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ABSTRACT This manuscript presents current sensorless algorithms for maximum power point tracking 

(MPPT) in partially shaded photovoltaic (PV) systems. The necessity of a current sensor is eliminated 

with the use of mathematical modeling of the power electronics converter. This approach significantly 

reduces the implementation cost and the inherent disadvantages in the current sensor circuitry. MPPT 

techniques based on soft computing are employed, in addition to Perturb and Observe (P&O), due to 

their ability to explore a larger search space. This feature is advantageous because it minimizes 

convergence risk to a local maximum, a limitation of traditional techniques. Simulation and experimental 

results are presented and each algorithm is evaluated through different metrics, such as search time for 

the global maximum power point (GMPP) and efficiency. The tests consider dynamic irradiance profiles, 

producing a tracking factor (TF) above 99% and a remarkable fast convergence time. 

KEYWORDS MPPT, sensorless, metaheuristic, reduced cost, partial shading conditions, photovoltaic 

arrays. 
 

 

I. INTRODUCTION 

Environmental conditions, such as irradiance (W/m2) and 

temperature (°C), directly impact the nonlinear Power-

Voltage (P-V) and Current-Voltage (I-V) curves of 

photovoltaic systems [1]. Under uniform irradiance 

conditions, these curves exhibit a single point of maximum 

power (MPP), as illustrated in Figure 1(a). To ensure 

optimal energy utilization, it is essential to maintain the 

photovoltaic system at the optimum operating point. To 

achieve this, a maximum power point tracking algorithm 

(MPPT) is employed. This algorithm controls a power 

electronics converter by adjusting the impedance observed 

by the photovoltaic module through voltage or current 

variations and, finally, the duty cycle of the converter. 

The literature presents a wide range of MPPT 

algorithms, which can be categorized into traditional 

methods, artificial intelligence (AI) methods, metaheuristic 

methods, and hybrid methods. Traditional methods, such as 

Perturb and Observe (P&O), Incremental Conductance 

(IC), and Hill Climb (HC), perform well exclusively under 

uniform conditions [2, 3, 4]. However, they are not efficient 

in tracking under partial shading conditions, where the P-V 

and I-V characteristic curves exhibit multiple local maxima 

(LMPPs) and only one global maximum power point 

(GMPP), as depicted in Figure 1(b) [5, 6]. AI methods [7,8] 

perform better in tracking MPP under shading, but require 

greater computational burden and extensive training. 

Metaheuristic techniques can handle nonlinear 

optimization problems with computational simplicity, 

enabling a broad search for the MPP across the 

characteristic curves, and reducing the probability of 

converging to a local maximum. Hybrid methods are 

combinations of intelligent and conventional methods. In 

[9], a new algorithm is proposed that combines the fast 

response time of a conventional algorithm with the broad 

search space of a metaheuristic technique, thereby 

enhancing efficiency under partial shading conditions. 

 

FIGURE 1. PxV curves. (a) with uniform irradiance, (b) with 
partial shading. 

Many MPPT techniques commonly rely on current and 

voltage sensors. Removing the current sensor can offer 

several benefits, including reduced costs, lower 

computational data storage requirements, and improved 

system reliability [10]. Additionally, it helps avoid issues 

associated with Hall effect sensors, such as magnetic 

interference and measurement accuracy problems. 

Incorporating additional sensors into the prototype requires 
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not only the sensors themselves but also the conditioning 

circuitry and a controller with an additional analog-to-

digital converter (ADC). A high sampling rate ADC is 

commonly necessary. Furthermore, current sensor circuitry 

is susceptible to switching noise, which can degrade 

controller performance. 

In this manuscript, global and hybrid algorithms with 

only one voltage sensor at the input are proposed. The need 

for a current sensor is eliminated as the MPPT algorithms 

incorporate mathematical formulations that enable the 

estimation of current measurements, and a controller is 

integrated into the algorithms to increase energy 

conversion effectiveness. The idea was first presented at 

the Brazilian Power Electronics Conference – COBEP 

2023 [11] in an initial stage with simulation results. In this 

version, not only simulations but also experimental 

evaluations are performed with deeper discussions of 

flowcharts and coefficients tuning, and the results 

demonstrate that the proposed algorithms can track 

efficiently in the face of shading and maintain the same 

performance and dynamic response comparable to 

techniques that use both voltage and current sensors. 

II. PROPOSED METHODS 

Figure 2 illustrates the main concept of the proposed 

algorithms. At its core, it employs a global MPPT 

approach. Additionally, hybrid algorithms are derived to 

further enhance performance. The input is the measured PV 

voltage and the output is the PV reference voltage, which 

is tracked by the power electronics converter with the use 

of a PI controller. The PI controller generates the duty cycle 

of the converter, which is used as feedback to estimate the 

PV current. Hence, observing the complete algorithm, the 

input is only the PV voltage (𝑉𝑃𝑉) and the output is the duty 

cycle (D). 

