Regular Extreme Fast Charging Station for E-buses with Low Current Harmonic Content

Authors

DOI:

https://doi.org/10.18618/REP.e202533

Keywords:

extreme fast charging, vehicle charger, regular extreme fast recharge, electric vehicles, e-bus, TUPF, ZHD, energy storage

Abstract

Public transport vehicles based on electric vehicles are suitable for regular extreme fast charging (R-XFC) with supercapacitors as energy storage. Quick recharges cause power quality problems such as high harmonic injection. In this sense, grid-connected converter solutions must address this issue. The main objective of this paper is to present a solution for R-XFC stations with the Zero Harmonic Distortion (ZHD) Converter. The ZHD converter features elements consolidated in the industry and it does not need capacitive filters in the point of common coupling (PCC) with the grid, presenting sinusoidal currents with low harmonic content for regular extreme fast charging (R-XFC) stations. Hardware-in-the-loop (HIL) simulation results of an extreme fast recharge showed a total demand distortion (TDD) of 0.54 %, and experimental results of a 280 kVA prototype had a TDD of 2.29 %.

Downloads

Download data is not yet available.

Author Biographies

Dener A. de L. Brandao, Universidade Federal de Minas Gerais

was born in Brazil in 1994. He received the Master's degree in Electrical Engineering in 2021 from the Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, where he is currently a doctoral student. His current research interests include industry applications, transportation electrification and microgrid control.

Thiago M. Parreiras, Federal Center for Technological Education of Minas Gerais

received the Doctorate degree in Electrical Engineering in 2020 from the Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, where he has been with TESLA Power Engineering Laboratory since 2013. Since 2023, he has been a Faculty Member with the Departament of Electrical Engineering, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil, where he is currently an assistant professor. His current research interests include high-power converters and drives, power quality, renewable energy and transportation electrification.

Igor A. Pires, Universidade Federal de Minas Gerais

was born in Brazil in 1980. He received the Doctorate in electrical engineering from Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil, in 2011. Since 2011, he is an assistant professor in Electronics Engineering Department of UFMG. His research interests include metal industry applications, power electronics, power quality, and vehicle electrification.

Braz de J. Cardoso Filho, Universidade Federal de Minas Gerais

received the Ph.D. degree in electrical engineering from the University of Wisconsin–Madison, Madison, WI, USA, in 1998. Since 1989, he has been a Faculty Member with the Department of Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, where he is currently a Full Professor, and the Founder and the Head of the TESLA Power Engineering Laboratory. He has authored/coauthored about 200 technical papers on the topics of power electronics and electrical drives and holds eight patents. His research interests include utility applications of power electronics, renewable energy sources, semiconductor power devices, electrical machines and drives, and vehicle electrification.

References

F. Ortenzi, M. Pasquali, P. P. Prosini, A. Lidozzi, and M. Di Benedetto, “Design and Validation of Ultra-Fast Charging Infrastructures Based on Supercapacitors for Urban Public Transportation Applications,” Energies, vol. 12, no. 12, p. 2348, Jun. 2019. DOI: https://doi.org/10.3390/en12122348

MIT Technology Review, Next Stop: Ultracapacitor Buses [Online], 2009. Available: https://www.technologyreview.com/2009/10/19/209306/next-stop-ultracapacitor-buses/, Accessed: [18 Jul 2024].

Chariot Motors, 12 m ultracapacitor Chariot e-bus [Online], 2022. Available: https://chariot-electricbus.com/cmproduct/12m-ultracapacitor-chariot-e-bus/, Accessed: [24 Jul 2024].

Y. Sun, E. C. W. de Jong, V. Cuk and J. F. G. Cobben, ”Har-monic resonance risk of massive ultra fast charging station grid integration,” 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 2018, pp. 1-6. DOI: https://doi.org/10.1109/ICHQP.2018.8378897

A. Chudy, P. Hołyszko, and P. Mazurek, “Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements,” Energies, vol. 15, no. 15, p. 5555, Jul. 2022. DOI: https://doi.org/10.3390/en15155555

“IEEE Standard for Harmonic Control in Electric Power Systems,” in IEEE Std 519-2022 (Revision of IEEE Std 519-2014) , vol., no., pp.1-31, 5 Aug. 2022.

