Desenvolvimento de um Inversor ANPC de 5 Níveis de Tensão Utilizando Célula de Comutação Multiestado

Authors

DOI:

https://doi.org/10.18618/REP.e202540

Keywords:

Célula de comutação multiestado (MSSC), Cinco níveis de tensão (5L), Indutor intercalado, Indutor acoplado, Inversor de ponto neutro grampeado ativo (ANPC)

Abstract

Este artigo apresenta o projeto de um conversor ANPC (Active Neutral Point Clamped) de 5 níveis de tensão utilizando uma Célula de Comutação Multiestado (MSSC), operando como inversor. O inversor é associado a três opções de filtros indutivos na saída: um indutor convencional, um conjunto de indutores intercalados e um conjunto de indutores acoplados. Os parâmetros avaliados para estes filtros incluem massa, volume, perdas, elevação de temperatura e eficiência quando combinados com o inversor. As principais características do conversor ANPC-5L-MSSC incluem fluxo bidirecional de potência, baixa distorção harmônica de tensão, alto fator de potência, melhor distribuição de perdas em comparação com a topologia NPC convencional, além de massa e volume minimizados dos componentes passivos, possibilitados pela célula MSSC, que aumenta a frequência efetiva no filtro de saída e, consequentemente, reduz o tamanho dos componentes magnéticos. São demonstradas as etapas de funcionamento do inversor, bem como o dimensionamento dos semicondutores de potência, do autotransformador e dos indutores e capacitores utilizados no filtro. A validação dos cálculos é realizada por meio de comparação com resultados obtidos via simulação numérica. Também são apresentados resultados experimentais obtidos em laboratório, a partir de um protótipo de 1,5\,kW.

Downloads

Download data is not yet available.

Author Biographies

Vinícius G. Hoffmann, Universidade do Estado de Santa Catarina

recebeu o título de Tecnólogo em Mecatrônica Industrial em 2017, Licenciatura em Educação Profissional e Tecnológica em 2019, e Especialização em Docência para Educação Profissional também em 2019, todos pelo Instituto Federal de Santa Catarina (IFSC). Obteve o título de Mestre em Engenharia Elétrica pela Universidade do Estado de Santa Catarina (UDESC), em 2021. Lecionou no ensino profissionalizante de 2016 a 2019. Hoje, atua como Projetista de Testes na empresa SUPPLIER e é graduando no Curso de Bacharelado em Engenharia Elétrica pelo Instituto Federal de Santa Catarina. Seus interesses de pesquisa incluem Eletrônica de Potência, Conversores Estáticos, Conversores Multiníveis, Correção do Fator de Potência e Educação Profissionalizante.

Felipe J. Zimann, Universidade do Estado de Santa Catarina

possui graduação (2013), mestrado (2016) e doutorado (2020) em Engenharia Elétrica pela Universidade do Estado de Santa Catarina (UDESC), Joinville, Brasil. Em 2016, foi Pesquisador Visitante na Universidade Federal de Pernambuco, Recife, Brasil. Entre os anos de 2021 e 2022 trabalhou como professor colaborador na Universidade Federal de Santa Catarina. Atualmente é professor na Universidade do Estado de Santa Catarina e no Centro Universitário – Católica SC. Tem experiência na área de Engenharia Elétrica, com ênfase em Eletrônica de Potência, com interesse de pesquisa em filtros ativos, controle digital e qualidade de energia. É membro efetivo e revisor de artigos da Sociedade Brasileira de Eletrônica de Potência (Sobraep).

Cassiano Rech, Universidade Federal de Santa Maria

recebeu o grau de Engenheiro Eletricista, Mestre e Doutor em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, em 1999, 2001 e 2005, respectivamente. De 2005 a 2008, foi professor associado do Departamento de Tecnologia da Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ). De fevereiro de 2008 a agosto de 2009 foi professor adjunto do Departamento de Engenharia Elétrica da Universidade do Estado de Santa Catarina (UDESC). Desde setembro de 2009 é professor do Departamento de Processamento de Energia Elétrica (DPEE) da Universidade Federal de Santa Maria. Foi Vice-Presidente da Associação Brasileira de Eletrônica de Potência (SOBRAEP) e Editor da Revista Eletrônica de Potência durante o biênio 2014-2015. Foi Presidente da SOBRAEP no biênio 2016-2017. Atuou como Coordenador do Programa de Pós-Graduação em Engenharia Elétrica da UFSM (conceito 6 CAPES) de 2015 a 2017. De 2021 a 2024 foi membro Comitê de Assessoramento em Engenharias Elétrica e Engenharia Biomédica (CA-EE) do CNPq. Desde 2018, é Editor Associado da IEEE Transactions on Industrial Electronics (Qualis A1 CAPES). É Senior Member da IEEE e membro da SOBRAEP. Suas principais áreas de interesse são: mobilidade elétrica, recursos energéticos distribuídos e conversores multiníveis.