 

 

FIGURE 2. Simplified model of the MPPT Algorithms. 

The implemented global algorithms are inspired by 

natural phenomena: they mimic natural processes to 

provide optimal solutions to global optimization problems. 

In this work, three distinct bioinspired techniques were 

employed. The first is the particle swarm optimization 

(PSO) algorithm, which draws inspiration from the 

foraging behavior of birds and fish. The second technique, 

the gray wolf optimization (GWO), is based on the 

hierarchical leadership and hunting mechanisms observed 

in gray wolves. Lastly, the firefly algorithm (FA) takes cues 

from the luminous flashes and movement patterns of 

fireflies. It incorporates mechanisms used for attracting 

mates and hunting. Initially, the bioinspired methods are 

used to perform a global search, traversing the entire 

operating space of the characteristic curves. After 

completing the search iterations, the P&O method with a 

small perturbation step is employed to refine the operating 

point for the hybrid approaches. 

For current prediction, the value is derived from the 

mathematical modeling of the DC-DC boost converter. 

This involves considering the input voltage (V𝑖𝑛) as the PV 

voltage, a selected load (R) to achieve maximum power at 

the desired output voltage (𝑉𝑜), the converter static gain 

(G), and its duty cycle (D). The static gain (G) can be 

expressed as follows:  

 𝐺 =
𝑉𝑜
𝑉𝑖𝑛

=
1

1 − 𝐷
 (1) 

Equations (2) and (3) represent the current flowing 

through the load (R) and the current passing through the 

inductor (L), respectively. 

 𝐼𝑅 =
𝑉𝑜
𝑅

 (2) 

 𝐼𝐿 =
𝐼𝐷

1 − 𝐷
 (3) 

Where (𝐼𝐷) is the current in the converter diode, which 

in average terms is the same as (𝐼𝑅). Thus, isolating (𝐼𝐷) in 

(3) and equating it to (2) yields (4). 

 𝐼𝐿 =
𝑉𝑜

𝑅(1 − 𝐷)
   (4) 

In the method, a voltage sensor is used to measure (𝑉𝑖𝑛). 

Thus, from (1), it is possible to isolate (𝑉𝑜) and replace it in 

(4), deriving (5). 

 𝐼𝐿 =
𝑉𝑖𝑛

𝑅(1 − 𝐷)2
= 𝐼𝑃𝑉    (5) 

Equation (5) represents the predicted input current of the 

photovoltaic system, which is used for processing the 

MPPT algorithms. It is worth mentioning that the 

methodology addressed in this work requires an estimate of 

the load at the MPP. The current estimator operates in 

steady state, using only average values for prediction. As a 

result, the capacitor current has no impact on estimation. 

A. Particle Swarm Optimization - PSO 

The PSO method is an evolutionary algorithm applied to 

optimize multivariable functions with numerous local 

optima [12]. Its modeling is based on the foraging of a flock 

of birds and a school of fish. In this algorithm, a population 

of 𝑁 particles is defined, each characterized by its position 

(𝑥𝑖) and velocity (𝑣𝑖) which are updated at each iteration. 

It is observed that for the first iteration, the position of each 

particle is randomly assigned within the search space, while 

its velocity is set within the interval [0, 1]. In addition, each 

particle has its fitness value defined by an objective 

function. During the search process, the position of the 

particles is influenced by the best position found 

individually by the particle (𝑝𝑏𝑒𝑠𝑡) and by the best position 

of the entire population (𝑔𝑏𝑒𝑠𝑡). In this sense, the position 

(𝑥𝑖) of the particles is adjusted according to (6).  

 𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1) (6) 

With the speed (𝑣𝑖) calculated by (7). 
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𝑣𝑖(𝑘 + 1) = 𝜔𝑣𝑖(𝑘) + 𝑐1𝑟1 

(𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑘)) + 𝑐2𝑟2 ∙ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)) 
(7) 

Where (𝜔) is the inertia weight; (𝑟1) and (𝑟2) are 

random variables between [0, 1]; (𝑐1) and (𝑐2) are 

acceleration coefficients that measure the importance of 

𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡  values. To exemplify, when 𝑐1 = 𝑐2, both 

values are equally considered to define the particles 

velocity. Furthermore, (𝑘) is the number of iterations. The 

search process ends when the iteration limit value is 

reached, or when some convergence criterion is reached.  