A. G. P. Alves, L. F. Crispino, M. S. Neves, C. M. Freitas, L. G. B. Rolim, and R. F. S. Dias, “Harmonic Analysis of Grid-Connected VSCs Controlled in the Stationary Frame: Disturbance Rejection, Resonant Controller Design and Limitations”, Eletrˆonica de Potˆencia, vol. 29, p. e202431, Sep. 2024. DOI: https://doi.org/10.18618/REP.e20431

J. M. S. Callegari, R. R. Bastos, A. F. Cupertino, D. I. Brandao, and H. A. Pereira, “Assessment of voltage detection-based Selective Harmonic Current Compensation Strategies for Different Non-linear Load Signatures”, Eletrˆonica de Potˆencia, vol. 29, p. e202425, Aug. 2024. DOI: https://doi.org/10.18618/REP.2005.2.053060

International Electrotechnical Commission (IEC), IEC 61000-3-6 - Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems, 2008.

S. Bai and S. M. Lukic, “Unified Active Filter and Energy Storage System for an MW Electric Vehicle Charging Station,” in IEEE Trans. on Power Electron., vol. 28, no. 12, pp. 5793-5803, Dec. 2013. DOI: https://doi.org/10.1109/TPEL.2013.2245146

I. Aretxabaleta, I. M. De Alegr´ıa, J. Andreu, I. Kortabarria and E. Robles, “High-Voltage Stations for Electric Vehicle Fast-Charging: Trends, Standards, Charging Modes and Comparison of Unity Power-Factor Rectifiers,” in IEEE Access, vol. 9, pp. 102177-102194, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3093696

L. Tan, B. Wu, V. Yaramasu, S. Rivera and X. Guo, “Effective Voltage Balance Control for Bipolar-DC-Bus-Fed EV Charging Station With Three-Level DC–DC Fast Charger,” in IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4031-4041, July 2016. DOI: https://doi.org/10.1109/TIE.2016.2539248

S. Rivera, B. Wu, S. Kouro, V. Yaramasu and J. Wang, “Electric Vehicle Charging Station Using a Neutral Point Clamped Converter With Bipolar DC Bus,” in IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 1999-2009, April 2015. DOI: https://doi.org/10.1109/TIE.2014.2348937

G. Rajendran, C. A. Vaithilingam, N. Misron, K. Naidu and M. R. Ahmed, “Voltage Oriented Controller Based Vienna Rectifier for Electric Vehicle Charging Stations,” in IEEE Access, vol. 9, pp. 50798-50809, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3068653

S. -C. Peng, Z. -L. Li, S. C. Gulipalli, W. -C. Chen and C. -C. Chu, “Mitigating Circulating Currents of Parallel Three-Phase Vienna Rectifiers With Unbalanced Filter Inductors,” in IEEE Trans. Ind. Appl..

S. S. G. Acharige, M. E. Haque, M. T. Arif, N. Hosseinzadeh, K. N. Hasan and A. M. T. Oo, “Review of Electric Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations,” in IEEE Access, vol. 11, pp. 41218-41255, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3267164

B. Zhang, S. Xie, Z. Li, P. Zhao and J. Xu, “An Optimized Single-Stage Isolated Swiss-Type AC/DC Converter Based on Single Full-Bridge With Midpoint-Clamper,” in IEEE Trans. on Power Electron., vol. 36, no. 10, pp. 11288-11297, Oct. 2021. DOI: https://doi.org/10.1109/TPEL.2021.3073742

H. Tu, H. Feng, S. Srdic and S. Lukic, “Extreme Fast Charging of Electric Vehicles: A Technology Overview,” in IEEE Trans. Transport. Electrific., vol. 5, no. 4, pp. 861-878, Dec. 2019. DOI: https://doi.org/10.1109/TTE.2019.2958709

M. Safayatullah, M. T. Elrais, S. Ghosh, R. Rezaii and I. Batarseh, “A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications,” in IEEE Access, vol. 10, pp. 40753-40793, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3166935

J. C. G. Justino, T. M. Parreiras and B. J. Cardoso Filho, ”Hundreds kW Charging Stations for e-Buses Operating Under Regular Ultra Fast Charging,” in IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1766-1774, March-April 2016.

