A case study on hydrogen generation from solar energy with MPPT control strategy
DOI:
https://doi.org/10.18618/REP.e202559Keywords:
Electrolyzer, Green Hydrogen, Interleaved Step-Down Converter, Maximum Power Point Tracking, Power ElectronicsAbstract
The current mainstream method of global hydrogen production relies on steam reforming of natural gases, which leads to CO2 emissions. On the contrary, renewable-powered water electrolysis offers a sustainable alternative for hydrogen production. The growing adoption of hydrogen as an energy storage solution holds potential for new applications, including ancillary electric grid and transportation services. Those high-power applications require a high output current (900 A) and relatively low output voltages (160-220 V). To address these requirements, a system is designed from a photovoltaic array, two step-down interleaved converters, and an intermediary DC bus to power a 10-kW electrolyzer. The first stage allows the implementation of the maximum power point tracking of the photovoltaic array, ensuring optimal energy conversion, while the second stage supplies the electrolyzer with constant current. A droop-based strategy is proposed to regulate a floating bus voltage within a specified range. Controller Hardware-in-the-Loop results show the feasibility of the proposed control strategy.
Downloads
References
EPE, “Bases para a Consolidação da Estratégia Brasileira do Hidrogênio”, 2 2021.
J. B. West, “Henry Cavendish (1731-1810): Hydrogen, carbon dioxide, water, and weighing the world”, American Journal of Physiology -Lung Cellular and Molecular Physiology, vol. 307, pp. 2–7, 2014. DOI: https://doi.org/10.1152/ajplung.00067.2014
H. Renaudineau, A. M. Llor, R. Cortés D., C. A. Rojas, C. Restrepo, S. Kouro, “Photovoltaic Green Hydrogen Challenges and Opportunities: A Power Electronics Perspective”, IEEE Industrial Electronics Magazine, vol. 16, no. 1, pp. 31–41, 2022. DOI: https://doi.org/10.1109/MIE.2021.3120705
DOU, “Lei n° 14.948, de 2 de agosto de 2024”, Diário Oficial da União, Brasil, 2024, URL: https://www.in.gov.br/en/web/dou/-/lei-n-14.948-de-2-de-agosto-de-2024-576003914.
EPE, “BEN Relatório Síntese 2024”, , 2024.
G. Notton, M. L. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte, A. Fouilloy, “Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting”, Renewable and Sustainable Energy Reviews, vol. 87, no. August 2017, pp. 96–105, 2018. DOI: https://doi.org/10.1016/j.rser.2018.02.007
Z. Dobó, A. B. Palotás, P. Tóth, “The effect of power supply ripple on DC water electrolysis efficiency”, Materials Science and Engineering, vol. 41, no. 1, pp. 23–31, 2016. DOI: https://doi.org/10.1016/j.ijhydene.2016.05.141
X. Meng, M. Chen, M. He, X. Wang, J. Liu, “A Novel High Power Hybrid Rectifier With Low Cost and High Grid Current Quality for Improved Efficiency of Electrolytic Hydrogen Production”, IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3763–3768, 2022. DOI: https://doi.org/10.1109/TPEL.2021.3126725
S. Mohamadian, R. Ghandehari, A. Shoulaie, “A comparative study of AC/DC converters used in high current applications”, in 2011 2nd Power Electronics, Drive Systems and Technologies Conference, pp. 604–609, 2011. DOI: https://doi.org/10.1109/PEDSTC.2011.5742491
T. L. Gibson, N. A. Kelly, “Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices”, International Journal of Hydrogen Energy, vol. 35, no. 3, pp. 900–911, 2010. DOI: https://doi.org/10.1016/j.ijhydene.2009.11.074
H. Renaudineau, N. Vergara-Rosales, A. M. Llor, S. Kouro, “Green hydrogen production from off-grid photovoltaic: An assessment on optimal sizing”, Renewable Energy, vol. 246, p. 122794, 2025. DOI: https://doi.org/10.1016/j.renene.2025.122794
J. M. Stansberry, J. Brouwer, “Experimental dynamic dispatch of a 60 kW proton exchange membrane electrolyzer in power-to-gas application”, International Journal of Hydrogen Energy, vol. 45, no. 16, pp. 9305–9316, 2020. DOI: https://doi.org/10.1016/j.ijhydene.2020.01.228