Figure 3 illustrates the flowchart of the PSO method. The 

process begins by defining the population size and the 

maximum number of iterations. Each particle is then 

randomly positioned within the range [0, Voc], where 𝑉𝑜𝑐 

represents the open-circuit voltage of the array. Next, the 

fitness value of each particle is calculated using the 

extracted power as the objective function, as shown in (8).  

 𝑓(𝑥𝑖) = 𝑃𝑖
𝑘 = 𝑉𝑖

𝑘 ∙ 𝐼𝑖
𝑘 (8) 

Where (𝑉) and (𝐼) are the voltage and current of the 

photovoltaic array of particle (𝑖) in iteration (𝑘). The 

power of the current iteration (𝑃𝑖
𝑘) is compared with the 

power obtained in the previous iteration (𝑃𝑖
𝑘−1). If (𝑃𝑖

𝑘) is 

greater, it is set as (𝑃𝑏𝑒𝑠𝑡,𝑖). After evaluating all particles, 

(𝑔𝑏𝑒𝑠𝑡) is defined as the position of the particle that 

achieved the highest power. These constraints are used for 

the particle update process according to (6) and (7). 

 

 

FIGURE 3. PSO based MPPT Flowchart. 

 The stopping condition is met when the algorithm 

reaches the iteration limit or if the particle speed falls below 

a specified threshold. Furthermore, the reset condition 

identifies changes in irradiance and temperature values, 

which affect the MPP; Thus, (9) determines whether the 

algorithm should be restarted [13].  

 

 
𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑙𝑎𝑠𝑡

𝑃𝑙𝑎𝑠𝑡

> ∆𝑃 (%)  (9) 

Where (∆𝑃) is the power variation limit chosen by the 

designer, (𝑃𝑔𝑏𝑒𝑠𝑡) is the power at the best point found by 

the swarm and (𝑃𝑙𝑎𝑠𝑡) is the power recorded in each 

iteration after convergence.  

 

B. Firefly Algorithm - FA 

The FA method, proposed by Yang in 2009 [14], is based 

on the light emission mechanism that fireflies use to attract 

prey, mates, and signal danger. The emitted light is directly 

related to the physical characteristics of each firefly, 

meaning that each individual has a different intensity. 

Consequently, brighter fireflies have an advantage over 

those with lower luminosity. Thus the algorithm is based 

on the principle that light decreases as the distance from the 

light source increases [15]. The flashing light of fireflies is 

modeled to correspond with an objective function, enabling 

the solution of optimization problems, similar to the PSO 

method. In this context, the formulation of the algorithm is 

based on three key assumptions:  

 

1) All fireflies are unisex, so a firefly will be attracted to 

the brightest one until it is compared to all fireflies; 

2) Attractiveness is proportionally related to relative 

brightness, both being inversely proportional to 

frequency ranges; 

3) The brightness of each firefly is determined by the 

objective function 𝑓(𝑥𝑖). 
 

In the mathematical formulation, attractiveness is related 

to both the brightness of the fireflies and their distance. 

Specifically, as the distance increases, the brightness 

decreases, resulting in weaker attraction. This relationship 

is represented by (10). 

 𝛽 = 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

 (10) 

Where (𝛽0) is the initial attractiveness, usually set to 1, 

(𝑟𝑖𝑗) is the Cartesian distance between two fireflies, 

calculated by (11) and (𝛾) is the absorption coefficient that 

controls the rate at which brightness intensity decreases. 

 𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ =  √∑(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

𝑑

𝑘=1

 (11) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝛽 ∙ (𝑥𝑗
𝑘 − 𝑥𝑖

𝑘) + 𝛼

∙ (𝑟𝑎𝑛𝑑 −
1

2
) 

(12) 

Equation (12) calculates the movement of one firefly 

toward another, with the attraction between firefly (𝑖) and 

firefly (𝑗) represented by the second term of (12). A 

random number between 0 and 1, (𝑟𝑎𝑛𝑑), is used to assist 

the algorithm in traversing the entire search space, as can 

be seen in the third term [14]. 

https://creativecommons.org/licenses/by/4.0/
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FIGURE 4. FA based MPPT Flowchart 

The FA-based MPPT technique is illustrated in the 

flowchart shown in Figure 4. Similar to the PSO method, 

initially a population of N individuals is generated, all with 

their brightness evaluated from (8); later, each firefly is 

compared with the others and moves towards the brightest. 

To exemplify, suppose fireflies (𝑖) and (𝑗), respectively 

positioned in (𝑥𝑖) and (𝑥𝑗). If the brightness of firefly (j) is 

greater than the brightness of (𝑖), (𝑥𝑖) is updated towards 

(𝑥𝑗), and a new fitness value is calculated; otherwise, the 

position of the firefly (𝑖) remains unchanged. The 

comparison process ends after all fireflies have been 

compared to each other, and a new iteration begins. The 

algorithm concludes after completing the specified number 

of iterations and is restarted when the condition in (9) is 

met. 

