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ABSTRACT Solar energy is widely regarded as an environmentally friendly and sustainable source of
power. It reduces greenhouse gas emissions and dependency on fossil fuels, contributing to a cleaner
environment. It also provides cost savings and enhances energy security. However, technical challenges
persist. Poor installation, inadequate maintenance, and aging can degrade photovoltaic (PV) systems,
leading to failures or faults. These issues increase the risk of power losses, electrical shocks, and fires. Direct
Current (DC) arcs, in particular, pose a significant fire hazard in PV systems due to their unpredictability and
high potential for damage. However, accurately defining parameters for real-world DC arc faults is difficult.
Developing computational models of electric arcs is essential for simulating, analyzing, and detecting these
faults. In that sense, this work provides a comprehensive overview of the prominent black-box arc models
documented in the scientific literature, along with various methods for parameter identification, to facilitate
the investigation of arc-related incidents within PV systems.
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I. INTRODUCTION
The urgency to combat climate change, with rising sea
levels as a stark reminder, has propelled carbon peaking
and carbon neutrality to the forefront of global development
goals. Transitioning away from fossil fuels is crucial to curb
carbon dioxide emissions. In this context, renewable energy
sources offer a compelling solution [1].

The field of renewable energy, led by solar and wind
power, has seen remarkable growth in recent years [2]. Solar
photovoltaic (PV) systems are gaining significant attention
as a renewable energy source for generating electricity.
Unlike traditional sources, PV harnesses solar energy, a
clean and abundant resource, to produce electricity without
environmental pollution [1]. Their applications range from
large-scale integration into grid systems to power individual
homes, and even a new, innovative approach: agrivoltaics,
which combines solar power generation with agricultural
practices [3]. As the photovoltaic industry continues to
expand, increasing focus is being placed on equipments for
failures mitigation due to harsh environmental conditions and
natural aging.

A photovoltaic system relies on a network of solar panels
interconnected by long cables and plug connectors. However,
these external components are exposed to environmental
factors that can loosen connections or accelerate abrasion
over time. This degradation can increase the risk of Direct
Current (DC) series arc faults occurring at these connection
points, potentially leading to fires [4], [5].

PV systems face a significant hurdle in maintaining re-
liable operation due to DC series arc faults. These occur
when an electrical current preferentially flows through a
plasma channel within the circuit, often caused by a break
or looseness in a wire. Essentially, DC arcs form when air
gases ionize due to the current’s flow. The resulting arc
discharge behaves like a high-resistance element in series
with the circuit, leading to low fault currents that traditional
protection methods might not detect [6], [7]. These faults
often involve a significant energy release, including intense
light and heat, posing a major fire hazard [8]. Additionally,
the noise generated by the series arc fault can travel across
the network, potentially causing false positives in separate
current sensors [7], [9].

Detecting a DC series arc fault represents greater difficulty
due to its minimal fluctuation in current and external effects,
such as inverter noise [10], [11]. Therefore, the main chal-
lenge in detecting series arc faults is to distinguish between
the arc fault and normal operating conditions. Arc Fault
Circuit Interrupters (AFCIs) are essential for preventing fire
hazards in PV systems by detecting and mitigating electrical
arcs. AFCIs are increasingly being integrated into inverters
for arc detection [12] and different detection methods are
being developed [13]–[15].

DC arc faults pose a significant challenge due to their
inherent complexity. These electrical anomalies exhibit a
high degree of unpredictability and can manifest in diverse
forms, presenting a substantial risk. This complexity stems
from the inherent instability of electric arc dynamics, with
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properties influenced by factors such as arc length, electrode
material, and the self-generated magnetic field of the arc
current [16]. Consequently, defining precise physical con-
stants for real-world DC arc faults within power systems
proves particularly difficult. Considering this challenge, the
development of arc fault models becomes a crucial tool.
These models aim to represent the phenomenon, enabling
simulation, analysis, and, most importantly, detection of DC
arc faults.

A challenge in DC arc modeling is the estimation of
electric arc parameters. These parameters are fundamental
for accurate prediction of how an arc interacts with its
surrounding network or components, like PV inverters. [17],
[18]. Correct parameter identification is critical for model
performance, as it directly affects the model’s ability to
realistically capture arc behavior. Additionally, these arc
parameters exhibit dynamic characteristics, varying across
different test configurations (for example, short-circuit cur-
rent and arc duration) and even over time due to aging
phenomena [19].