V. A. Martinez Lopez, H. Ziar, J. W. Haverkort, M. Zeman, O. Isabella, “Dynamic operation of water electrolyzers: A review for applications in photovoltaic systems integration”, Renewable and Sustainable Energy Reviews, vol. 182, no. September 2022, p. 113407, 2023. DOI: https://doi.org/10.1016/j.rser.2023.113407
J. Eichman, K. Harrison, M. Peters, “Novel Electrolyzer Applications : Providing More Than Just Hydrogen Novel Electrolyzer Applications : Providing More Than Just Hydrogen”, NREL Report, pp. 1–24, 2014, URL: http://www.nrel.gov/docs/fy14osti/61758.pdf. DOI: https://doi.org/10.2172/1159377
A. Garrigos, J. M. Blanes, J. A. Carrasco, J. L. Lizan, R. Beneito, J. A. Molina, “5 kW DC/DC converter for hydrogen generation from photovoltaic sources”, Renewable Energy, vol. 35, pp. 6123–6130, 2010. DOI: https://doi.org/10.1016/j.ijhydene.2010.03.131
Y. Machida, A. Goto, A. Takahashi, S. Funabiki, “Energy Management of Hydrogen-Storage Photovoltaic Generation System with a Function of Suppressing Short-Period Components”, 2018 International Power Electronics Conference, IPEC-Niigata - ECCE Asia 2018, pp. 2449–2455, 2018. DOI: https://doi.org/10.23919/IPEC.2018.8507572
H. Niaz, M. M. Lakouraj, J. Liu, “Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: A Korean case study”, Korean Journal of Chemical Engineering, vol. 38, pp. 1617–1630, 8 2021. DOI: https://doi.org/10.1007/s11814-021-0819-z
T. F. Rech, T. Orlando, R. F. Coelho and A. L. Kirsten, "Step-Down Converter for Low Current Ripple in Electrolyzer with MPPT Control Strategy," 2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP), Florianopolis, Brazil, 2023, pp. 1-7. DOI: https://doi.org/10.1109/SPEC56436.2023.10407276
J. Koponen, A. Kosonen, V. Ruuskanen, K. Huoman, M. Niemela, J. Ahola, “Control and energy efficiency of PEM water electrolyzers in renewable energy systems”, International Journal of Hydrogen Energy, vol. 42, no. 50, pp. 29648–29660, 2017. DOI: https://doi.org/10.1016/j.ijhydene.2017.10.056
M. Becker, J. Brauns, T. Turek, “Battery-Buffered Alkaline Water Electrolysis Powered by Photovoltaics”, Chemie Ingenieur Technik, vol. 93, no. 4, pp. 655–663, 2021. DOI: https://doi.org/10.1002/cite.202000151
I. N. de Pesquisas Espaciais, “Sistema de Organização Nacional de Dados Ambientais”, URL: https://sonda.ccst.inpe.br/basedados/florianopolis.html.
H. P. Buitendach, R. Gouws, C. A. Martinson, C. Minnaar, D. Bessarabov, “Effect of a ripple current on the efficiency of a PEM electrolyser”, Results in Engineering, vol. 10, 2021. DOI: https://doi.org/10.1016/j.rineng.2021.100216
J. Koponen, V. Ruuskanen, A. Kosonen, M. Niemela, J. Ahola, “Effect of Converter Topology on the Specific Energy Consumption of Alkaline Water Electrolyzers”, IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6171–6182, 2019. DOI: https://doi.org/10.1109/TPEL.2018.2876636
V. Ruuskanen, J. Koponen, A. Kosonen, M. Hehemann, R. Keller, M. Niemela J. Ahola, “Power quality estimation of water electrolyzers based on current and voltage measurements”, Journal of Power Sources, vol. 450, no. December, 2020. DOI: https://doi.org/10.1016/j.jpowsour.2019.227603
V. Ruuskanen, J. Koponen, A. Kosonen, M. Niemela, J. Ahola, A. Hamalainen, “Power quality and reactive power of water electrolyzers supplied with thyristor converters”, Journal of Power Sources, vol. 459, no. December 2019, 2020. DOI: https://doi.org/10.1016/j.jpowsour.2020.228075
V. Guida, D. Guilbert, B. Douine, “Literature Survey of Interleaved DC-DC Step-Down Converters for Proton Exchange Membrane Electrolyzer Applications”, Transactions on Environment and Electrical Engineering, vol. 3, no. 1, 2019. DOI: https://doi.org/10.22149/teee.v3i1.129
D. Guilbert, D. Sorbera, G. Vitale, “A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: Design and experimental validation”, International Journal of Hydrogen Energy, vol. 45, no. 1, pp. 64–79, 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.10.238
