Modified rainflow algorithm for temperature-time-dependent counting in lifetime estimation of power devices
DOI:
https://doi.org/10.18618/REP.e202532Keywords:
cycle counting algorithm, modified rainflow, lifetime estimation, power devices, reliabilityAbstract
Power electronic systems include many fragile elements, with power devices being the most prone to failure. Cycle counting algorithms are essential to evaluate power devices degradation and system reliability. Among the available options, the rainflow algorithm is the most widely used. Since the rainflow algorithm was originally designed for fatigue analysis, it faces challenges when applied to power devices. Specifically, the conventional rainflow algorithm cannot compute the effective heating time and the time-dependent equivalent mean temperature of the thermal cycles. Additionally, it counts cooling half-cycles, which contradicts the basis of lifetime models, as these models rely on data associated with heating temperature gradients. To address these limitations, this work introduces a modified rainflow algorithm for cycle counting in the lifetime estimation of power devices. This methodology enhances the conventional rainflow by enabling the calculation of effective heating time and mean temperature while also filtering out cooling half-cycles. The results demonstrate that the modified rainflow algorithm significantly affects the lifetime predictions for all critical joints in an IGBT module, regardless of the mission profile. Across all case studies, the utilization of the modified rainflow algorithm resulted in a damage reduction exceeding 53\%. %.
Downloads
References
D. Tan, “Power Electronics: Historical Notes, Recent Advances And Contemporary Challenges”, Eletrônica de Potência, vol. 25, no. 4, p. 386–394, Dec. 2020. DOI: https://doi.org/10.18618/REP.2020.4.00701
F. Blaabjerg, H. Wang, I. Vernica, B. Liu, P. Davari, “Reliability of Power Electronic Syst. for EV/HEV Applications”, Proc of the IEEE, vol. 109, no. 6, pp. 1060–1076, 2021. DOI: https://doi.org/10.1109/JPROC.2020.3031041
J. Falck, C. Felgemacher, A. Rojko, M. Liserre, P. Zacharias, “Reliability of Power Electronic Systems.: An Industry Perspective”, IEEE Ind Electron Magazine, vol. 12, no. 2, pp. 24–35, 2018. DOI: https://doi.org/10.1109/MIE.2018.2825481
H. S. H. Chung, H. Wang, F. Blaabjerg, M. Pechtt, Reliability of Power Electronic Converter Systems, IET, 2015. DOI: https://doi.org/10.1049/PBPO080E
K. Ma, M. Liserre, F. Blaabjerg, T. Kerekes, “Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter”, IEEE Trans on Power Electron, vol. 30, no. 2, pp. 590–602, 2015. DOI: https://doi.org/10.1109/TPEL.2014.2312335
K. Ma, F. Blaabjerg, “Reliability-cost models for the power switching devices of wind power converters”, in IEEE Int. Symp. on Power Electron. for Distrib. Gener. Syst., pp. 820–827, 2012. DOI: https://doi.org/10.1109/PEDG.2012.6254096
R. Silva, R. de Barros, W. Boaventura, A. Cupertino, H. Pereira, “Correction strategy for wear-out prediction of PV inverters considering the mission profile resolution effects”, Microelectronics Reliability, vol. 135, p. 114605, 2022. DOI: https://doi.org/10.1016/j.microrel.2022.114605
R. C. de Barros, W. do Couto Boaventura, H. A. Pereira, A. F. Cupertino, “Lifetime Evaluation of a Three-phase Photovoltaic Inverter During Harmonic Current Compensation”, Eletrônica de Potência, vol. 27, no. 2, pp. 108–116, jun. 2022. DOI: https://doi.org/10.18618/REP.2022.2.0054
ABB, Application note, Load-cycling Capability of Hi-Pak IGBT Modules., 2014.
A. Wintrich, U. Nicolai, W. Tursky, T. Reimann, Application Manual Power Semiconductors, SEMIKRON, 2015.
ASTM International, Standard Practices for Cycle Counting in Fatigue Analysis, 2017.
K. Mainka, M. Thoben, O. Schilling, “Lifetime calculation for power modules, application and theory of models and counting methods”, in 14th Eur. Conf. on Power Electron. and Appl., pp. 1–8, 2011.
R. Anthes, “Modified rainflow counting keeping the load sequence”, Int Journal of Fatigue, vol. 19, no. 7, pp. 529–535, 1997. DOI: https://doi.org/10.1016/S0142-1123(97)00078-9
M. Matsuishi, T. Endo, “Fatigue of metals subjected to varying stress”, Japan Soc of Mechanical Engineers, vol. 68, no. 2, pp. 37–40, 1968.
A. Antonopoulos, S. D’Arco, M. Hernes, D. Peftitsis, “Challenges and Strategies for a Real-Time Implementation of a Rainflow-Counting Algorithm for Fatigue Assessment of Power Modules”, in IEEE Appl. Power Electron. Conf. and Exposition, pp. 2708–2713, 2019. DOI: https://doi.org/10.1109/APEC.2019.8722284
U. H. Clormann, T. Seeger, “RAINFLOW-HCM - Ein Zahlverfahren ¨fur Betriebsfestigkeitsnachweise auf werkstoffmechanischer Grund-lage”, Stahlbau, vol. 55, no. 3, pp. 65–71, 1986.
