in T
′

jm

and ∆T
′

j [14].

D. System level reliability
Three options are available for defining how each component
interacts with the system’s unreliability function [36]. First,
all components associated in parallel, in this case, the system
fails only when all components fail. The second option is all
components in series, meaning the system fails as soon as
one component fails. In this case, the system’s reliability will
be lower (or at least equal) than the weaker component. A
third option is to consider both series and parallel combined.

Considering a reliability block diagram with all com-
ponents in series, the system-level unreliability function is
calculated as (13):

U(t)system = 1−
n∏

i=1

(1− U(t)i,comp) (13)

where Usystem is the system’s unreliability function, Ui,comp
is the unreliability function of the i-th component and n is
the number of components.

Assuming that parametric variations sufficiently account
for the thermal imbalance between all IGBTs, a simplified
unreliability function presented in (14) can be used:

U(t)system = 1− (1− U(t)IGBT)
6 (14)

After obtaining the system’s unreliability function, the
next step is to assess it with a statistical metric, with the
Bx being the most commonly used. In this context, x is a
percentage, indicating the expected time at which x% of the
PV inverter population will fail. In particular, B1 and B10 are
frequently employed in the industry as quality benchmarks.

V. FROM THERMAL LOADING PREDICTION TO
RELIABILITY ASSESSMENT
The paper is organized into two integrated parts, presented in
Sections III and IV. The first one is dedicated to translating
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the mission profile into thermal loading through simulation
using PSIM software and thermal models provided by power
switch manufacturers. As previously discussed, this process
was repeated using ten years of mission profile data for three
cities. A portion of this data was used to train machine-
learning (ML) models to characterize thermal loadings di-
rectly.

The second part links thermal loadings to the expected
lifetime of the inverter. In addition to the thermal loadings
obtained through simulation, a reliability assessment was
conducted based on the thermal loadings generated by ML
models. While the reliability assessment using ML models
may not be more accurate than that based on the original
data, it offers the advantage of not requiring specialized
knowledge for future analyses. Furthermore, depending on
the adopted architecture, these models can be embedded
and support strategic decisions such as damage monitoring,
maintenance planning, and equipment replacement.

VI. RESULTS AND DISCUSSION
The first subsection compares the performance of ML models
employed for junction temperature prediction. The second
subsection presents the reliability assessment results. Once
the reliability assessment is applied to thermal loadings from
simulation as well as from the ML models, both subsections
synergize.

A. Junction temperature prediction
Before analyzing the performance of the machine-learning
models used to predict junction temperature, an exploratory
analysis of the problem’s inputs and outputs was conducted.
Boxplots were used to visualize the distribution of GHI,
Tamb, Tj and ∆Tj in the three cities, as shown in Fig. 5
and 6.

The temperature in Campos do Jordão ranges from 2.0
°C to 34.0 °C, with 50% of the data concentrated between
16.0 °C and 22.0 °C. Campinas has a similar climate profile,
with temperatures ranging from 3.0 °C to 39.0 °C and an
interquartile range between 19.0 and 25.0 °C. In contrast,
Teresina shows a less diverse temperature profile, with a
minimum value of 19 °C and 50% of the data falling between
25.0 °C and 31.0 °C.

The interquartile range of the thermal loadings in Teresina
has higher limits than the other two cities, highlighting a
more significant thermal stress observed by the IGBT in this
city. Since zero irradiance samples were not discarded, there
is no thermal cycling (∆Tj = 0 ºC) in half of the thermal
loading. As a result, the minimum value, the first quartile,
and the median of the ∆Tj boxplot are all fixed at zero.

Afterward, a correlation analysis was performed between
the input features and outputs to be estimated. This analysis
is illustrated in the scatter plots in Fig. 7. Irradiance has a
strong (and positive) correlation with both outputs. Ambient
temperature has a weaker correlation, but is still an important
feature.

(a) The boxplot on the left shows the distribution of ambient temperature,
with a 25th, 50th and 75th percentile at 16.0 °C, 19.0 °C and 22.0 °C,
respectively. The boxplot on the right represents the distribution of GHI
values, with a 75th percentile at 380 W/m².