In this scenario, there is a noticeable lack of studies that
thoroughly analyze the development process of different
black-box arc models. Typically, the models are presented
with only a brief discussion of their characteristics [13],
[19]. Furthermore, there are no comprehensive review pa-
pers specifically aimed at presenting the different parameter
estimation methods. Therefore, this work aims to provide
a comprehensive analysis of different DC arc models, high-
lighting their main features. Additionally, a concise overview
of different parameter estimation methods will be presented.
The remainder of this paper is organized as follows: Sec-
tion II presents 7 different electric arc models. Section III
examines different parameter estimation methods, which is
followed by a conclusion in Section IV.

II. DC ARC MODELS
Historically, arc fault detection methods have primarily relied
on empirical investigations through controlled laboratory
experiments. The intrinsically chaotic and complex nature of
arc behavior demands the incorporation of a comprehensive
set of parameters for accurate modeling. These parameters
encompass the conductor material properties, the inherent
characteristics of the electrical system itself, and the pre-
vailing operational state alongside the ambient environmental
conditions [17]. At the same time, advancements in compu-
tational modeling techniques have emerged as a complemen-
tary approach. By incorporating established principles of arc
physics into computer simulations, researchers can develop
robust arc fault models [20]. These models offer a versatile
and cost-effective methodology for analyzing practical power
systems under diverse arc fault scenarios.

A comprehensive categorization of electric arc models can
be established using three main categories: physics-based,
data-driven V-I, and heuristic models [21]. Physics-based
models leverage established principles of electromagnetism

and thermodynamics to comprehensively describe arc phe-
nomena through a set of governing equations. Conversely,
data-driven V-I models utilize experimentally acquired V-I
characteristics to provide a practical representation of arc
behavior under specific conditions. Finally, heuristic models
employ simplified mathematical techniques and approxima-
tions to capture the essential features of arcs, offering a
computationally efficient approach. The selection of the op-
timal model hinges on the specific simulation objectives, the
desired fidelity in replicating arc behavior, and computational
resource constraints [13].

This work will address arc models based on physical
principles, also known as black-box models, since most
studies on parameter estimation use such models. A more
complete study of all other types of arc models is the main
theme of the paper presented in [22].

A. Physical principles-derived models
An electric arc, a continuous high-current discharge between
two electrodes in a gas-filled space, generates temperatures
sufficient to melt or vaporize most materials [23]. When
the voltage is high enough, the air ionizes, leading to the
formation of positively charged ions and free electrons.
Models that describe the behavior of electric arcs simplify
intricate physical processes, making them more accessible
for analysis. These models use principles from fluid dynam-
ics, thermodynamics, and Maxwell’s equations, focusing on
conservation of mass, momentum, and energy. Due to the
computational intensity of solving these detailed equations,
practical models incorporate necessary simplifications [24].
The following equations shows the physical effects associ-
ated with electric arcs.

Conservation of mass:
δρ

δt︸︷︷︸
1⃝

+∇.(ρµ)︸ ︷︷ ︸
2⃝

(1)

Conservation of momentum:

ρ
δµ

δt︸︷︷︸
3⃝

= −∇p︸ ︷︷ ︸
4⃝

− ρ(µ.∇)µ︸ ︷︷ ︸
5⃝

(2)

Conservation of energy:

ρ
δh

δt︸︷︷︸
6⃝

−µ.∇(ρh)︸ ︷︷ ︸
7⃝

−σE2︸︷︷︸
8⃝

= −∇.(ρµ)︸ ︷︷ ︸
9⃝

+∇.(K.∇T )︸ ︷︷ ︸
10⃝

+R(t, p)︸ ︷︷ ︸
11⃝

(3)

where ρ is the gas density [kg/m3], t is time [s], µ is the
gas flow velocity [m/s], p is the pressure [kg/ms2], h is the
enthalpy of the gas [J/kg], σ is the electric conductivity
[S/m], E is the electric field strength [V/m], K is the
thermal conductivity [W/mK], T is the gas temperature [K],
and R is the radiation loss [W/m3]. Furthermore, term 1⃝
change rate of density in unit volume, 2⃝ mass flow entering
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a unit volume, 3⃝ acceleration at a point in space, 4⃝
accelerating force by pressure distribution, 5⃝ acceleration
during the motion along flow lines, 6⃝ change of energy
in unit volume, 7⃝ energy input by mass flow convection,

8⃝ Joule heating, 9⃝ work performed by flow, 10⃝ thermal
conduction loss, and 11⃝ radiation loss.