H. Akagi, ”Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC),” in IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3119-3130, Nov. 2011. DOI: https://doi.org/10.1109/TPEL.2011.2143431

M. di Benedetto, F. Ortenzi, A. Lidozzi, and L. Solero, “Design and Implementation of Reduced Grid Impact Charging Station for Public Transportation Applications,” World Electric Vehicle Journal, vol. 12, no. 1, p. 28, Feb. 2021. DOI: https://doi.org/10.3390/wevj12010028

J. Falck, C. Felgemacher, A. Rojko, M. Liserre and P. Zacharias, “Reliability of Power Electronic Systems: An Ind. Perspective,” in IEEE Industrial Electronics Magazine, vol. 12, no. 2, pp. 24-35, June 2018. DOI: https://doi.org/10.1109/MIE.2018.2825481

D. Ronanki and S. S. Williamson, “Modular Multilevel Converters for Transportation Electrification: Challenges and Opportunities,” in IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 399-407, June 2018. DOI: https://doi.org/10.1109/TTE.2018.2792330

L. Camurca, T. Pereira, F. Hoffmann and M. Liserre, “Analysis, Limitations, and Opportunities of Modular Multilevel Converter-Based Architectures in Fast Charging Stations Infrastructures,” in IEEE Trans. on Power Electron., vol. 37, no. 9, pp. 10747-10760, Sept. 2022. DOI: https://doi.org/10.1109/TPEL.2022.3167625

M. Mao et al., “Multi-Objective Power Management for EV Fleet With MMC-Based Integration Into Smart Grid,” in IEEE Trans. on Smart Grid, vol. 10, no. 2, pp. 1428-1439, March 2019. DOI: https://doi.org/10.1109/TSG.2017.2766363

Residual Direct Current Detecting Device (RDC-DD) to be Used for Mode 3 Charging of Electric Vehicles, Std IEC 62955:2018, 2018.

International Electrotechnical Commission - IEC. IEC 61851: Electrical power/energy transfer systems for electrically propelled road vehicles and industrial trucks, 2020.

“IEEE Standard for Technical Specifications of a DC Quick and Bidirectional Charger for Use with Electric Vehicles,” in IEEE Std 2030.1.1-2021 (Revision of IEEE Std 2030.1.1-2015), vol., no., pp.1-147, 18 Feb. 2022.

Parreiras, Thiago M. and Justino, J´ulio C. G. and Cardoso Filho, Braz de J., The True Unity Power Factor converter — A practical filterless solution for sinusoidal currents, Paper presented at 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), p. 2557-2565, 2015. DOI: https://doi.org/10.1109/ICPE.2015.7168134

Parreiras, Thiago Morais and Justino, J´ulio C´esar Guerra and Rocha, Anderson Vagner and Filho, Braz de Jesus Cardoso, True Unit Power Factor Active Front End for High-Capacity Belt-Conveyor Systems, IEEE Trans. Ind. Appl., vol. 52, n.3, p. 2737-2746, 2016. DOI: https://doi.org/10.1109/TIA.2016.2533499

C.E. Almeida and B.J. Cardoso Filho,Shifting Resonances in Wind Farms to Higher Frequencies due to TUPF Converters, J Control Autom Electr Syst, vol. 29, p. 1-6, 2018. DOI: https://doi.org/10.1007/s40313-018-0414-7

Parreiras, Thiago M. and Alves, Marcos H. da S. and Bastos, Rodrigo R. and Pires, Igor A. and Cardoso Filho, Braz de J., The True Unity Power Factor Converter for Basic Oxygen Furnace Charging Cranes, IEEE Trans. Ind. Appl., vol. 57, n.5, p. 5507-5516, 2021. DOI: https://doi.org/10.1109/TIA.2021.3085800

D. A. d. L. Brand˜ao, T. M. Parreiras, I. A. Pires and B. d. J. Cardoso F, “Electric Arc Furnace Reactive Compensation System using Zero Harmonic Distortion Converter,” in IEEE Trans. Ind. Appl., 2022. DOI: https://doi.org/10.1109/TIA.2022.3187392