 

C. Grey Wolf Optimization - GWO 

Inspired by the hunting behavior of gray wolves, Mirjalili 

proposed the GWO algorithm in 2014 [16]. The algorithm 

models the hierarchical organization of the pack during the 

hunt. Within the leadership hierarchy, four types of wolves 

are considered: Alpha, Beta, Delta, and Omegas. Alpha (𝛼) 

is the wolf best located in the hunting search space, 

responsible for making decisions and leading the pack. 

Beta (𝛽) and Delta (𝛿 ) are the second and third in 

command, respectively. They must submit to (𝛼) and help 

in decision-making, while the Omegas (𝜔) are the other 

members of the pack. Having no decision-making power to 

move the pack, they perform various tasks, such as caring 

for sick and injured wolves and signaling dangerous 

situations to the pack. Equations (13) and (14) 

mathematically model the behavior of surrounding prey 

during hunting.  

 

 �⃗⃗� = |𝐶 ∙ 𝑋 𝑝 − 𝑋 (𝑘)| (13) 

 𝑋 (𝑘 + 1) =  𝑋 𝑝(𝑘) − 𝐴 ∙ �⃗⃗�    (14) 

Where (𝑋 𝑝) indicates the prey position vector, (𝑋 ) the 

gray wolf position vector. (𝐴 ) and (𝐶 ) represent the 

coefficient vectors, calculated as follows: 

 𝐴 = 2𝑎 ∙ 𝑟1 − 𝑎  (15) 

 𝐶 = 2 ∙ 𝑟2 (16) 

Here (𝑟1) and (𝑟2) are randomness vectors defined 

within the interval [0,1]. (𝑎) is used as a convergence factor 

which decreases from 2 to 0, depending on the relationship 

between the current iteration (𝑘) and the maximum number 

of iterations (𝑘𝑚𝑎𝑥), as described by (17).  

 𝑎 = 2 ∙ (1 −
𝑘

𝑘𝑚𝑎𝑥

) (17) 

To update the wolves’ positions, it is necessary to 

perform (18) to (24), as follows:  

 

 𝐷𝛼 = |𝐶1 ∙ 𝑋𝛼 − 𝑋𝑤𝑜𝑙𝑓(𝑘)|  (18) 

 𝐷𝛽 = |𝐶2 ∙ 𝑋𝛽 − 𝑋𝑤𝑜𝑙𝑓(𝑘)|   (19) 

 𝐷𝛿 = |𝐶3 ∙ 𝑋𝛿 − 𝑋𝑤𝑜𝑙𝑓(𝑘)| (20) 

 𝑋𝑤𝑜𝑙𝑓,𝛼 = 𝑋𝛼 − 𝐴1 ∙ 𝐷𝛼  (21) 

 𝑋𝑤𝑜𝑙𝑓,𝛽 = 𝑋𝛽 − 𝐴2 ∙ 𝐷𝛽 (22) 

 𝑋𝑤𝑜𝑙𝑓,𝛿 = 𝑋𝛿 − 𝐴3 ∙ 𝐷𝛿  (23) 

 

𝑋𝑤𝑜𝑙𝑓
𝑘+1

=
𝑋𝑤𝑜𝑙𝑓,𝛼 + 𝑋𝑤𝑜𝑙𝑓,𝛽 + 𝑋𝑤𝑜𝑙𝑓,𝛿

3
             

(24) 

Where (𝐷𝛼), (𝐷𝛽), (𝐷𝛿)  are the distances between the 

positions of the wolves that dictate the movement of the 

pack (𝑋𝛼), (𝑋𝛽) and (𝑋𝛿) in relation to the position of the 

wolf 𝑋𝑤𝑜𝑙𝑓(𝑘). The position of each wolf in the following 

iteration, 𝑋𝑤𝑜𝑙𝑓(𝑘 + 1) is given by the average of the 

positions evaluated by the wolves in the command, 

respectively expressed by (𝑋𝑤𝑜𝑙𝑓,𝛼), (𝑋𝑤𝑜𝑙𝑓,𝛽) and 

(𝑋𝑤𝑜𝑙𝑓,𝛿) [17, 18]. 

The flowchart of the GWO method is shown in Figure 5. 