Given the significant computational resources needed to
solve the physical models outlined by the previous equations,
black-box arc models have become a valuable tool for
examining electric arcs in certain contexts. These black-box
models are grounded in physical principles and originate
from the energy balance principle, making them highly
useful for simulating and computing circuits that involve
arcs [25], [26]. They encompass the relationship between
arc voltage, arc current, and energy, based on the solution to
the general arc equation.

Arc conductance (g) is influenced by the power supplied
to the plasma channel (Pin), the power lost from the plasma
channel (Pout) due to cooling and radiation, and the duration
of the arc (t):

g = F (Pin, Pout, t) =
i

u
=

1

Re
(4)

where i represents the arc current, u is the arc voltage, and
Re denotes the arc channel resistance. When Pin and Pout

are not balanced, the arc conductance changes. The energy
stored in the plasma channel, Q, can be expressed as:

Q =

∫ t

0

(Pin − Pout)dt (5)

Hence, the arc conductance is defined as follows:

g = F (Q) = F

[∫ t

0

(Pin − Pout)dt

]
(6)

The arc conductance’s rate of change relative to the arc
conductance is stated as:

1

g

dg

dt
=

1

g

dF (Q)

dQ

dQ

dt
(7)

By deriving Equation (5) and substituting the outcome into
Equation (7), the general arc equation can be written as:

d[ln(g)]

dt
=

F ′(Q)

FQ
(Pin − Pout) (8)

Usually, certain considerations are taken into account to
solve Equation (8). Based on these assumptions, various
black-box models can be derived. Initially, it is assumed that
the arc possesses a cylindrical shape (as illustrated in Fig. 1).

dr

r

r0

FIGURE 1. Cylindrical arc.

Assuming that energy loss happens only through radial
heat conduction, the heat transfer along the circumference
with radius r can be described as:

φ(r) = −2πrκ
δT

δr
(9)

where φ(r) is the heat transfer per unit length [W/m], T is
the temperature as a function of time and the coordinate in
radial direction [K], and κ is the heat conductivity [W/mK].
The heat transfer through the infinitesimally thin layer dr at
radius r + dr can be expressed as:

φ(r + dr) = φ(r) +
δφ

δr
dr (10)

Consequently, the heat gain in the layer dr, per unit time
and per unit length, can be expressed as:

φ(r)− φ(r + dr) = −δφ

δr
dr = 2π

δ
(
rκ δT

δr

)
δr

dr (11)

However, the heat produced by the electric field within
the layer dr is:

φef = 2πrEJdr = 2πrσE2dr (12)

where E is the voltage gradient in the axial direction [V/m],
J is the current density [A/m2], and σ is the electrical
conductivity [S/m]. The total heat accumulated in the layer
dr can be represented as the sum of Equations (11) and (12):

Q = 2π
δ
(
rκ δT

δr

)
δr

dr + 2πrσE2dr (13)

The total heat accumulated in the arc per unit length can
be determined by integrating the heat across the entire cross-
section of the arc, from 0 to r0, as showed by Equation 14:

Q = 2π

(
rκ

δT

δr

)
ro

+ E2g (14)

Hence, the change in heat over time is given by:

δQ

δt
= 2πr0κ

(
δT

δr

)
+ E2g or

δQ

δt
= −P + E2g (15)

The equation presented above is a simplified form of the
energy conservation equation and is known as the Elenbaas-
Heller equation.