D. A. d. L. Brandao, T. M. Parreiras, M. H. d. S. Alves, I. A. Pires and B. d. J. C. F., “Practical Implementation of the Zero Harmonic Distortion Converter in Distorted Grids,” in IEEE Trans. Ind. Appl., vol. 59, no. 6, pp. 7829-7838, Nov.-Dec. 2023. DOI: https://doi.org/10.1109/TIA.2023.3292323

G. V. Ramos, D. A. d. L. Brandao, T. M. Parreiras, S. M. Silva and B. J. C. Filho, “A Zero Harmonic Distortion Grid-Forming Converter for Medium Voltage Islanded Microgrids,” in IEEE Trans. Ind. Appl..

G. V. Ramos, T. M. Parreiras, and B. J. Cardoso Filho, “Control Performance Assessment of a Zero Harmonic Distortion Grid-Forming Converter for Medium Voltage Islanded Microgrids”, Eletrˆonica de Potˆencia, vol. 29, p. e202441, Oct. 2024. DOI: https://doi.org/10.18618/REP.e202441

H. S. Patel and R. G. Hoft, ”Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I–Harmonic Elimination,” in IEEE Trans. Ind. Appl., vol. IA-9, no. 3,pp. 310-317, May 1973. DOI: https://doi.org/10.1109/TIA.1973.349908

H. S. Patel and R. G. Hoft, ”Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part II —Voltage Control Techniques,” in IEEE Trans. Ind. Appl., vol. IA-10, no. 5, pp. 666-673, Sept. 1974. DOI: https://doi.org/10.1109/TIA.1974.349239

Lorenz, R. D.; Lipo, T. A.; Novotny, D. W., Motion control with induction motors, Proc. of the IEEE, v. 82, n. 8, p. 1215–1240, 1994. DOI: https://doi.org/10.1109/5.301685

H. Dan, S. Zhou, J. Xu, S. Wu, Y. Sun and M. Su, “Stability Analysis of the Interleaved Buck Converter With Coupled Inductor,” in IEEE Trans. Transport. Electrific., vol. 8, no. 2, pp. 2299-2310, June 2022. DOI: https://doi.org/10.1109/TTE.2022.3150920

F. Dias-Gonz´ales and A. Sumper and O. Gomis-Bellmunt, Energy Storage in Power Systems, Wiley, 2016. DOI: https://doi.org/10.1002/9781118971291

D. Linden and T. B. Reddy, Handbook of Batteries, 3rd Edition. McGraw-Hill, New York, NY, USA, 2002.

A. -S. A. Luiz and B. J. C. Filho, ”Minimum reactive power filter design for high power converters,” 2008 13th Intern. Power Electron. and Motion Control Conf., Poznan, Poland, 2008, pp. 1345-1352. DOI: https://doi.org/10.1109/EPEPEMC.2008.4635455

AVX, SCC LE Series (Online), 2020. Available: https://datasheets.avx.com/AVX-SCC-LE.pdf, Accessed: [23 Aug 2024].

Texas Instruments, TMS320F28335 (Online), 2022. Available: https: //www.ti.com/product/TMS320F28335. Accessed: [22 Aug 2024].

Terasic, DE10-Lite Board (Online), 2022. Available: http://de10-lite.terasic.com. Accessed: [17 Aug 2024].

E. F. C. Grabovski, S. A. Mussa, and M. L. Heldwein, “Large-Signal Models of the Park Transformation and Phase-Locked Loop Algorithms”, Eletrˆonica de Potˆencia, vol. 29, p. e202417, Jul. 2024. DOI: https://doi.org/10.18618/REP.2005.1.045052

P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos and D. Boroyevich, “Decoupled Double Synchronous Reference Frame PLL for Power Converters Control,” in IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584-592, March 2007. DOI: https://doi.org/10.1109/TPEL.2006.890000

Downloads

Published

2025-04-16

How to Cite

[1]
D. A. de L. Brandao, T. M. Parreiras, I. A. Pires, and B. de J. Cardoso Filho, “Regular Extreme Fast Charging Station for E-buses with Low Current Harmonic Content”, Eletrônica de Potência, vol. 30, p. e202533, Apr. 2025.

Issue

Section

Original Papers