Droop-based Control Strategy to operate a DC Nanogrid under the Net Zero Energy Concept
DOI:
https://doi.org/10.18618/REP.e202529Keywords:
DC microgrids, power control, droop control, EMS, hardware-in-the-loop, Net-Zero-EnergyAbstract
This work presents a droop-based control strategy for a dc nanogrid designed to operate under the Net Zero Energy (NZE) concept, enabling seamless transitions between grid-connected and islanded modes. The nanogrid integrates photovoltaic (PV) generation, a fast electric vehicle charging station (EVSE), and a battery energy storage system (BESS) into a $700~$V dc bus interfacing with the ac grid via a bidirectional three-phase AC-DC converter. An isolated DC-DC converter establishes a secondary $48~$V dc bus for powering dc loads. An energy management system (EMS) defines an optimal day-ahead power dispatch for the BESS to meet NZE objectives. At the primary control level, a modified power-to-voltage droop strategy ensures accurate power tracking and parallel operation with the AC-DC converter. This approach enables continuous voltage regulation of the main bus under instantaneous power imbalances caused by schedule deviations or operational mode transitions. Additionally, the proposed strategy eliminates the need for secondary control or high-bandwidth communication. The system is validated through hardware-in-the-loop (HIL) simulations using the Typhoon HIL 604 platform, with the control strategy implemented on a DSP. Real-time simulation results confirm stable performance under various operating conditions, including transitions between modes.
Downloads
References
D. Burmester, R. Rayudu, W. Seah, D. Akinyele, “A review of nanogrid topologies and technologies”, Renewable and Sustainable Energy Reviews, vol. 67, pp. 760–775, 2017. DOI: https://doi.org/10.1016/j.rser.2016.09.073
J. Yim, S. You, F. Blaabjerg, Y. Lee, Y. Gui, W. Kim, “Energy management systems for forecasted demand error compensation using hybrid energy storage system in nanogrid”, Renewable Energy, vol. 221, no. C, 2024, doi:10.1016/j.renene.2023.119, URL: https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016592.html. DOI: https://doi.org/10.1016/j.renene.2023.119744
Y. Dafalla, B. Liu, D. A. Hahn, H. Wu, R. Ahmadi, A. G. Bardas, “Prosumer Nanogrids: A Cybersecurity Assessment”, IEEE Access, vol. 8, pp. 131150–131164, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3009611
E. L. Carvalho, L. V. Bellinaso, R. Cardoso, L. Michels, “Distributed Price-Based Power Management for Multibuses DC Nanogrids EEMS”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5509–5521, 2022. DOI: https://doi.org/10.1109/JESTPE.2022.3152101
M. Mokhtar, M. I. Marei, A. A. El-Sattar, “An Adaptive Droop Control Scheme for DC Microgrids Integrating Sliding Mode Voltage and Current Controlled Boost Converters”, IEEE Trans Smart Grid, vol. 10, no. 2, pp. 1685–1693, 2019. DOI: https://doi.org/10.1109/TSG.2017.2776281
T. Dragicevi ˇ c, J. M. Guerrero, J. C. Vasquez, D. ´ Skrlec, “Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability”, IEEE Trans Power Electron, vol. 29, no. 2, pp. 695–706, 2014. DOI: https://doi.org/10.1109/TPEL.2013.2257857
A. Saxena, N. K. Sharma, S. R. Samantaray, “An Enhanced Differential Protection Scheme for LVDC Microgrid”, IEEE J Emerg and Sel Topics Power Electron, vol. 10, no. 2, pp. 2114–2125, 2022. DOI: https://doi.org/10.1109/JESTPE.2022.3144300
T. Dragicevi ˇ c, X. Lu, J. C. Vasquez, J. M. Guerrero, “DC Micro-grids—Part II: A Review of Power Architectures, Applications, and Standardization Issues”, IEEE Trans Power Electron, vol. 31, no. 5, pp. 3528–3549, 2016. DOI: https://doi.org/10.1109/TPEL.2015.2464277
D. P. Damasceno, P. Sbabo, M. P. Dias, J. C. U. Pena, J. F. Guerreiro, P. Mattavelli, J. A. Pomilio, “DC Bus Voltage High-Frequency Disturbances Analysis for DC Microgrids With Long Connections”, IEEE Open Journal of Power Electronics, vol. 6, pp. 371–382, 2025. DOI: https://doi.org/10.1109/OJPEL.2025.3540347
PD-IEC-TR-63282:2024, LVDC systems — Assessment of standard voltages and power quality requirements, International Electrotechnical Commission, 8 2024.
