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ABSTRACT The world is currently witnessing a rapid transformation in the production and utilization of
electrical energy. The traditional centralized generation model for electric power is swiftly evolving into a
more decentralized system, known as Distributed Generation (DG), which incorporates renewable energy
sources situated closer to end-users. This shift towards DG has paved the way for the emergence of grid-
forming converters, which play a pivotal role in enhancing voltage and frequency stability within microgrids
(MGs) and isolated applications. This study focuses on assessing the performance of the Zero Harmonic
Distortion (ZHD) in both stand-alone and parallel operation modes. The distinctive feature of this converter
lies in its inherent ability to generate a sinusoidal voltage source without the need for capacitive filtering
components, which can adversely affect cost, efficiency, and size while potentially contributing to resonance
problems. This is achieved through a judicious combination of harmonic cancellation within a three-winding
transformer and the utilization of Selective Harmonic Elimination Pulse Width Modulation (SHE PWM)
dismissing a closed-loop control structure. Simulation and hardware-in-the-loop results presented in this
work demonstrate the satisfactory performance of the ZHD grid-forming converter.

KEYWORDS Distributed generation, grid-forming converters, AC microgrids, power systems, selective
harmonic elimination, power converters.

I. INTRODUCTION
The electric power system is undergoing a significant trans-
formation driven by the widespread adoption of distributed
generation (DG). Environmental concerns, sustainability im-
peratives, and a growing demand for energy are collectively
propelling the transition from conventional fossil fuel and
nuclear-based power generation plants to renewable energy
sources, particularly those interfaced with inverters, such as
solar and wind energy [1]–[3].

In this context, DG emerges as a solution that makes a
valuable contribution by bringing energy generation closer
to consumers. This approach opens up opportunities for
improved efficiency, investments, flexibility, stability, and
power quality [4]–[6]. With the evolution of DG, the concept
of the microgrid (MG) has also come into prominence. A
microgrid is founded on a combination of loads, storage
elements, and microsources, primarily relying on renewable
energy sources such as solar, wind, and biomass [7].

The MG can operate in either connected or islanded
modes. When connected to the main grid, both voltage
and frequency are imposed by the utility system. However,
in islanded mode, the MG operates independently, which
imposes the presence of at least one grid-forming converter
equipped with an energy storage system (ESS). This grid-

forming converter, in conjunction with the ESS, assumes
the pivotal role of establishing and maintaining the voltage
and frequency within the MG. Alternatively, in scenarios
with multiple grid-forming converters, they collectively co-
ordinate power distribution based on their respective ratings
and the availability of power from their associated energy
sources [8], [9].

Particularly in islanded mode, power quality becomes
a concern. Since the distributed energy resources (DERs)
typically interface the point of common coupling (PCC)
of the MG through LC or LCL switching harmonic fil-
ters, resonances points at various frequencies can arise. A
variety of elements contribute to these complex resonance
interactions within the MG, including passive filters, induc-
tive line impedances, parasitic shunt capacitors, household
capacitive-inductive loads, and disruptive loads exhibiting
either constant voltage or constant power characteristics. The
occurrence of these induced resonances can exert adverse ef-
fects on both transient and steady-state control performance,
potentially leading to severe stability issues [10].

In literature a wide range of grid-forming converters
applications is based on 2/3-level Voltage Source Converters
(VSC) [11] and transformeless topologies such as Modular
Multilevel Converters (MMC) [12]–[14]. In this context,
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the ZHD converter proposed initially in [15] and [16]
as a grid-feeding converter and latter in [17] as a grid-
forming converter, shows advantages, as low parts count,
simplicity of control and no need of output filters. The
ZHD converter does not produce any characteristic harmonic
until the 50th, which is the maximum order considered
in IEEE 519 and IEEE 1547 standards [18], [19]. This
is achieved by employing two 3-phase converters, in 2 or
3-level topologies, using Selective Harmonic Elimination
Pulse Width Modulation (SHE PWM) connected to a three-
winding transformer, resulting in an inherently sinusoidal
voltage source characteristic without the use of capacitive
filtering elements that negatively impact in costs, efficiency,
size, and complex resonances interactions issues.

The ZHD converter is a compelling alternative for op-
eration as a grid-forming converter in MV MG applica-
tions such as university campuses, isolated communities
and installations, military defense facilities and assets, and
mission-critical microgrids [20]–[22] with simple control and
consolidated technologies in the industry.