Alessandro L. Batschauer, Universidade do Estado de Santa Catarina

possui graduação (1999), mestrado (2002) e doutorado (2011) em Engenharia Elétrica pela Universidade Federal de Santa Catarina. Atualmente é pesquisador CNPq com bolsa de produtividade DT2. Desde 2003 é professor titular da Universidade do Estado de Santa Catarina e integrante do Núcleo de Processamento de Energia Elétrica – nPEE. Em 2004 foi um dos sócios fundadores da Empresa SUPPLIER onde atua como Diretor. Na UDESC, foi Coordenador do Programa de Pós-Graduação em Engenharia Elétrica, participou do Conselho de Administração e do Conselho Universitário. Atua no Conselho Técnico e como Pesquisador Associado no Instituto Nacional de Ciência e Tecnologia em Geração Distribuída de Energia Elétrica (INCT-GD). Tem experiência na área de Engenharia Elétrica, com ênfase em Eletrônica de Potência e Controle de Conversores, atuando principalmente nos seguintes temas: CFP, comutação suave, filtros ativos e inversores multiníveis. Prof. Alessandro Batschauer atualmente é membro e revisor de artigos da Sociedade Brasileira de Eletrônica de Potência (Sobraep), da IEEE-PELS e IEEE-IES.

References

H. Zhang, et al., “Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs”, IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 5157–5179, may 2020. DOI: https://doi.org/10.1109/TPEL.2019.2946367

B. Wu, M. Narimani, High-Power Converters and AC Drives, IEEE Press Series on Power Engineering, 2nd ed., Wiley, Hoboken, New Jersey, 2017. DOI: https://doi.org/10.1002/9781119156079

A. Campos, J. Paez, P. Dworakowski, “Comparison of Modular Multilevel Converter and Neutral Point Clamped Converter Topologies for MVDC Applications”, in 2023 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe), pp. 1–9, sep 2023. DOI: https://doi.org/10.23919/EPE23ECCEEurope58414.2023.10264438

“IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”, jun 2014.

“IEC 61000-3-2: Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current < 16 A per phase)”, Accessed: 2023-05-28, jan 2018.

“IEC 61000-3-12: Electromagnetic compatibility (EMC) - Part 3-12: Limits - Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and < 75 A per phase”, Accessed: 2023-05-28, jun 2021, URL: https://webstore.iec.ch/publication/69084.

S. Kouro, et al., “Recent Advances and Industrial Applications of Multilevel Converters”, IEEE Trans Ind Electron, vol. 57, no. 8, pp. 2553–2580, aug 2010. DOI: https://doi.org/10.1109/TIE.2010.2049719

Y. Zhou, M. Xu, Y. Zhang, H. Liu, “Research and Simulation of Hybrid ANPC Converter”, in 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), pp. 2399–2404, may 2023. DOI: https://doi.org/10.1109/CIEEC58067.2023.10165737

I. E. Haji, M. Kchikach, A. Elhasnaoui, S. Sahbani, “Performance Analysis of two DC-DC Multilevel Converters and Classic Boost Converter in Terms of Ripples and Voltage Load Overshoot”, in 2023 5th International Conference on Power and Energy Technology (ICPET), pp. 59–64, jul 2023. DOI: https://doi.org/10.1109/ICPET59380.2023.10367677

N. F. Nardoto, D. M. Blanco, E. J. Bueno, W. M. Santos, L. F. Encarnação, “Comparative Analysis of Model-Based Predictive Control for NPC and ANPC Multilevel Converters Considering Practical Implementations”, in 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 179–184, jul 2023. DOI: https://doi.org/10.1109/CoDIT58514.2023.10284172

J. Rodriguez, S. Bernet, P. K. Steimer, I. E. Lizama, “A Survey on Neutral-Point-Clamped Inverters”, IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2219–2230, jul 2010. DOI: https://doi.org/10.1109/TIE.2009.2032430

M. A. Qamar, A. Filba-Martinez, S. Busquets-Monge, W. Kui, “Capacitor Voltage Balancing of Four-Level ANPC and π-type Converters Based on Simplified Virtual-Vector PWM”, in 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), pp. 1–6, mar 2023. DOI: https://doi.org/10.1109/ESARS-ITEC57127.2023.10114865

T. Brückner, S. Bernet, H. Güldner, “The Active NPC Converter and Its Loss-Balancing Control”, IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 855–868, jun 2005. DOI: https://doi.org/10.1109/TIE.2005.847586