A significant advancement in understanding the interaction
between arcs and circuits came with Cassie’s paper on arc
dynamics [27]. Cassie introduced a differential equation that
provided a detailed view of arc behavior. The Cassie arc
model is mainly used for high-current arcs, assuming that
power dissipation is due to forced convection. This implies
that the arc’s cross-sectional area is proportional to the arc
current. Additionally, the model assumes a constant plasma
temperature and that heat transfer occurs through thermal
convection, maintaining constant conductivity, power dissi-
pation, and energy density [28]. In the model, a time constant
was introduced, which is a measure of the energy storage
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capacity and the energy losses: τ = Q′

P ′ . The Cassie arc model
is represented by the following equation:

d(ln(g))

dt
=

1

g

dg

dt
=

1

τ

(
U2

U2
0

− 1

)
(16)

where g is the conductance of the arc in Siemens [S], τ
is the arc time constant in seconds [s], U is the voltage
across the arc in volts [V] and U0 is the constant arc voltage
in volts [V]. The Cassie model is well-suited for analyzing
arc conductance in high-current scenarios where the plasma
temperature exceeds 8000 K. In photovoltaic systems, this
model is useful for detecting DC series arc faults at the array
level, where currents are generally higher.

Later, O. Mayr extended the model to address the time
interval around zero current [29]. The Mayr model sug-
gests that power dissipation through thermal conduction
remains constant, making it suitable for low-current arcs.
It is based on energy balance with several assumptions:
the arc maintains a constant cylindrical cross-section, the
conductance is an exponential function of the arc’s internal
energy and the heat transfer from the arc to its surroundings
is constant, occurring solely through thermal conduction. The
Mayr model in its classical form is given by:

d(ln(g))

dt
=

1

g

dg

dt
=

1

τ

(
U2g

P
− 1

)
=

1

τ

(
ui

P
− 1

)
(17)

where g is the conductance of the arc [S], τ is the arc time
constant [s], u is the voltage across the arc in volts [V], i is
the arc current [A] and P is the the cooling power constant
[W]. The term ”arc cooling power” is frequently used in the
literature to describe the effect of thermal energy removal
from the conductive arc column [30]. In PV systems, the
Mayr arc model is useful for detecting DC series arc faults
at levels below the string, where currents are generally lower.

Building on the foundational concepts of the Mayr and
Cassie arc models, the Habedank model inventively divides
the arc into two interconnected segments, allowing for a
more detailed representation of varying current intensities
[31]. Essentially, the Habedank model combines the Cassie
and Mayr conductance’s in series, leveraging the strengths
of both models. At high currents, only the Cassie equation
influences the voltage drop, while as zero current approaches,
the Mayr equation starts to play a role, and the Cassie equa-
tion diminishes. This makes the Habedank model effective
for both high-current and low-current phases of the arc. The
model is described by the following equations:

1
gc

(
dgc
dt

)
= 1

τc

(
u2
c

U2
0
− 1

)
1
gm

(
dgm
dt

)
= 1

τm

(
umi
P − 1

)
1
g = 1

gc
+ 1

gm

(18)

where g is the total arc conductance [S], gc and gm are
conductance described by the Cassie and Mayr arc models
respectively [S], uc is the voltage across the Cassie arc model

[V], um is the voltage across the Mayr arc model [V], i is the
arc current [A], τc is the Cassie arc time constant [s], U0 is
the Cassie steady-state arc voltage [V], and τm is the Mayr
arc time constant [s]. Regarding PV systems, the current
output of a solar array is influenced by the solar irradiance
and the array’s configuration. This implies that the Habedank
arc model is more appropriate for simulating DC fault arcs
of varying currents than the Cassie and Mayr arc models.

The KEMA model consists of three arcs in series, each
of which is a modified Mayr model subject to numerical
fitting [32].

1
g1

(
dg1
dt

)
= 1

Π1τ1
gλ1
1 u1

2 − 1
τ1
g1

1
g2

(
dg2
dt

)
= 1

Π2τ2
gλ2
2 u2

2 − 1
τ2
g2

1
g3

(
dg3
dt

)
= 1

Π3τ3
gλ3
3 u3

2 − 1
τ3
g3

1
g = 1

g1
+ 1

g2
++ 1

g3

(19)

The KEMA model describes the total arc conductance g
and individual arc conductances gi (for i = 1, 2, 3), with
τi as the time constant, ui as the voltage, and Πi as the
cooling constant. The Cassie-Mayr control parameter λi

defines the model type: Cassie (λi = 1) or Mayr (λi = 2).
Key parameters include λ1 = 1.4, λ2 = 1.9, λ3 = 2,
with empirical relationships for time constants and cooling
constants. The KEMA model’s versatility, incorporating both
Cassie and Mayr characteristics, allows for detecting DC arcs
in PV systems across different current levels.