The pack is initiated by defining N individuals and a 

maximum number of iterations. Each wolf randomly 

receives a position within the search space [0, Voc] and the 

power is calculated by (8). Then, a descending order is 

established, where the first three wolves are defined by 

(𝛼), (𝛽), and (𝛿), respectively. Then, the position of each 

wolf is updated through (24) until the stopping criterion is 

reached, which is typically defined by the maximum 

number of iterations. Furthermore, reinitialization occurs 

when (9) is satisfied. 

https://creativecommons.org/licenses/by/4.0/
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FIGURE 5. GWO based MPPT Flowchart. 

D. Perturb and Observe – P&O 

The flowchart of the P&O algorithm is presented in Figure 

6. The method begins its operation by evaluating the power 

generated by the photovoltaic array. Next, the array voltage 

is adjusted, either increased or decreased. After this 

adjustment, a new evaluation is performed, and the 

resulting power is compared with the value obtained in the 

previous iteration. If the power in the current iteration, 

denoted as 𝑃(𝑘), is greater than the power in the previous 

iteration, 𝑃(𝑘 − 1), this indicates that the perturbation was 

effective. Consequently, the same perturbation direction is 

maintained to continue the search for the MPP. Conversely, 

if the power in the current iteration is less than the power 

in the previous iteration, then the perturbation direction 

should be changed to the opposite direction [19]. 

Finally, hybrid techniques can combine the P&O method 

with each of the metaheuristics described so far, resulting 

in PSO-P&O, FA-P&O and GWO-P&O. The methodology 

adopted to search for the MPP will begin with the 

intelligent algorithm, performing a broad sweep of the 

search space, then the P&O algorithm will be used to refine 

the point found resulting in an operation with small 

variations around the MPP. The objective is to reduce the 

number of iterations required by each intelligent technique 

and, consequently, decrease the convergence time. 

 

FIGURE 6. P&O based MPPT Flowchart. 

As pointed out before, traditional methodologies rely on 

both current and voltage sensors to accurately calculate 

power extraction. In our proposal, however, precise current 

values are not necessary. Instead, the focus is on verifying 

power changes using the objective functions of 

metaheuristic algorithms. In that sense, a steady state 

current estimator is sufficient to satisfactory results.  

Alternatively, a dynamic current estimator could be used 

[20, 21]. However, an additional voltage sensor and its 

circuitry must be added to the system. Furthermore, 

specific data, such as the equivalent series resistance of the 

inductor and/or parasitic components losses must be 

included in the control system, which may vary in practice 

due to heating.  

 

III. SIMULATION RESULTS 

Figure 7 illustrates the simulation model developed in the 

MATLAB/Simulink® environment to implement the 

proposed algorithms. The solar cell model used is described 

by [22], and each MPPT technique, implemented as an m-

function, is employed to control the duty cycle of the DC-

DC boost converter.  

 

The boost converter is modeled using its average model 

[2], with the following specifications: inductance Lb = 3.3 

 FIGURA 7. MATLAB/Simulink® Simulation Model. 

https://creativecommons.org/licenses/by/4.0/
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mH, output capacitance Cb = 27 µF, load resistance RL = 

50 Ω, and a switching frequency of fs = 20 kHz. The PI 

controller was tuned according to [23] resulting in kp = 

0.001 and ki = 3.48. 

Table 1 presents the parameters of each irradiation and 

temperature step used in the simulation of the evaluated 

methods, along with the maximum theoretical power. The 

photovoltaic array consists of 4 series-connected 

KC200GT modules.

 

FIGURE 8. Power Extracted using the Current Sensorless Algorithms. 

TABLE 1. Varying power profiles simulation. 

Irradiance (W/m²)          

M1; M2; M3; M4 

Temperature 

(°C) 
Theorical 

Power (W) 
600; 600; 800; 800 35 488.60 

400; 500; 600; 700 20 360.56 

1000; 1000; 1000; 1000 25 800.04 

200; 750; 750; 900 30 454.53 

 

To simulate the PSO algorithm, varying coefficients were 

used. As proposed in [24], equations (25), (26), and (27) are 

applied to adjust the learning coefficients and inertia weight 

according to the number of iterations.  

 

𝑐1 = 𝑐1,𝑚𝑎𝑥 − (𝑐1,𝑚𝑎𝑥 − 𝑐1,𝑚𝑖𝑛)

∗ (
𝑘

𝑘𝑚𝑎𝑥

) 
(25) 

 

𝑐2 = 𝑐2,𝑚𝑖𝑛 + (𝑐2,𝑚𝑎𝑥 − 𝑐2,𝑚𝑖𝑛)

∗ (
𝑘

𝑘𝑚𝑎𝑥

) 
(26) 

 𝜔 = 𝜔𝑚𝑎𝑥 − (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) ∗ (
𝑘

𝑘𝑚𝑎𝑥

) (27) 

It is observed that the parameters (𝑐1) and (𝜔) are initially 

set to the maximum value to assist in a broad search, refining 

the particle movement as the number of iterations increases; 

while (𝑐2) is used to reduce oscillations close to the MPP. 