In this way, the main contribution of this work is to
asses the ZHD grid-forming converter control performance
sensitivity proposed in [17], in stand-alone and parallel
modes.

The organization of this work is as follows: after the Intro-
duction, section II presents the ZHD converter, its hardware,
and control aspects. Sections III and IV shows the simulation
and hardware-in-the-loop (HIL) results, respectively. Section
V presents some conclusions.

A previous version of this work was presented in [23].
In the current version, the simulations was improved to
characterize the converter working in medium voltage ap-
plications and hardware-in-the-loop results were included
to demonstrate the ZHD control performance in the grid-
forming mode.

II. ZERO HARMONIC DISTORTION GRID-FORMING
CONVERTER
A. ZHD Converter
According to standards [18], [19], harmonics until the 50th

order are enough to characterize harmonic voltage and
current distortion.

In this sense, a grid-forming converter that can deliver a
voltage waveform free from harmonics until the 50th order
can be assumed as a sinusoidal voltage power source with
zero harmonic distortion.

Fig. 1 shows the proposed ZHD converter. It consists of
two 2-level VSCs connected to a three-winding transformer.
The VSCs are connected in the star and delta secondaries.
Due to the phase shift of 30 degrees between secondaries, it
is expected a harmonic cancellation according to (1).

h = 6k ± 1 ∀ k odd and integer (1)

In this context, it is possible to obtain a voltage waveform
free from all the considered harmonics until the 50th order,
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FIGURE 1. ZHD Grid-Forming converter.

by utilizing the SHE PWM technique to eliminate the
harmonics not cancelled by the transformer. Table 1 shows
the cancelled harmonics and the eliminated ones.

TABLE 1. ZHD Converter Harmonic Elimination and Cancellation.

Equipment Harmonic Order
Transformer: 5th, 7th, 17th, 19th, 29th, 31th, 41th, 43th, . . .

VSCs: 11th, 13th, 23th, 25th, 35th, 37th, 47th, 49th

B. Selective Harmonic Elimination
The SHE PWM is proposed in [24] and it is well established
for two and three level converters applications. In [25], it is
extended to cases where the fundamental amplitude control
is required. Fig. 2 shows the voltage waveform generated in
one phase of a two-level converter for a voltage modulation
index m. The waveform is generated using the precalculus
of switching angles α1, α2, α3, α4, ..., αM related to the har-
monics selected to be eliminated or mitigated, determining
the number of switches in on period.
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FIGURE 2. Generalized output voltage of 2L VSC.

The modulation index m is described by (2), where V1m

is the desired fundamental amplitude and V1m6step is the
maximum fundamental voltage available, defined by (3). Vdc

is the dc bus voltage [15].

m =
v1m

V1ms6step
(2)
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V1ms6step =
2 · Vdc

π
(3)

The calculation of the switching angles as a function of the
modulation index were performed offline using the Newton
method and stored in Look-up Tables (LUTs), according
to the numerical algorithm presented in [16]. A possible
solution for commutation angles is shown in Fig. 3 as a
function of the modulation index. These angles were chosen
for the elimination of the harmonics listed in Table 1.

FIGURE 3. 2L VSC switching angles.

C. ZHD CONVERTER EQUIVALENT CIRCUIT MODEL
In this way, an analytical approach of the ZHD converter
in grid-forming operation is proposed in [17] and it makes
possible to obtain the per phase equivalent fundamental and
harmonic circuits showed in Fig. 4.

These equivalent circuits reinforce the idea that no har-
monic until the 50th order is generated by the converter,
delivering in practical terms, a sinusoidal voltage waveform.
However, just like any other converter, if the MG demands
harmonic currents, the PCC voltage waveforms are disturbed
due to the voltage drop in the series impedance (4) of
the converter (Fig. 4 (b)). Z∆ϕ and ZY ϕ are the reactors
impedances of the VSCs, Z∆ and ZY are the impedances of
the delta and wye secondaries, a is the transformer winding
ratio and finally ZP is the impedance of the primary winding.

ZZHD = (a2(Z∆ϕ +
Z∆

3
)//a2(ZY ϕ + ZY )) +

ZP

3
(4)
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FIGURE 4. ZHD per phase: (a) fundamental equivalent circuit (b)
harmonic equivalent circuit.

D. ZHD GRID-FORMING CONTROL STRUCTURE
Due to the inherent voltage source characteristic, the con-
verter needs neither the voltage and current controls nor the
ac voltage capacitors in voltage source operation.
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FIGURE 5. Voltage Command Control of ZHD Grid-Forming converter.