Building on the Mayr model, Schwarz integrates the effect
of arc conductance on arc parameters [33]. While the Mayr
model assumes that time and cooling power are constant, this
is only accurate for a specific, limited time interval. Schwarz
demonstrated that these values vary, so his model includes
the impact of arc conductance on cooling power and the time
constant:

1

g

dg

dt
=

1

τgα

(
ui

Pgβ
− 1

)
(20)

In Schwarz’s arc model, P denotes cooling power [W],
τ stands for arc time constant [s], α influences the
conductance-dependent variation of τ , and β affects the
conductance-dependent variation of P . In Schwarz’s arc
model, the parameters τ , α, P , and β are the adjustable
arc parameters. By using a conductance-dependent function
to depict the changes in dissipated power and arc time,
Schwarz’s model offers broader applicability compared to
the Cassie and Mayr models. In photovoltaic systems, this
model proves useful for detecting DC series arcs across both
high and low current scenarios.

The Schavemaker arc model combines elements of the
Mayr and Cassie arc models, incorporating time constant
and cooling power as functions of power input [34]. This
model, represented by Equation 21, requires estimating sev-
eral parameters to predict arc behavior accurately, including
time constant, cooling power, cooling constant, and reference
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TABLE 1. Summary of arc models.

Arc model Current level Dynamic Complexity Accuracy
Detection of PV series

arc fault
Cassie [27] High Yes Low Low Possible, at array level

Mayr [29] Low Yes Low Low Possible, at below string level

Habedank [31] Low/High Yes Medium Medium Possible

KEMA [32] Low/High Yes High Medium Possible

Schwarz [33] Low/High Yes Medium Medium Possible

Schavemaker [34] Low/High Yes Medium Medium Possible

Time-variant Schwarz
based model [36]

Low/High Yes High High Possible

Enhanced Cassie-Mayr
based model [37]

Low/High Yes High High Possible

voltage constant [35]. These parameter values vary with
operational conditions, making it crucial to determine them
for the specific working conditions to accurately capture
voltage and current waveforms.

1

g

dg

dt
=

1

τ

(
ui

max(Uarc|i|, P0 + P1ui)
− 1

)
(21)

In this model, P0 is the cooling constant [W], P1 de-
termines how the cooling power is influenced by the input
power, and Uarc represents the constant arc voltage in the
high-current region. For high currents, the model aligns with
the Cassie model, while near zero current, it simplifies to
the Mayr model. After the current reaches zero, P0 is set to
zero, indicating the arc has extinguished. These properties
make the model suitable for detecting DC arcs in PV systems
across various conditions.

Two new models derived from the Schwarz model have
been developed to enhance the accuracy of detecting DC
series arcs in PV systems [36]. These models integrate time-
varying characteristics inherent to electric arcs. The original
Schwarz model uses four fixed parameters. The first new
model includes two constant model orders and two time-
varying coefficients, while the second new model treats all
four parameters as time-varying. When compared to the
traditional Schwarz model and other models like Cassie
and Mayr, these modified models proved more effective for
modeling DC series arc faults in PV systems, with the fully
time-varying model being the most precise.

To incorporate the time-varying characteristics of DC
series arc faults in PV systems, three new arc models were
developed by combining features of the Cassie and Mayr
models [37]. The original Cassie and Mayr equations have
two constant parameters each. The first new model modifies
the Cassie-Mayr equation to include three parameters: one
constant and two time-series coefficients. The second model
extends this to five parameters, with two constants and three
time-series coefficients. The third model is fully time-variant,
with all coefficients as time series. These new models were
tested and found to be more accurate, according to the

authors, than the original Mayr and Cassie-Mayr models.
[37]. In Table I, a comparison between models are presented.

III. PARAMETER IDENTIFICATION
Parameter estimation, inverse modeling, or system identifi-
cation addresses an optimization problem to find the optimal
model parameters within an acceptable range by maximizing
or minimizing an objective, cost, or fitness function [38].
Parameter estimation involves determining the optimal val-
ues of certain parameters in a numerical model through data
assimilation or other similar techniques.