(b) The boxplot on the left shows the distribution of ambient
temperature, with a 25th, 50th and 75th percentile at 19.0 °C, 22.0
°C and 25.0 °C, respectively. The boxplot on the right represents the
distribution of GHI values, with a 75th percentile at 423 W/m².

(c) The boxplot on the left shows the distribution of ambient
temperature, with a 25th, 50th and 75th percentile at 25.0 °C, 28.0
°C and 31.0 °C, respectively. The boxplot on the right represents the
distribution of GHI values, with a 75th percentile at 515 W/m².

FIGURE 5. Boxplots considering the mission profile from 2014 to 2023
in (a) Campos do Jordão-SP, (b) Campinas-SP, and (c) Teresina-PI.
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(a) The boxplot on the left represents the distribution of Tj values, with
a median of 21.0 ºC, an interquartile range between 17.0 ºC and 42.5 ºC.
The boxplot on the right shows the distribution of ∆Tj values, with a 75th
percentile at 3.4 ºC.

(b) The boxplot on the left represents the distribution of Tj values,
with a median of 24.0 °C and an interquartile range between 19.0
°C and 48.1 °C. The boxplot on the right shows the distribution of
∆Tj values, with a 75th percentile at 3.8 °C.

(c) The boxplot on the left represents the distribution of Tj values,
with a median of 30.0 °C and an interquartile range between 25.8
°C and 59.2 °C. The boxplot on the right shows the distribution of
∆Tj values, with a 75th percentile at 4.6 °C.

FIGURE 6. Boxplots considering the thermal loadings obtained from
2014 to 2023 in (a) Campos do Jordão-SP, (b) Campinas-SP, and (c)
Teresina-PI.

FIGURE 7. Correlation between the input and the output variables.
The top row shows the correlation of thermal loading variables with
Tamb. The bottom row shows the correlation of Tj and ∆Tj with GHI.

Except for XGBoost which has a particular library, the
models used, as in [10], were implemented using the scikit-
learn library.

Figures 8 and 9 show that each model’s training MSE
is slightly lower than its test MSE, except for the linear
regressor, indicating a similar generalization capacity for
training and test data. The linear model shows the highest
MSE due to its inability to map non-linearities. The other
models exhibit similar MSE, with the decision tree model
having the lowest. Since the decision tree was the best
model up to this stage, additional robustness analyses were
conducted only on it.

The decision tree MSE was evaluated for the test in the
same city where it was trained and in scenarios with different
cities in training and testing. In this context, Fig. 10 presents
some results to verify robustness.

It is worth noting that the models trained with data
from Teresina map Tj and ∆Tj with greater accuracy only
for Teresina with a MSE of 0.14×10−4, when applied to
Campinas or Campos do Jordão, the MSE observed was
3.97×10−4 and 8.66×10−4, respectively.

On the other hand, the models trained with data from
Campinas and Campos do Jordão share a reciprocal perfor-
mance, as training with data from cities with well-defined
seasons (or a wider range of temperatures throughout the
year) benefits the generalization in the model’s learning.

It has been found that ML models benefit significantly
when trained on mission profiles that encompass a wide
range of climatic conditions. Training them using data from
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(a) Performance at the end of the training in Campos do Jordão-SP.

(b) Performance at the end of the training in Campinas-SP.

(c) Performance at the end of the training in Teresina-PI.

FIGURE 8. MSE during training.

different cities with diverse climates can also enhance their
predictive capabilities. This approach allows the models to
better account for variations across geographical locations,
reducing prediction errors when applied to new data.

Several strategies can reduce MSE. For same-location
training and testing, techniques like Principal Component
Analysis (PCA) or outlier detection algorithms, such as
Local Outlier Factor (LOF), can improve generalization by
filtering discrepancies. For different cities, increasing data
variability and using combined mission profiles enhance
model generalization. Regularization methods like dropout
in MLPs can also help reduce testing MSE further [37].

(a) Prediction performance in Campos do Jordão-SP.