The voltage response in the dq frame is shown in (5).
Ed and Eq are the synthesized voltages by the converter,
and Vd, Vq, Id, and Iq are the output voltages and currents,
respectively. Rzhd and Lzhd are the output resistance and
inductance of the converter impedance given by (4), and ω0

is the fundamental frequency.

Vd = Ed + ω0Lzhdiq −Rzhdid − Lzhd
did
dt

Vq = Eq − ω0Lzhdid −Rzhdiq − Lzhd
diq
dt

(5)

The block diagram of the voltage command control is
indicated in Fig. 5 and reveals that only a feed-forward
disturbance command is responsible to reject the load varia-
tions (voltage drop on the ZHD series impedance), therefore
compensating the voltage reference command V ∗

d and V ∗
q , as

can be shown in (6). E∗
d and E∗

q represent the compensated
voltage commands.

E∗
d = V ∗

d − ω0L̂zhdiq + R̂zhdid
E∗

q = V ∗
q + ω0L̂zhdid + R̂zhdiq

(6)

The dynamic stiffness of the voltage command control
is given by (7), where it is possible to observe that the
disturbance rejection depends of the estimated inductance
Ẑzhd, multiplied by the current sensor and VSC transfer
functions, and its real value Zzhd.∣∣∣∣ I(s)V (s)

∣∣∣∣ = 1

ẐzhdHV SC(s)− Zzhd

(7)

Fig. 6 shows the full ZHD grid-forming control. The
total measured output current in the synchronous rotating
frame, Id and Iq, generates a compensating signal that is
added to V ∗

d and V ∗
q , generated by a isochronous control

in case of stand-alone operation or droop control in the
presence of other grid-forming converters [9]. Based on a
virtual impedance concept, this structure allows the output
voltage amplitude and phase compensation in the primary
of the ZHD converter. R̂zhd and L̂zhd are the estimated
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ZHD converter series resistance and inductance. There is
also the possibility of current limitation in case of fault and
of impedance emulation [12], [13].

Taking into account the transformer winding ratio a, E∗
d

and E∗
q are used to calculate the modulation indexes m∆,Y

and phase compensation δ∆,Y . The modulation signals and
the sum of phase compensation and the angle references θY
and θ∆ are compared in the LUTs generating the power
switches command signals α1Y , .., αMY and α1∆, .., αM∆.
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FIGURE 6. Control of ZHD Grid-Forming converter.

III. VOLTAGE CONTROL SIMULATION
A. Voltage and frequency regulation in stand-alone and
parallel modes
The control performance of the ZHD grid-forming converter
considering the stand-alone and parallel modes was ana-
lyzed based on typical load connection and disconnection
scenarios. These scenarios consist in the connection or dis-
connection of loads with different characteristics: resistive,
capacitive, inductive, nonlinear and DERs. Considering both
operation modes, the ZHD converter was simulated in a
microgrid using MATLAB/Simulink platform, as shown in
Fig. 7. The system parameters are described in Table 2.

In a first moment, a period of simulation of 1.6s is adopted.
In order to evaluate the ZHD voltage and its frequency
regulation capacity, the connection of loads and of the DER
are in this sequence:

• t = 0 s → (I) → S1 is closed and ZHD1 starts in
isochronous mode and R load is connected ;
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FIGURE 7. Islanded MG with ZHD Grid-Forming converter.

TABLE 2. Converter Data for Simulation Results

ZHD CONVERTER
Parameters Values Parameters Values
Rated Power 280 kVA Frequency 60 Hz

Primary Voltage 13.8 kV ∆ and Y Secondary Voltages 440 V

Lϕ∆ and LϕY reactors 0.59/0.506 mH DC link voltage 600 V

THREE-WINDING THREE-PHASE TRANSFORMER - Dd0y1
Parameters Values Parameters Values