H. Cao, F. Guo, Z. Ma, L. Du, Y. Zhao, H. A. Mantooth, “An ANPC based High-Power Medium-Voltage Triple Active Bridge (TAB) DCDC Converter with Enhanced Modulations”, in 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia), pp. 2898–2904, may 2023. DOI: https://doi.org/10.23919/ICPE2023-ECCEAsia54778.2023.10213647

P. H. Feretti, F. L. Tofoli, E. R. Ribeiro, “Family of NonIsolated High Step-Up DC–DC Converters Based on the Multi-State Switching Cell”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5882–5893, oct 2022. DOI: https://doi.org/10.1109/JESTPE.2022.3160280

G. V. T. Bascopé, I. Barbi, “Generation of a family of non-isolated DC-DC PWM converters using new three-state switching cells”, in 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), pp. 858–863, IEEE, Galway, Ireland, 2000. DOI: https://doi.org/10.1109/PESC.2000.879927

M. S. Ortmann, S. A. Mussa, M. L. Heldwein, “Concepts for high efficiency single-phase three-level PWM rectifiers”, in 2009 IEEE Energy Conversion Congress and Exposition, pp. 3768–3775, sep 2009. DOI: https://doi.org/10.1109/ECCE.2009.5316310

R. P. T. Bascopé, J. A. F. Neto, G. V. T. Bascopé, “Multi-state commutation cells to increase current capacity of multi-level inverters”, in 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), pp. 1–9, IEEE, Amsterdam, Netherlands, oct 2011. DOI: https://doi.org/10.1109/INTLEC.2011.6099806

J. A. F. Neto, F. J. B. Brito, D. R. Joca, M. A. N. Nunes, R. P. Torrico Bascope, “A five-level NPC bidirectional converter based on multistate switching cell operating as boost rectifier”, in 2013 Brazilian Power Electronics Conference, pp. 79–84, IEEE, Gramado, Brazil, oct 2013. DOI: https://doi.org/10.1109/COBEP.2013.6785098

J. A. L. Barboza, O. C. S. Filho, L. C. S. Mazza, R. P. T. Bascopé, “Five-level T-type NPC PFC rectifier based on multistate switching cell”, in 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6, IEEE, Fortaleza, nov 2015, doi:10.1109/COBEP.2015.7420282. DOI: https://doi.org/10.1109/COBEP.2015.7420282

R. G. de A. Cacau, R. P. T. Bascopé, J. A. F. Neto, G. V. T. Bascopé, “Five-level T-type inverter based on multi-state switching cell”, in 2012 10th IEEE/IAS International Conference on Industry Applications, pp. 1–8, IEEE, Fortaleza, CE, Brazil, nov 2012. DOI: https://doi.org/10.1109/INDUSCON.2012.6453728

B. Singh, B. Singh, A. Chandra, K. Al-Haddad, A. Pandey, D. Kothari, “A review of single-phase improved power quality AC-DC converters”, IEEE Transactions on Industrial Electronics, vol. 50, no. 5, pp. 962– 981, 2003. DOI: https://doi.org/10.1109/TIE.2003.817609

M. Najjar, A. Kouchaki, J. Nielsen, R. Dan Lazar, M. Nymand, “Design Procedure and Efficiency Analysis of a 99.3% Efficient 10 kW Three-Phase Three-Level Hybrid GaN/Si Active Neutral Point Clamped Converter”, IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6698–6710, 2022. DOI: https://doi.org/10.1109/TPEL.2021.3131955

J. A. F. Neto, F. J. B. Brito, D. R. Joca, M. A. N. Nunes, R. P. Torrico-Bascope, “A five-level NPC bidirectional converter based on multistate switching cell operating as boost rectifier”, in 2013 Brazilian Power Electronics Conference, pp. 79–84, IEEE, Gramado, Brazil, 2013. DOI: https://doi.org/10.1109/COBEP.2013.6785098

W. G. Hurley, W. H. Wölfle, Transformers and Inductors for Power Electronics Theory, Design and Applications, Wiley, 2013. [26] I. Barbi, Projetos de Fontes Chaveadas, Edição do Autor, 2001. DOI: https://doi.org/10.1002/9781118544648

A. L. Batschauer, Inversor Multiníveis Híbrido Trifásico Baseado em Módulos Meia-Ponte, Ph.D. thesis, Universidade Federal de Santa Catarina, Florianópolis, 2011

Published

2025-07-15

How to Cite

[1]
V. G. Hoffmann, F. J. Zimann, C. Rech, and A. L. Batschauer, “Desenvolvimento de um Inversor ANPC de 5 Níveis de Tensão Utilizando Célula de Comutação Multiestado”, Eletrônica de Potência, vol. 30, p. e202540, Jul. 2025.

Issue

Section

Original Papers