Table 2 presents the adopted parameters. 

 
TABLE 2. PSO parameters. 

𝑐1,𝑚𝑎𝑥  2.00 𝑐1,𝑚𝑖𝑛  0.6 

𝑐2,𝑚𝑎𝑥 2.20 𝑐2,𝑚𝑖𝑛  0.4 

𝜔𝑚𝑎𝑥  0.60 𝜔𝑚𝑖𝑛  0.2 

𝑘𝑚𝑎𝑥 25 𝑁 5 
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In [25], a modified FA method is proposed, which 

evaluates solutions similarly to those used for the PSO 

algorithm, applying equations (28) and (29) to express the 

values of (𝛽0) and (𝛼) as a function of the number of 

algorithm iterations. 

 𝛼 =  𝛼𝑚𝑎𝑥 + (𝛼𝑚𝑖𝑛 − 𝛼𝑚𝑎𝑥 ) ∗ (
𝑘

𝑘𝑚𝑎𝑥

) (28) 

 𝛽0 = 𝛽0𝑚𝑎𝑥
+ (𝛽0𝑚𝑖𝑛

− 𝛽0𝑚𝑎𝑥
) ∗ (

𝑘

𝑘𝑚𝑎𝑥

)  (29) 

The parameter (𝛼) assists in the randomization of the 

search space in a directly proportional manner. Specifically, 

the higher the value of (𝛼), the greater the exploration 

carried out by the fireflies, consequently the lower the 

convergence speed. Thus, small values of (𝛼) result in a 

more refined search, which increases the risk of convergence 

to local maxima. The parameter (𝛽0) is also related to the 

convergence time, exhibiting an inversely proportional 

relationship [25]. The coefficients used to simulate the FA 

method are shown in Table 3. 

 
TABLE 3. FA parameters. 

𝛼𝑚𝑎𝑥 0.65 𝛼𝑚𝑖𝑛  0.17 

𝛽𝑚𝑎𝑥  2.60 𝛽𝑚𝑖𝑛  1.15 

𝑘𝑚𝑎𝑥 15 𝑁 3 

 

For the GWO method, the modification proposed in [18] 

was used, which assigns different weights to the wolves 

(𝛼), (𝛽) and (𝛿), as shown in (30). Unlike equation (24), 

which applies equal weights to wolves with decision-making 

influence, which ends up ignoring the difference that exists 

between them. The simulation of the GWO method is 

defined with 𝑁 = 3 and 𝑘𝑚𝑎𝑥 = 15. 

 

 𝑋𝑤𝑜𝑙𝑓
(𝑘+1)

=
𝑋𝑤𝑜𝑙𝑓,𝛼

2
+

𝑋𝑤𝑜𝑙𝑓,𝛽

3
+

𝑋𝑤𝑜𝑙𝑓,𝛿

6
 (30) 

Figure 8(a) illustrates the power extracted from the array 

using the Current Sensorless P&O [10], Current Sensorless 

PSO, Current Sensorless GWO, and Current Sensorless FA 

algorithms, all of which include current prediction. The 

Tracking Factors (TFs) for the algorithms are 87.08%, 

99.59%, 99.30%, and 99.11%, respectively. It is worth 

mentioning that the Current Sensorless P&O algorithm, 

which lacks a global maximum search feature does not 

accurately track the ideal MPP, as can be seen in the last 

profile where the method converges to a local maximum. 

Furthermore, each method was combined with the P&O 

algorithm to create three other hybrid algorithms. To 

minimize oscillations around the MPP, the P&O 

perturbation was set to 0.1 V. Thus, in Figure 8(b) the power 

extracted is evaluated with the hybrid methods Current 

Sensorless PSO-P&O, Current Sensorless FA-P&O and 

Current Sensorless GWO-P&O. The TFs for the algorithms 

are 99.75%, 99.53%, and 99.22%, respectively. The hybrid 

methods have a reduction of 5 iterations, except for the FA 

method, which maintained the same number of iterations. 

All methods achieved superior efficiency compared to those 

that are not combined with the P&O algorithm, both by 

reducing the number of iterations and by refining the 

operation around the MPP, which can be observed by 

evaluating the details in Figures 8(a) and 8(b). It is worth 

mentioning that all algorithms work with an acquisition 

frequency of 1 kHz and a crossover frequency of 100 Hz. 

The PI controller tuning followed the strategy outlined in 

[26].  