(b) Prediction performance in Campinas-SP.

(c) Prediction performance in Teresina-PI.

FIGURE 9. MSE during test.

FIGURE 10. MSE of the decision tree model used when trained and
tested in the same city versus different cities.
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B. Reliability assessment
Tables 4, 5, and 6 show the expected lifetime in the three
investigated cities. The expected lifetime for each mission
profile is presented and compared with the historical period
from 2014 to 2023. The static lifetime for one IGBT was
21.5, 17.6, and 14.9 years in Campos do Jordão, Campinas,
and Teresina, respectively.

The highlighted rows show the years with the closest
response within the historical period, making them the best
candidates for representative years. For instance, choosing
2020 as the mission profile for Campos do Jordão, 2019 for
Campinas, and 2014 or 2016 for Teresina ensures a response
compatible with the historical period. Moreover, it facilitates
data processing and reduces computational effort for further
analysis.

On the other hand, 2014 in Campos do Jordão showed
a damage rate of 5.85%, i.e., a failure is expected in 17.1
years, which results in a static assessment that is 4.4 years
more pessimistic than the entire period’s result. Considering
system-level, the difference is around three years in B10

analysis. In addition, within the historical series, Teresina
had the lowest standard deviation (σ = 1.08) among the three
cities.

TABLE 4. Static lifetime, B1 and B10 for one and six IGBTs (inverter
level) in Campos do Jordão from 2014 to 2023. The decision tree was
used to provide the thermal loading for 2020, and then the reliability
assessment was executed.

Period IGBT Six IGBTs
Static lifetime B1 B10 B1 B10

2014 17.1 y 11.5 y 14.4 y 9.6 y 12.1 y
2015 22.5 y 15.0 y 19.0 y 12.6 y 15.9 y
2016 20.3 y 13.6 y 17.1 y 11.3 y 14.3 y
2017 20.4 y 13.6 y 17.2 y 11.4 y 14.4 y
2018 25.6 y 17.1 y 21.6 y 14.3 y 18.0 y
2019 20.8 y 13.9 y 17.5 y 10.3 y 14.6 y

2020 21.9 y 14.6 y 18.4 y 12.2 y 15.4 y
2020 (DT) 21.8 y 14.5 y 18.4 y 12.2 y 15.4 y

2021 22.4 y 14.9 y 18.8 y 12.5 y 15.8 y
2022 23.9 y 16.0 y 20.2 y 13.4 y 16.9 y
2023 22.4 y 15.0 y 18.9 y 12.5 y 15.8 y

TMY (ZOH) 26.7 y 17.8 y 22.4 y 15.0 y 18.8 y
TMY (FOH) 27.9 y 18.6 y 23.4 y 15.6 y 19.6 y

2014 to 2023 21.5 y 14.4 y 18.1 y 10.5 y 15.2 y

The decision tree (DT), whose results were presented in
the previous subsection, was used as a surrogate approach
to characterize the annual thermal loading for each city’s
representative year. The DT thermal loadings were then
utilized to assess the reliability of the inverters.

To sum up, the results in Tables 4, 5, and 6 show both
the effect of a year-to-year mission profile on the lifetime
prediction of a PV inverter and a similar assessment between

TABLE 5. Deterministic (or static) lifetime, B1 and B10 for one and
six IGBTs (inverter level) in Campinas - SP from 2014 to 2023. The
decision tree was used to provide the thermal loading for 2019, and
then the reliability assessment was executed.

Period IGBT Six IGBTs
Static lifetime B1 B10 B1 B10

2014 15.2 y 10.2 y 12.8 y 8.5 y 10.7 y
2015 18.8 y 12.6 y 15.8 y 10.5 y 13.3 y
2016 16.3 y 10.9 y 13.7 y 9.1 y 11.5 y
2017 17.2 y 11.5 y 14.5 y 9.6 y 12.1 y
2018 19.3 y 13.0 y 16.3 y 10.9 y 13.7 y

2019 17.7 y 11.8 y 14.9 y 9.8 y 12.4 y
2019 (DT) 17.6 y 11.8 y 14.9 y 9.8 y 12.4 y