M. C. Mira, Z. Zhang, K. L. Jorgensen, M. A. Andersen, “Fractional Charging Converter with High Efficiency and Low Cost for Electro-chemical Energy Storage Devices”, in IEEE Transactions on Industry Applications, vol. 55, pp. 7461–7470, Institute of Electrical and Electronics Engineers Inc., nov 2019. DOI: https://doi.org/10.1109/TIA.2019.2921295
J. W. Zapata, S. Kouro, G. Carrasco, H. Renaudineau, T. A. Meynard, “Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 591–603, 2019. DOI: https://doi.org/10.1109/JESTPE.2018.2842638
T. F. Rech, M. Constantino Orige, L. Schmitz, M. L. Heldwein, T. Brunelli Lazzarin, A. L. Kirsten, R. Francisco Coelho, “A Case Study on Modelling, Design, and Optimization of an Interleaving Buck Converter for Powering a Hydrogen Electrolyzer”, pp. 1–7, 2024. DOI: https://doi.org/10.1109/ECCEEurope62508.2024.10752079
M. Kasper, D. Bortis, J. W. Kolar, “Scaling and balancing of multi-cell converters”, 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, pp. 2079–2086, 2014. DOI: https://doi.org/10.1109/IPEC.2014.6869875
F. J. Brito, M. L. Heldwein, R. P. Bascope, “Active current balancing technique employing the Lunze’s transformation for converters based on multistate switching cells”, 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, COBEP/SPEC 2016, , no. Dcm, 2015. DOI: https://doi.org/10.1109/COBEP.2015.7420159
J. A. Oliver, P. Zumel, O. Garcia, J. A. Cobos, J. Uceda, “Passive component analysis in interleaved buck converters”, Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 1, no. C, pp. 623–628, 2004. DOI: https://doi.org/10.1109/APEC.2004.1295871
R. F. Coelho, L. Schmitz, D. C. Martins, Energia Solar Fotovoltaica: Geração, Conversão e Aplicações, Roberto Francisco Coelho, Lenon Schmitz, Sep. 2022.
M. B. Hossain, M. R. Islam, K. M. Muttaqi, D. Sutanto, A. P. Agalgaonkar, “Dynamic Electrical Circuit Modeling of a Proton Exchange Membrane Electrolyzer for Frequency Stability, Resiliency, and Sensitivity Analysis in a Power Grid”, IEEE Transactions on Industry Applications, vol. 59, no. 6, pp. 7271–7281, 2023. DOI: https://doi.org/10.1109/TIA.2023.3297985
S. K´elouwani, K. Agbossou, R. Chahine, “Model for energy conversion in renewable energy system with hydrogen storage”, Journal of Power Sources, vol. 140, pp. 392–399, 2005. DOI: https://doi.org/10.1016/j.jpowsour.2004.08.019
Øystein Ulleberg, “Modeling of advanced alkaline electrolyzers: A system simulation approach”, International Journal of Hydrogen Energy, vol. 28, pp. 21–33, 2003. DOI: https://doi.org/10.1016/S0360-3199(02)00033-2
M. Yousuf, K. Zeb, “Design and Analysis of DC-DC Two-Phase Interleaved Buck Converter for EV Charging Applications”, in 2023 18th International Conference on Emerging Technologies (ICET), pp. 80–85, 2023. DOI: https://doi.org/10.1109/ICET59753.2023.10374676
J. D. Logan, A First Course in Differential Equations, 3rd ed., Springer-Verlag, New York, 2015, URL: https://www.math.unl.edu/∼jlogan1/PDFfiles/New3rdEditionODE.pdf. DOI: https://doi.org/10.1007/978-3-319-17852-3_1
J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.
K. Y. Yap, C. R. Sarimuthu, J. M.-Y. Lim, “Artificial Intelligence Based MPPT Techniques for Solar Power System: A review”, Journal of Modern Power Systems and Clean Energy, vol. 8, no. 6, pp. 1043–1059, 2020. DOI: https://doi.org/10.35833/MPCE.2020.000159
F. Baumgartner, A. Bergmann, B. Burger, H. H¨aberlin, N. Henze, R. Brundlinger, “prEN 50530 - The New European Standard for Performance Characterisation of PV Inverters”, , 2009, URL: https://api.semanticscholar.org/CorpusID:55634769.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Thiago F. Rech, Tailan Orlando, André L. Kirsten, Roberto F. Coelho

This work is licensed under a Creative Commons Attribution 4.0 International License.