Figures 9, 10, and 11 show the comparison between the 

sensorless hybrid algorithms and the algorithms using both 

current and voltage sensors. For this, the same coefficients 

were applied as in the first simulation profile of Table 1. 

 

 
FIGURE 9. Comparison of Power Extracted for PSO-P&O 
Current Sensorless and PSO-P&O With voltage and current 
sensors. 

The TFs for the PSO-P&O Current Sensorless and PSO-

P&O algorithms with both sensors are, respectively, 99.77% 

and 99.78%, with a convergence time of around 0.33s. 

 

FIGURE 10. Comparison of Power Extracted for FA-P&O Current 
Sensorless and FA-P&O With voltage and current sensors. 

The TFs for the FA-P&O Current Sensorless and FA-P&O 

algorithms with both sensors are, respectively, 99.06% and 

99.10%, with a convergence time of around 0.50s. 

 

The TFs for the GWO-P&O Current Sensorless and 

GWO-P&O algorithms with both sensors are, respectively, 

99.69% and 99.70%, with a convergence time of around 

0.30s. 

To simplify the comparison between the MPPT 

algorithms, Table 4 provides a concise analysis, offering an 

FIGURA 11. Comparison of Power Extracted using GWO-P&O 
Current Sensorless and GWO-P&O With voltage and current 
sensors. 

https://creativecommons.org/licenses/by/4.0/


8 
Eletrônica de Potência, Rio de Janeiro, v.29, e202452, 2024.  8 

 

 

Martines et al.: Sensorless MPPT Algorithms for PV Systems in Partially Shaded Scenarios 

overview of their main characteristics and performance 

according to the applied irradiance and temperature profiles. 

Additionally, to evaluate the performance of the 

algorithms under conditions of inaccurate current estimation, 

the PSO sensorless algorithm was tested with measurement 

errors of 5% and 10% in the current. For this, the load value 

was changed in the software to a range of -10% and + 10%. 

The tested power profile remains the same as shown in Table 

1. The tracking factors achieved were 99.56%, 99.59%, 

99.57, and 99.60, for -5%, -10%, +5%, and +10% errors, 

respectively. Therefore, the algorithms are not directly 

influenced by current estimation errors as the main purpose 

of their cost functions is to verify the increase in power 

extraction rather than the exact power measurement. 
 
TABLE 4. Comparison of the MPPT techniques considering the four applied power profiles. 

 

 
Search Time for the GMPP (s) 

Steady-State Power Oscillation 

(%) 
Tracking Efficiency (%) TF (%) 

Case 1 2 3 4 1 2 3 4 1 2 3 4 Global 

P&O 

Sensorless 
0.05 1.40 0.20 - 0.13 0.43 0.22 2.20 100 100 100 40.70 87.07 

PSO 

Sensorless 
0.35 0.40 0.21 0.45 0.10 0.16 0,03 0,06 100 100 100 100 99.59 

GWO 

Sensorless 
0.50 0.46 0.47 0.52 0.05 0.14 0.14 0.15 100 100 100 100 99.30 

FA 

Sensorless 
0.51 0.40 0.28 0.32 0.06 0.14 0.04 0,13 99.77 100 100 99.48 99.11 

P&O+PSO 

Sensorless 
0.30 0.28 0.28 0.24 0.04 0.05 0.01 0.04 100 100 100 100 99.75 

P&O+GWO 

Sensorless 
0.34 0.32 0.34 0.35 0.08 0.13 0.02 0.04 100 100 100 100 99.53 

P&O+FA 

Sensorless 
0.51 0.48 0.25 0.52 0.04 0.05 0.01 0,02 100 100 100 100 99.22 

(-) GMPP not found.

Thus, for the construction of Table 4, criteria such as 

GMPP search time, steady-state power oscillation, tracking 

efficiency, and TF were considered. Each metric is detailed 

below [27,28]: 

 

1) GMPP search time: This refers to the time it takes for 

the algorithm to locate the GMPP. This criterion is 

crucial, as a longer search time implies lower energy 

yield; 

2) Steady-state power oscillation: Calculated from the 

amplitude of the oscillations that occur after the system 

finds the GMPP; 

3) Tracking efficiency: Measured by the proportion of 

energy obtained relative to the available energy in 

steady-state conditions, indicating the method’s 

accuracy; 
 

4) TF (Tracking Factor): The ratio between the useful 

energy extracted and the available energy over a given 

period, representing the overall efficiency of the system. 