H. C. Jo, G. Byeon, J. Y. Kim, S. K. Kim, “Optimal Scheduling for a Zero Net Energy Community Microgrid with Customer-Owned Energy Storage Systems”, IEEE Trans Power Syst, vol. 36, pp. 2273–2280, 5 2021. DOI: https://doi.org/10.1109/TPWRS.2020.3036077
J. Wu, Y. Zhou, W. Gan, “Smart Local Energy Systems Towards Net Zero: Practice and Implications from the UK”, CSEE Journal of Power and Energy Systems, vol. 9, pp. 411–419, 3 2023.
J. A. A. Silva, J. C. Lopez, C. P. Guzman, N. B. Arias, M. J. Rider, L. C. da Silva, “An IoT-based energy management system for AC microgrids with grid and security constraints”, Applied Energy, vol. 337, p. 120904, 5 2023. DOI: https://doi.org/10.1016/j.apenergy.2023.120904
L. Li, Y. Han, Q. Li, W. Chen, “Multi-Dimensional EconomyDurability Optimization Method for Integrated Energy and Transportation System of Net-Zero Energy Buildings”, IEEE Transactions on Sustainable Energy, vol. 15, no. 1, pp. 146–159, 2024. DOI: https://doi.org/10.1109/TSTE.2023.3275160
A. Esser, A. Dunne, T. Meeusen, D. W. Simon Quaschning, A. Hermelink, S. Schimschar, M. Offermann, A. John, M. Reiser, A. Pohl, J. Grozinger, ¨ Comprehensive study of building energy renovation activities and the uptake of nearly zero-energy buildings in the EU : final report, European Commission and Directorate-General for Energy, 2019.
E. Nasrolahpour, J. Kazempour, H. Zareipour, W. D. Rosehart, “A Bilevel Model for Participation of a Storage System in Energy and Reserve Markets”, IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 582–598, 2018. DOI: https://doi.org/10.1109/TSTE.2017.2749434
B. Papari, C. S. Edrington, I. Bhattacharya, G. Radman, “Effective Energy Management of Hybrid AC–DC Microgrids With Storage Devices”, IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 193–203, 2019. DOI: https://doi.org/10.1109/TSG.2017.2736789
K. Mahmud, J. Ravishankar, M. J. Hossain, Z. Y. Dong, “The Impact of Prediction Errors in the Domestic Peak Power Demand Management”, IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4567–4579, 2020. DOI: https://doi.org/10.1109/TII.2019.2946292
I. Bendato, A. Bonfiglio, M. Brignone, F. Delfino, F. Pampararo, R. Procopio, “A real-time Energy Management System for the integration of economical aspects and system operator requirements: Definition and validation”, Renewable Energy, vol. 102, pp. 406–416, 2017. DOI: https://doi.org/10.1016/j.renene.2016.10.061
C. L. Nge, I. U. Ranaweera, O.-M. Midtgard, L. Norum, “A real-time energy management system for smart grid integrated photovoltaic generation with battery storage”, Renewable Energy, vol. 130, pp. 774–785, 2019. DOI: https://doi.org/10.1016/j.renene.2018.06.073
J. C. Neves, R. D. Silveira, S. A. O. da Silva, L. P. Sampaio, “Estudo e Implementac¸ao de Controle Secundario em Microrredes CC”, Eletrônica de Potência vol. 29, p. e202416, Jun. 2024. DOI: https://doi.org/10.18618/REP.2005.1.053061
L. Xing, Z. Shu, J. Fang, C. Wen, C. Zhang, “Distributed control of DC microgrids: A relaxed upper bound for constant power loads”, Automatica, vol. 173, p. 112021, 2025. DOI: https://doi.org/10.1016/j.automatica.2024.112021
S. K. Sahoo, A. K. Sinha, N. K. Kishore, “Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 738–759, 2018. DOI: https://doi.org/10.1109/JESTPE.2017.2786588
L. Xing, J. Cai, X. Liu, J. Fang, Y.-C. Tian, “Distributed Secondary Control of DC Microgrid via the Averaging of Virtual Current Derivatives”, IEEE Transactions on Industrial Electronics, vol. 71, no. 3, pp. 2914–2923, 2024. DOI: https://doi.org/10.1109/TIE.2023.3269470