Rm 526.7 kΩ Rs∆ 19.4 mΩ

Lm 534.5 H Ls∆ 3.33 µH

RP∆ 10.5 Ω RsY 16 mΩ

LP∆ 108.7 mH LsY 84.26 µH

DER
Parameters Values Parameters Values

R1 0.1 Ω L1 and L2 500 µH

R2 0.1 Ω Tx 440 V/ 13.8 kV

Cf 110 µF VDC 800 V

LINEAR LOADS - R, RL and RC LOADS
Parameters Values Parameters Values

Active Power (P ) 100kW Reactive Power (Q) 0 var

Active Power (P ) 40 kW Reactive Power (Q) 30 kvar

Active Power (P ) 40 kW Reactive Power (Q) -30 kvar

NONLINEAR LOAD
Parameters Values Parameters Values

RAC 152.35 Ω LAC 2.2 µH

Cdc 2.59 µH RL 34.56 kΩ

• t = 0.43 s → (II) → RL load is connected;
• t = 0.55 s → (III) → The DER is adjusted to 100 A;
• t = 0.7 s → (IV ) → The RL load is disconnected;
• t = 0.75 s → (V ) → RC load is connected;
• t = 0.85 s → (V I) → The RC load is disconnected;
• t = 0.9 s → (V II) → The nonlinear load is connected;
• t = 1 s → (V III) → The DER is adjusted to 0 A.
• t = 1.2 s → (IX) → S2 is closed and both ZHD1

and ZHD2 starts in droop control mode (kp =
1.78x10−7Hz/W , kq = 6.415x10−5V/V ar );

• t = 1.5 s → (X) → The nonlinear load is disconnected;
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FIGURE 8. (a) Active power flow, (b) reactive power flow, (c) voltage at PCC and output currents at ZHD converters, (d) frequency at PCC, Zoomed view
of phase A reference, measured voltage at PCC and current in ZHD converters in time instants: (e) I, (f) II, (g) V, (h) VIII, (i) IX, (j) X, reference and
measured angle in time instants: (k) I, (l) II, (m) V, (n) VIII, (o) IX, (p) X.

Fig. 8 (a), (b), (c) and (d) shows active, reactive power
flow, voltage at PCC and output currents at ZHD convert-
ers and frequency at PCC, respectively. It shows that the
ZHD converter has the capacity of regulate the voltage and
frequency at the PCC, always rejecting the disturbances
and following the references. The zoomed view of I, II, V,
VIII, IX and X simulation events can be observed in (e)-
(p) and show that the converter can follow the voltage and
angle references in case of resistive, inductive, capacitive and
nonlinear loads and also can operates in parallel with other
voltage controlled converters in power sharing mode.

Fig. 8 also shows the sinusoidal shape of the delivered
voltage waveform in case of linear loads ((e), (f), (g) and
(j)), and that the waveform is deteriorated in the presence of
the nonlinear load ((h) and (i)).

Fig. 9 shows the phase A voltage FFT for each case.
As can be expected, the delivered voltage waveform for
linear loads is practically from from harmonics until the
50th order ((a),(b), (c), (f)). However, when the nonlinear
load is connected, the phase A voltage is disturbed by the
demanded harmonic current. Fig. 9 (d) and (e) reveals the
presence of harmonics not produced by the converter, but
generated by the nonlinear load. Finally, Fig. 9 (g) and (h)
shows the output current FFT showing both ZHD converters
sharing the same fundamental and harmonic currents in case
of nonlinear and linear load, respectivily.

B. Sensitivity Analysis
Fig. 10 shows a important analysis regarding the dynamic
stiffness of the command control shown in (7). The sensitiv-

FIGURE 9. Output Voltage FFT for time events: (a) I, (b) II, (c) V, (d) VIII, (e)
IX, (f) X, (g) IX and (h) X.

ity analysis in the control system due to error in the converter
estimated output impedance, for the same scenario of the
last section, but considering cases with ±20% of estimating
error in the ZHD1 converter. Fig. 10 (a)-(d) show that the
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+5%

-5%

FIGURE 10. Considering estimating errors of +20% and −20% in ZHD1 converter: a) Voltages at PCC and output currents at ZHD converters
considering a error of (a) +20%, (b) −20%, (c) PCC voltage regulation, (d) measured PCC frequency, zoomed view of phase A reference voltage and
voltage at PCC in time instants: (e) I, (f) II, (g) V, (h) VIII, reference and measured angle in time instants: (i) I, (j) II, (k) V, (l) VIII, zoomed view of voltage at
PCC and output currents at ZHD converters in time instants (m) IX, (n) X, (o) IX, (p) X, respectively, and output FFT voltage in time instants (q) IX, (r) X,
(s) IX and (t) X.

converter can regulate voltage ((a),(b)) and frequency (d)
with acceptable voltage regulation, as shown in (c), inside
the ±5% limit recommend by standards [19], [26].