Estimating model parameters is challenging across various
fields. Identifying parameters as an optimization problem
can be particularly difficult, especially in complex situa-
tions with many input parameters of interest or a lack of
knowledge about their range. Thus, there are numerous
algorithms available to solve optimization problems [39]–
[41]. The effort needed and the quality of the solution depend
on various factors, such as the quantity and limits of the
input parameters of interest, the model’s complexity, and the
quality of the initial parameter values. Since it is impractical
to evaluate all possible combinations of input parameter
values, sometimes only a local optimum is found instead
of the global one [42].

Arc parameters are crucial for the performance of arc
models, making their determination the most challenging as-
pect [43]. In arc models, the parameters differ with each test
based on conditions like short-circuit current and arcing time,
as well as the aging process such as nozzle degradation and
contact erosion. Accurate parameter identification is essential
for the arc model to correctly describe arc characteristics
[19], [44].

Various methods for parameter identification have been
developed using black-box models, as documented in the lit-
erature for determining the parameters of electric arc models.
Often, these parameters are identified through testing circuit
breakers [45], [46]. Amsinck’s method [47] is specifically
designed for determining electric arc parameters in scenarios
where a circuit breaker test results in a current interruption
followed by a reignition. Amsinck posits that the cooling
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power P (g) and the time constant τ(g) are the same at points
with identical conductance.

Ruppe’s [48] method hinges on the idea that, if P (g)
and τ(g) are functions of conductance, they should behave
similarly for different arcs under comparable conditions.
Therefore, multiple tests of the same device under identical
conditions are required. Finally, Rijanto’s method [49] is
based on the principle that the parameter functions can be
derived from singular points on the dynamic arc traces.

However, such methods depend on a series of tests on
circuit breakers and the application of regression techniques
to find the parameters. With the increase in computational
power, some authors have begun treating the problem of
finding electric arc parameters as an optimization problem,
using both classical optimization techniques and metaheuris-
tic algorithms, thus avoiding the need for repetitive testing
[19].

System identification theory provides an alternative ap-
proach for identifying parameters in electric arc models.
This technique involves creating a mathematical model to
represent a dynamic system by measuring the input and
output signals of the system. In [50] was proposed a method
for estimating parameters in the Modified Cassie-Mayr arc
model using nonlinear least squares with the Gauss-Newton
algorithm. This method eliminates the need for numerical
differentiation, which is a common requirement in many
parameter extraction methods. The study used the squared
norm of the cost function, resulting in a least squares
optimization problem.

The authors in [51] adapted Medina’s approach to deter-
mine the parameters of black-box arc models, applying the
fundamental Cassie and Mayr models. The research aimed
to evaluate these models’ effectiveness in simulating electro-
magnetic transients in DC systems, showing that black-box
arc models can accurately describe the interaction between
the arc and the electrical circuit, thus serving as a valuable
simulation tool.

Another application of system identification theory in arc
modeling was proposed in [52], in which a linearization
is performed around an operating point and then an opti-
mization of the model parameters is carried out using the
Kalman Filter and the Maximum Likelihood method, further
demonstrating the versatility of system identification theory
in arc modeling.

In a study presented in [19], the authors introduce a
new black-box arc model, validated through short-line fault
interruption tests on high-voltage circuit breakers. The arc
parameters of each model are optimized over a time interval
to minimize the difference between measured and simulated
arc voltages. Applied to a simplified circuit, the models’
accuracy in interruption prediction and waveform fitting was
quantitatively assessed. Named the “TP KEMA” model,
it simplifies the conventional KEMA model, reducing the
number of parameters from six to two. The extraction of arc
parameters is formulated as an optimization process mini-

mizing voltage differences while satisfying the discretized
equation of arc conductance. Comparisons with five other
models during short-circuit tests indicate that the TP KEMA
model provides the best overall performance with fewer
parameters.

In [43], the authors used the TP KEMA model and
applied the metaheuristics Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) to optimize parameters
by minimizing arc conductance error from random initial
values. The total square error of arc conductance serves as
the objective function to evaluate performance. Both GA and
PSO aim to minimize this function, and their optimization
results showed to be very similar.

In the paper [53] is proposed a method using a library of
black-box arc models and heuristic optimization algorithms
aims to accurately determine arc parameters from experi-
mental or simulated waveforms of arc voltage and current.
Using MATLAB Simulink, the waveforms are derived by
solving the differential equation of the arc model. The
optimization goal is to minimize the accumulated relative
error between the observed and calculated arc conductance
over a specified time interval. Heuristic algorithms like GA,
PSO, and Simulated Annealing (SA) are used to estimate the
model parameters, with comparisons of their performance.
The authors recommend the GA algorithm for parameter es-
timation due to its global search capability, solution stability,
efficiency, and detailed control options.