J. P. Silveira, P. dos Santos Neto, T. Barros, E. Filho, “Power management of energy storage system with modified interlinking converters topology in hybrid AC/DC microgrid”, International Journal of Electrical Power & Energy Systems, vol. 130, p. 106880, 09 2021. DOI: https://doi.org/10.1016/j.ijepes.2021.106880
B. C. Moura, P. J. dos Santos Neto, D. B. Rodrigues, C. Guimaraes, ˜L. C. G. Freitas, J. P. C. Silveira, G. B. de Lima, “Evaluating Adaptive Droop Control for Steady-State Power Balancing in DC Microgrids Using Controller Hardware-in-the-Loop”, Eletrônica de ˆPotência, vol. 29, p. e202451, Dec. 2024. DOI: https://doi.org/10.18618/REP.e202451
F. Gao, S. Bozhko, A. Costabeber, C. Patel, P. Wheeler, C. I. Hill, G. Asher, “Comparative Stability Analysis of Droop Control Approaches in Voltage-Source-Converter-Based DC Microgrids”, IEEE Trans Power Electron, vol. 32, no. 3, pp. 2395–2415, 2017. DOI: https://doi.org/10.1109/TPEL.2016.2567780
F. Gao, S. Bozhko, G. Asher, P. Wheeler, C. Patel, “An Improved Voltage Compensation Approach in a Droop-Controlled DC Power System for the More Electric Aircraft”, IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7369–7383, 2016.
L. Xing, F. Guo, X. Liu, C. Wen, Y. Mishra, Y.-C. Tian, “Voltage Restoration and Adjustable Current Sharing for DC Microgrid With Time Delay via Distributed Secondary Control”, IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 1068–1077, 2021. DOI: https://doi.org/10.1109/TSTE.2020.3032605
J. C. U. Pena, M. P. Dias, D. P. Damasceno, J. I. Y. Ota, J. A. Pomilio, “Control Strategy and Hardware-in-the-Loop Simulation of a DC Microgrid Under the Net Zero Energy Concept”, in 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), pp. 1–7, 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10407571
J. C. Lopez, J. I. Y. Ota, M. J. Rider, J. A. Pomilio, L. C. P. da Silva, R. G. Bento, “Objetivos e Desafios do Projeto de P&D MERGE: Microgrids for Efficient, Reliable and Greener Energy”, in Anais do Simposio Brasileiro de Sistemas El ´ etricos 2020 ´ , SBA, 8 2020.
E. L. Carvalho, A. Blinov, A. Chub, P. Emiliani, G. de Carne, D. Vinnikov, “Grid Integration of DC Buildings: Standards, Requirements and Power Converter Topologies”, IEEE Open Journal of Power Electronics, vol. 3, pp. 798–823, 2022. DOI: https://doi.org/10.1109/OJPEL.2022.3217741
M. Liserre, F. Blaabjerg, S. Hansen, “Design and control of an LCLfilter-based three-phase active rectifier”, IEEE Trans Ind Appl, vol. 41, pp. 1281–1291, 2005. DOI: https://doi.org/10.1109/TIA.2005.853373
J. C. U. Pena, L. P. Sampaio, M. A. G. de Brito, C. A. Canesin, ˜“Robust Control of Three-Phase VSI with LCL Filter for Distributed Generation Power Quality Improvement”, Journal of Control, Automation and Electrical Systems, vol. 31, pp. 1051–1062, 8 2020. DOI: https://doi.org/10.1007/s40313-020-00610-y
S. Mitchell, A. Kean, A. Mason, M. O’Sullivan, A. Phillips, F. Peschiera, “Optimization with PuLP. Version 2.6.”, https://coin-or.github.io/pulp/, 2009.
Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual”, https://www.gurobi.com/documentation/, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 José C. U. Pena, Jéssica A. A. Silva, Mateus P. Dias, Debora P. Damasceno, Luiza H. S. Santos, José A. Pomilio

This work is licensed under a Creative Commons Attribution 4.0 International License.