Considering the isochronous operation, Fig. 10 (e)-(l)
clearly show that voltage and angle references could be
tracked even considering the cases of ±20% of estimat-
ing error. However, the included estimating error causes a
unequal current sharing between the both ZHD converters
due to the differences in the virtual impedance between
them. For the scenario shown in Fig. 10 (a), Fig. 10 (m)
and (n) shows the phase A reference, measured voltage at
PCC and the higher output current of ZHD1 compared with
ZHD2 converter for time events IX and X. The FFT of the
currents waveforms of (m) and (n) are shown in (q) and (r),
respectively, reinforcing the differences between the currents.

The scenario shown in Fig. 10 (b) analogously shows the
same effect, but with the ZHD2 converter providing more
current. For this case Fig. 10 (o) and (p) shows the phase
A reference, the measured voltage at PCC and the output
currents for both converters in time events IX and X. Fig.
10 (s) and (t) shows the FFT of the currents.

IV. HARDWARE-IN-THE-LOOP RESULTS
The ZHD converter was implemented on a real-time simula-
tion platform to test and validate the ZHD control hardware.
Figure 11 shows the actual controller connected to the HIL
setup, where its steady-state and transient performance were
thoroughly evaluated.

The ZHD controller rack contains a power supply board,
a controller board (equipped with a Texas Instruments
TMS320F28335 microcontroller) responsible for the voltage
control, and an FPGA board (equipped with an FPGA model
MAX 10 from Intel) that handles the SHE PWM operating
at a sufficiently high sampling frequency (250 kHz) storing
the switching angles (Table 3) with sufficient resolution.

One ZHD converter in the isochronous mode, was
evaluated in three dynamics scenarios considering output
impedance estimating errors of 0% , 20% and -20%, for a
50 kVA capacitive load (PF= 0.9), followed by a step load of
130 kW. Figs.12 to 14 show the results of each case followed
by the zoomed views of phase A voltage and output current.

In all the cases, it is possible to verify the control structure
voltage and frequency regulation capacity, rejecting the step
load disturbance and as expected, delivering a practically
sinusoidal voltage waveform. The voltage regulation also
was evaluated, and even in the cases considering estimating
error in the output impedance, the voltage regulation remains
well below of 5%.

These results show that the ZHD converter is capable
to operates as a grid-forming converter regulating voltage
and frequency without capacitive filters, delivering sinusoidal
voltage waverforms to an islanded MG only using a feed-
forward disturbance command control.

6 Eletrônica de Potência, Rio de Janeiro, v. 29, e202441, 2024.

https://creativecommons.org/licenses/by/4.0/


Eletrônica de PotênciaSpecial Issue
Open Journal of Power Electronics

Programming 
Computer

Scope

HIL 604

ZHD Controller Rack

FIGURE 11. Structure of tests and validation in Hardware-in-the-Loop.
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FIGURE 12. a) HIL results for a step load (phase A): PCC voltage (CH1),
current (CH2) and FFT voltage (CH1) considering 0% of output impedance
estimating error, b) Zoomed view before step load, c) Zoomed view after
step load.

a)
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c)

CH1: 2400 V/V CH2: 5 A/A
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FIGURE 13. a) HIL results for a step load (phase A): PCC voltage (CH1),
current (CH2) and FFT voltage (CH1) considering +20% of output
impedance estimating error, b) Zoomed view before step load, c) Zoomed
view after step load.

V. CONCLUSION
This paper has thoroughly evaluated the performance of
the ZHD grid-forming converter control, demonstrating its
robustness and efficacy in islanded microgrid (MG) appli-
cations. The control strategy, which includes feed-forward
mechanisms to decouple disturbances, proved to meet current
standards for both voltage regulation and harmonic content,
even in the presence of series impedance estimation errors.
Simulation results confirmed the converter’s ability to ef-
fectively set and maintain voltage and frequency in both
stand-alone and parallel modes, reinforcing its suitability
for MG systems. Furthermore, hardware-in-the-loop testing,
specifically in the isochronous mode, substantiated the con-
verter’s reliability and adaptability under real-world condi-
tions. These results underscore the converter’s potential for
improving MG stability and resilience, offering a promising
solution for future medium voltage microgrid applications.
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FIGURE 14. a) HIL results for a step load (phase A): PCC voltage (CH1),
current (CH2) and FFT voltage (CH1) considering -20% of output
impedance estimating error, b) Zoomed view before step load, c) Zoomed
view after step load.
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