2020 17.1 y 11.5 y 14.4 y 9.6 y 12.1 y
2021 17.3 y 11.5 y 14.5 y 9.6 y 12.2 y
2022 18.5 y 12.3 y 15.5 y 10.3 y 13.0 y
2023 18.0 y 12.0 y 15.1 y 10.0 y 12.7 y

TMY (ZOH) 22.8 y 15.2 y 19.2 y 12.8 y 16.2 y
TMY (FOH) 25.2 y 16.9 y 21.2 y 14.3 y 17.8 y

2014 to 2023 17.6 y 11.7 y 14.9 y 9.8 y 12.4 y

TABLE 6. Static lifetime, B1 and B10 for one and six IGBTs (inverter
level) in Teresina - PI from 2014 to 2023. The decision tree was used to
provide the thermal loading for 2014 and 2016, and then the reliability
assessment was executed.

Period IGBT Six IGBTs
Static lifetime B1 B10 B1 B10

2014 14.5 y 9.7 y 12.2 y 8.1 y 10.2 y
2014 (DT) 14.6 y 9.7 y 12.3 y 8.2 y 10.3 y

2015 13.2 y 8.8 y 11.1 y 7.4 y 9.3 y

2016 14.5 y 9.7 y 12.2 y 8.1 y 10.2 y
2016 (DT) 14.5 y 9.7 y 12.2 y 8.1 y 10.2 y

2017 13.6 y 9.1 y 11.4 y 7.6 y 9.6 y
2018 15.7 y 10.4 y 13.2 y 8.7 y 11.0 y
2019 15.7 y 10.5 y 13.2 y 8.8 y 11.1 y
2020 15.4 y 10.2 y 12.9 y 8.6 y 10.8 y
2021 16.7 y 11.1 y 14.1 y 9.3 y 11.8 y
2022 15.6 y 10.4 y 13.2 y 8.8 y 11.1 y
2023 15.6 y 10.4 y 13.2 y 8.7 y 11.0 y

TMY (ZOH) 21.4 y 14.3 y 18.0 y 12.0 y 15.1 y
TMY (FOH) 22.9 y 15.3 y 19.4 y 12.8 y 16.2 y

2014 to 2023 14.9 y 10.0 y 12.5 y 8.4 y 10.5 y

the thermal loadings from simulation and from an ML-based
approach.

Last, the expected lifetime from the TMY provided in [15]
was evaluated. As previously described, originally, it had a
one-hour granularity that was adjusted using zero-order hold
(ZOH) and first-order hold (FOH) oversampling methods
to match the 5-minute granularity of the Solcast mission
profile. However, both methods do not provide enough
details (fluctuations) to obtain an acceptable result [16], [17].
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Therefore, a priori, this kind of TMY should only be used for
reliability assessment in power devices when mission profiles
with acceptable granularity are lacking.

VII. CONCLUSION
The models used for junction temperature prediction, inclu-
ding linear regressor, decision tree (DT), MLP, and XGBoost,
demonstrated varying accuracy and interpretability. In terms
of MSE, the decision tree was the best-performing one.
Furthermore, the analysis showed that the DT models trained
on data from cities with well-defined seasonal variations, like
Campos do Jordão and Campinas, achieved better generali-
zation and lower prediction errors when applied to different
locations. The paper also investigates the variation of the
reliability assessment from year to year, considering a mis-
sion profile data span of 10 years and the difference between
the classical and an ML-based approach in the representative
year. Considering deterministic lifetime, Campos do Jordão
exhibited the highest variability in results. In system-level,
Teresina, with its more harsh climate conditions, recorded
an expected lifetime near to a decade in B10 investigation.
For future works, one potential route for improving the
generalization is to train models on hybrid mission profiles,
for instance, using pre-selected cities with climatic condi-
tions closely representing specific regions or biomes. On
the other hand, the diversity introduced by the training set
may not provide sufficient information to prevent overfitting.
Techniques such as dropout in neural networks could address
this and ensure better generalization also in the testing phase.
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