In the study [54], the task is to study black-box models and
evaluate various arc models compared to the KEMA model
for circuit breakers, aiming to find optimal parameters for
breaking ability. Six main arc models (Cassie, Habedank,
Mayr, Modified Mayr, Schavemaker, and Schwarz) are an-
alyzed, using GA to minimize the differences between the
conductances of KEMA and the test models. The optimiza-
tion goal is to enhance the parameters of these models. In
each step, an arc model replaces the test model box, and the
GA minimizes the difference in conductance, selecting the
best parameters. The results show improved parameters for
the six arc models.

In [55], the authors present a method to determine the
coefficients of the dynamic Cassie-Mayr electric arc model
using simplex annealing and genetic optimization algorithms.
This approach minimizes the error between the Transient
Recovery Overvoltage (TRV) of an ideal switch breaker
model and the arc-based model. TRV values are calculated
for specific chopping currents in a test circuit simulation.
Results show that simplex annealing outperforms the genetic
algorithm in accuracy, measured by Mean Absolute Percent-
age Error (MAPE), regardless of optimization settings or
iterations, with the variable range selection being crucial for
accuracy.

The authors in [56] propose an estimation method for arc
parameters based on the Mayr arc model, addressing both
sinusoidal and non-sinusoidal current waveforms. Heuristic
optimization methods, such as GA and PSO, are used to
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TABLE 2. Summary of optimization algorithms to define model parameters.

Reference
Objective or Fitness

Function
Arc model

Number of Unknown
Parameters

Algorithm

[19] e =

t2∑
t=t1

[um(t)− us(t)]
2 =

t2∑
t=t1

[
um(t)−

im(t)

gs(t)

]2
TP KEMA 2 Not Mentioned

[39] e =

n∑
i=1

[gm(t)− gs(t)]
2 =

t2∑
t=t1

[
im

um
− gc

]2
TP KEMA 2 GA and PSO

[53] f =

t2∑
t=t1

|gopti(t)− g(t)|
g(t)

x100
Cassie, Mayr, KEMA

Habedank and Schwarz
2 - 6 GA, SA and PSO

[54] f = |gkema(t)− gTestModel|2
Cassie, Mayr, HabedanK

KEMA, Schwarz
and Schavemaker

2 - 6 GA

[55] f = |TRVideal − TRVCM | Cassie – Mayr 2 GA and SA

[56] LSE =

n∑
t=1

|utest(t)− uarc(t)|2 Mayr and Schwarz 2 - 4 GA and PSO

[57] error =

∑t2
t=t1

√
(gopti(t)− g(t))2

N

Cassie, Mayr, KEMA
Habedank and Schwarz

2 - 6 GA

evaluate the arc model parameters. The approach minimizes
the Least-Square Error (LSE), defined as the sum of squared
differences between measured and predicted arc voltages.
The optimization goal is to determine the arc parameters
by minimizing the LSE. Finally, according to the authors,
the GA method is the most recommended due to its global
search capacity.

In [57], a method for estimating black-box arc parame-
ters using a genetic algorithm is presented. This approach
models a DC short-circuit in a railway system protected
by a High-Speed Circuit Breaker (HSCB). Experimental
data from a DC HSCB in a railway system validated the
method. The estimation of arc model parameters was based
on Zhang’s work [53], with modifications such as defining
the fitness function involving arc conductance. According
to the authors, simulated results presented strong agreement
with experimental data. Table 2 presents a summary of works
that use optimization algorithms to define model parameters.

IV. CONCLUSION
Modeling DC arcs is a complex challenge, however it is
crucial for understanding arc faults in PV systems. These
faults pose significant risks, including severe damage and
fire, endangering both the system and human life. This paper
focus on one of the main modeling alternatives, which is
made from simplifications of physical principles, creating
models known as black-box.

One of the main challenges in modeling DC arc faults
is determining the model parameters. These parameters are
indispensable for producing accurate predictions of how
an arc behaves within its operational context, including
its interactions with nearby equipment and infrastructure.
Therefore, this work also presented an overview of the main
works related to parameter estimation for electric arc models.
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