 

 

It is observed that the longer an irradiance and temperature 

profile is applied, the less influence the search time has on the 

calculation of the TF. Thus, in steady-state conditions, this 

coefficient tends to reflect the tracking efficiency, which is 

related to how closely the system operates at the GMPP. As a 

highlight of the simulation results, the P&O+PSO sensorless 

and P&O+GWO sensorless algorithms achieved the highest 

TFs, with 99.75% and 99.53%, respectively. Both algorithms 

successfully tracked the GMPP in all applied profiles, with a 

search time of less than 0.30 s for the P&O+PSO sensorless 

and less than 0.35 s for the P&O+GWO sensorless. 

IV. EXPERIMENTAL RESULTS 

Figure 12 presents the experimental model developed. A 

programmable power source, the TerraSAS ETS 600/17 

model by Elgar, is used to simulate the electrical behavior of 

photovoltaic modules. The software for this source allows for 

the configuration of photovoltaic arrays and enables the 

insertion of parameters for systems with partial shading. The 

TerraSAS is configured to match the photovoltaic array used 

during the simulation and is then connected to the DC-DC 

boost converter. Additionally, the TMS320F28379D DSP by 

Texas Instruments is used to control the converter by 

processing signals obtained from the current and voltage 

sensors through signal conditioning circuitry. The boost 

switch is G4PH50UD, the boost diode is RHRP860, the 

inductor core is an NEE 65/33/39.  The voltage sensor is LV 

25-P LEM.  

 

FIGURE 12. Experimental setup implementation. 

https://creativecommons.org/licenses/by/4.0/
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Neglecting the usage of a hall effect sensor and its 

conditioning circuitry, we may reduce the prototype cost by 

approximately US$ 37.16.  

For the experiment, four new power profiles were applied, 

as shown in Table 5.  

 
TABLE 5. Experimental varying power profiles.  

Irradiance (W/m²)          

M1; M2; M3; M4 

Temperature 

(°C) 
Theorical 

Power (W) 
750; 650; 580; 360 10 394.50 

900; 800; 900; 800 25 665.20 

200; 750; 750; 900 30 454.65 

1000; 600; 1000; 600 35 499.20 

 

Each profile is applied for 40 seconds, during which the 

oscilloscope is used to monitor the waveforms of power, 

current, and voltage from the photovoltaic array. The 

experimental results for the PSO algorithm are then shown in 

Figures 13 and 14 for both sensor and sensorless methods, 

respectively. 

 

 

FIGURE 13. Power Extracted for experimental PSO with voltage 
and current sensors. 

In Figures 13 and 14, the power of the photovoltaic array 

is shown in orange (400W/div); the current in green (5A/div), 

and the voltage in blue (50V/div). The detailed views, with 

time scale of 1s/div, reveal the behavior of the system during 

transitions between power profiles. It is noted that both 

methods found the GMPP in all evaluated profiles. The TFs 

for the algorithm with both sensors are 99.03% and 99.08% 

for the sensorless algorithm. Furthermore, a search time 

between 1.35 and 2.50 seconds is observed, considering all 

the applied steps. The parameters of the PSO algorithm used 

in the experiments are listed in Table 6. 

 

 

FIGURE 14. Power Extracted for experimental Current 
Sensorless PSO. 

TABLE 6. PSO experimental parameters. 

𝑐1,𝑚𝑎𝑥  2.20 𝑐1,𝑚𝑖𝑛  0.15 

𝑐2,𝑚𝑎𝑥 2.20 𝑐2,𝑚𝑖𝑛  0.57 

𝜔𝑚𝑎𝑥  0.60 𝜔𝑚𝑖𝑛  0.20 

𝑘𝑚𝑎𝑥 20 𝑁 4 

 

V. CONCLUSIONS 

This work presented three Current Sensorless Global 

maximum power point tracking algorithms that do not require 

current sensors. They are Current Sensorless PSO, Current 

Sensorless FA, and Current Sensorless GWO. Instead, these 

algorithms rely solely on a single voltage sensor at the input 

and incorporate duty cycle feedback to estimate current, 

along with compensators for optimization purposes. 

Additionally, each of the three methods was combined with 

the P&O algorithm, resulting in three hybrid algorithms: 

Current Sensorless PSO-P&O, Current Sensorless FA-P&O, 

and Current Sensorless GWO-P&O. Simulation and 

experimental results demonstrated that the algorithms 

achieved excellent performance in terms of tracking 

maximum power with high convergence speed, maintaining 

the same level of quality as algorithms that use both sensors. 

Among the algorithms, Current Sensorless PSO+P&O stood 

out with the highest TF for the scenarios tested during the 

simulations. Furthermore, the experimental results also 

demonstrate that the applied sensorless methodology is 

capable of tracking the GMPP and achieving a higher TF 

compared to the conventional methodology that uses both 

sensors. 
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