Introducing INEP PVSim: A Free Offline Application to Assess the Effects of Parameter Variations on the I-V Curves of Photovoltaic Modules
DOI:
https://doi.org/10.18618/REP.e202549Keywords:
Photovoltaic energy, One-diode model, Python, Education, I-V and I-V curvesAbstract
This paper introduces INEP PVSim, an offline application designed for teachers, students, and engineers to evaluate the behavior of photovoltaic (PV) modules. The application features a user-friendly interface that allows the simulation of I–V and P–V curves under different climate conditions, enabling real-time modification of parameters such as solar irradiance and temperature across a much broader range than typically provided in manufacturer datasheets. INEP PVSim is developed as free Python-based code and offers significant educational potential in the field of Power Electronics, as analyzing the impact of parameter variations on PV generation is often a challenging task with direct implications for power converter design. In addition to presenting the application, this paper also formalizes, in a single document, the equations and methods adopted for the implementation of the one-diode model, providing an accessible yet accurate platform for both learning and practical analysis.
Downloads
References
REN21, "Renewables 2023 Global Status Report," REN21 Secretariat, 2023.
T. A. Pereira, L. Schmitz, W. M. dos Santos, D. C. Martins, and R. F. Coelho, "Design of a Portable Photovoltaic I-V Curve Tracer Based on the DC–DC Converter Method," IEEE Journal of Photovoltaics, vol. 11, no. 2, pp. 552-560, Mar. 2021. DOI: https://doi.org/10.1109/JPHOTOV.2021.3049903
T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, Jun. 2007. DOI: https://doi.org/10.1109/TEC.2006.874230
M. G. Villalva, J. R. Gazoli, and E. Ruppert Filho, "Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays," IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198-1208, May 2009. DOI: https://doi.org/10.1109/TPEL.2009.2013862
W. De Soto, S. A. Klein, and W. A. Beckman, "Improvement and Validation of a Model for Photovoltaic Array Performance," Sol. Energy, vol. 80, no. 1, pp. 78-88, Jan. 2006. DOI: https://doi.org/10.1016/j.solener.2005.06.010
U. Drofenik and J. W. Kolar, "Interactive Power Electronics Seminar (iPES) - A Web-Based Introductory Power Electronics Course Employing Java-Applets," in Proc. IEEE Power Electron. Spec. Conf., 2002, pp. 443-448. DOI: https://doi.org/10.1109/PSEC.2002.1022493
E. Hiraki, M. Ishihara, and K. Umetani, "Introduction of Circuit Simulator to Power Electronics Education in Interdisciplinary Educational Environment," in Proc. IEEE Int. Conf. E-Learning in Ind. Electron., 2023, pp. 1-5. DOI: https://doi.org/10.1109/ICELIE58531.2023.10313100
A. Musing, U. Drofenik, and J. W. Kolar, “New circuit simulation applets for online education in power electronics,” in 2011 5th IEEE International Conference on E-Learning in Industrial Electronics (ICELIE), Melbourne, Australia: IEEE, Nov. 2011, pp. 70–75. DOI: https://doi.org/10.1109/ICELIE.2011.6130028
A. Laudani, F. R. Fulginei, and A. Salvani, "High Performing Extraction Procedure for the One-Diode Model of a Photovoltaic Panel from Experimental I-V Curves by Using Reduced Forms," Sol. Energy, vol. 103, pp. 316-326, 2014. DOI: https://doi.org/10.1016/j.solener.2014.02.014
H. Mokhliss, A. El-Amiri, and K. Rais, "Estimation of Five Parameters of Photovoltaic Modules Using a Synergetic Control Theory Approach," J. Comput. Electron., vol. 18, no. 1, pp. 241-250, 2019. DOI: https://doi.org/10.1007/s10825-018-1253-2
J. M. Alvarez, D. Alfonso-Corcuera, E. Roibas, J. Cubas, J. L. Cubero, A. G. Estrada, R. J. Puente, M. Sanabria, and S. Pindado, "Analytical Modeling of Current-Voltage Photovoltaic Performance: An Easy Approach to Solar Panel Behavior," Appl. Sci., vol. 11, no. 9, 4250, 2021. DOI: https://doi.org/10.3390/app11094250
H. M. Ridha, H. Hizam, S. Mirjalili, M. L. Othman, M. E. Ya’acob, and M. Ahmadipour, "Parameter Extraction of Single, Double, and Three Diodes Photovoltaic Model Based on Guaranteed Convergence Arithmetic Optimization Algorithm and Modified Third Order Newton Raphson Methods," Renew. Sust. Energy Rev., vol. 162, 2022. DOI: https://doi.org/10.1016/j.rser.2022.112436
K. Chennoufi, M. Ferfra, and M. Mokhlis, "An Accurate Modelling of PV Modules Based on Two-Diode Model," Renew. Energy, 2020. DOI: https://doi.org/10.1016/j.renene.2020.11.085
M. Zaimi, H. El-Achouby, O. Zegoudi, A. Ibral, and E. M. Assaid, "New Analytical Approach for Modeling Effects of Temperature and Irradiance on Physical Parameters of Photovoltaic Solar Module," Energy Convers. Manag., vol. 177, pp. 258-271, 2020. DOI: https://doi.org/10.1016/j.enconman.2018.09.054
V. J. Chin, Z. Salam and K. Ishaque, "An Accurate and Fast Computational Algorithm for the Two-diode Model of PV Module Based on a Hybrid Method," in IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6212-6222, Aug. 2017. DOI: https://doi.org/10.1109/TIE.2017.2682023
PVSyst, "PVSyst Photovoltaic Software," [Online]. Available: https://www.pvsyst.com/.
SolarPro, "SolarPro Simulation Software for PV Design," [Online]. Available: https://www.solarpro.com/.
Solutions, I. P. V. (2019). 36 Cells - VE136PV. 10–11.
Solar, T. (n.d.). The Honey Module Module (pp. 1–2).
Hyunday. (2013). Hyundai Solar Module. 0–1. www.hyundaisolar.com
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Matheus Meireles da Silva, Victor F. Gruner, Thiago F. Rech, Tailan Orlando, Kevin R. Costa, Jens Friebe, André L. Kirsten, Roberto F. Coelho

This work is licensed under a Creative Commons Attribution 4.0 International License.