V. Samavatian, H. Iman-Eini, Y. Avenas, “An efficient online time-temperature-dependent creep-fatigue rainflow counting algorithm”, Int Journal of Fatigue, vol. 116, pp. 284–292, 2018,. DOI: https://doi.org/10.1016/j.ijfatigue.2018.06.037
Z. Chen, F. Gao, C. Yang, T. Peng, L. Zhou, C. Yang, “Converter Lifetime Modeling Based on Online Rainflow Counting Algorithm”, in IEEE 28th Int. Symp. on Industrial Electron., pp. 1743–1748, 2019. DOI: https://doi.org/10.1109/ISIE.2019.8781196
M. Musallam, C. M. Johnson, “An Efficient Implementation of the Rainflow Counting Algorithm for Life Consumption Estimation”, IEEE Trans on Reliability, vol. 61, no. 4, pp. 978–986, 2012. DOI: https://doi.org/10.1109/TR.2012.2221040
S. Downing, D. Socie, “Simple rainflow counting algorithms”, Int Journal of Fatigue, vol. 4, no. 1, pp. 31–40, 1982. DOI: https://doi.org/10.1016/0142-1123(82)90018-4
L. Schluter, Programmer’s Guide for LIFE2’s Rainflow Counting Algorithm Sandia Report, Sandia National Laboratories, 1991. DOI: https://doi.org/10.2172/6236281
A. Nieslony, “Rainflow Counting Algorithm”, , 2003, Available in: https://www.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm.
L. R. GopiReddy, L. M. Tolbert, B. Ozpineci, J. O. P. Pinto, “Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications”, IEEE Trans on Ind Appl, vol. 51, no. 4, pp. 3368–3375, 2015. DOI: https://doi.org/10.1109/TIA.2015.2407055
A. Antonopoulos, S. D’Arco, M. Hernes, D. Peftitsis, “Limitations and Guidelines for Damage Estimation Based on Lifetime Models for High-Power IGBTs in Realistic Application Conditions”, IEEE Journal of Emerging and Sel Top in Power Electron, vol. 9, no. 3, pp. 3598–3609, 2021. DOI: https://doi.org/10.1109/JESTPE.2020.3004093
M. Nagode, M. Hack, “An online algorithm for temperature influenced fatigue life estimation: stress–life approach”, Int Journal of Fatigue, vol. 26, no. 2, pp. 163–171, 2004. DOI: https://doi.org/10.1016/S0142-1123(03)00107-5
R. O. De Sousa, R. C. De Barros, W. C. S. Amorim, A. F. Cupertino, H. A. Pereira, “Modified Rainflow Algorithm for Lifetime Estimation of Semiconductors Devices”, in IEEE 8th Southern Power Electron. Conf. and 17th Brazilian Power Electron. Conf., pp. 1–8, 2023. DOI: https://doi.org/10.1109/SPEC56436.2023.10408046
F. Hosseinabadi, S. Chakraborty, S. K. Bhoi, G. Prochart, D. Hrvanovic, O. Hegazy, “A Comprehensive Overview of Reliability Assessment Strategies and Testing of Power Electronics Converters”, IEEE Open Journal of Power Electronics, vol. 5, pp. 473–512, 2024. DOI: https://doi.org/10.1109/OJPEL.2024.3379294
R. O. Sousa, “Repositorio GESEP - Gerencia de Especialistas em ˆSistemas Eletricos de Potência”, Modified Rainflow Function -Version ˆ02 (updated on June 26, 2024)., 2024, Available in: https://gesep.ufv.br/repositorio/.
R. Kosiba, Technical Explanation SEMIPACK, SEMIKRON, 2018.
M. A. Miner, “Cumulative damage in fatigue”, American Soc of Mechanical Engineers - J Appl Mechanics, vol. 12, pp. 159–164, 1945. DOI: https://doi.org/10.1115/1.4009458
P. D. Reigosa, H. Wang, Y. Yang, F. Blaabjerg, “Prediction of Bond Wire Fatigue of IGBTs in a PV Inverter Under a Long-Term Operation”, IEEE Trans on Power Electron, vol. 31, no. 10, pp. 7171–7182, 2016.
R. O. d. Sousa, A. F. Cupertino, L. M. F. Morais, H. A. Pereira, R. Teodorescu, “Experimental Validation and Reliability Analyses
of Minimum Voltage Control in Modular Multilevel ConverterBased STATCOM”, IEEE Trans on Ind Electron, pp. 1–10, 2023.
R. de Sousa, A. Cupertino, L. Morais, H. Pereira, “Wearout failure analysis of modular multilevel converter-based STATCOM: The role of the modulation strategy and IGBT blocking voltage”, Microelectron Reliability, vol. 128, p. 114426, 2022. DOI: https://doi.org/10.1016/j.microrel.2021.114426
MATLAB, “Rainflow”, , 2017, Available in: https://www.mathworks.com/help/signal/ref/rainflow.html.
X. Chen, L. Zhang, M. Sakane, H. Nose, “Tensile stress-strain curves modeling of four kinds of solders with temperature and rate dependencE”, Key Eng Mater, vol. 297-300, p. 905–911, 2005. DOI: https://doi.org/10.4028/www.scientific.net/KEM.297-300.905
Infineon, Transient thermal measurements and thermal equivalent circuit models, 2020.
P. Asimakopoulos, K. Papastergiou, T. Thiringer, M. Bongiorno, “Heat sink design considerations in medium power electronic applications with long power cycles”, in 17th Eur. Conf. on Power Electron. and Applications, pp. 1–9, 2015. DOI: https://doi.org/10.1109/EPE.2015.7309150
Infineon, AN2019-05 - PC and TC Diagrams, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Renata O. de Sousa, Rodrigo C. de Barros, William C. S. Amorim, Allan F. Cupertino, Heverton Augusto Pereira, Lenin M. F. Morais

This work is licensed under a Creative Commons Attribution 4.0 International License.