Impacto do PLL para Estimação de Impedância de Rede e Avaliação de Estabilidade no Domínio DQ em Sistemas com Inversores Conectados

Authors

  • Diego O. Cardoso LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil
  • Hugo M. T. C. Gomes LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil
  • Filipe A. da C. Bahia LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil
  • André P. N. Tahim LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil
  • José R. Pinheiro GEPOC, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil
  • Fabiano F. Costa LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil

DOI:

https://doi.org/10.18618/REP.2023.2.0050

Keywords:

Critério generalizado de Nyquist, Estimação de Impedância de Rede, Inversor Conectado à Rede, Malhas de Captura de Fase, Matriz de Impedância DQ, Perturbações Binárias Pseudo-Aleatórias

Abstract

Este artigo propõe uma técnica para estimação da matriz de impedância de rede vista por um inversor trifásico conectado à rede elétrica. Ela é baseada na injeção de perturbações binárias pseudo-aleatórias de corrente impostas pelo controle do inversor. As perturbações são injetadas nos referenciais dq sincronizados por uma malha de captura de fase (PLL), referente ao sistema de controle (CPLL). Utilizase outro PLL, exclusivamente para a estimação da matriz de impedância síncrona dq (EPLL). Por meio de análises no domínio da frequência, verifica-se que a estimação da impedância é afetada para frequências na banda passante (BP) do EPLL. Consequentemente, a BP deve ser projetada dentro de uma faixa de frequências menor do que aquelas de interesse para a estimação da matriz de impedância. O presente trabalho também aplica o critério generalizado de Nyquist (CGN) para avaliar a estabilidade do sistema. Conclui-se que a seleção equivocada da banda do EPLL pode levar a avaliações incorretas. Além disso, a banda do CPLL pode ser usada para produzir uma matriz de impedância do inversor que assegure maiores margens de estabilidade ao sistema. As discussões apresentadas neste artigo são apoiadas por simulações no software Simulink e por realizações dos controles em tempo real através de uma plataforma Typhoon.

 

Downloads

Download data is not yet available.

Author Biographies

Diego O. Cardoso, LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil

possui graduação em Engenharia Elétrica (2016) pela Universidade Federal de Sergipe (UFS). É mestre (2020) e doutorando em Engenharia Elétrica pela Universidade Federal da Bahia (UFBA). Seus atuais interesses de pesquisas estão relacionados ao controle e estabilidade de conversores baseados em eletrônica de potência. Atualmente, pesquisa técnicas de estimação online de impedância e avaliação de estabilidade dos conversores.

Hugo M. T. C. Gomes, LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil

possui graduação em Engenharia Elétrica pelo Instituto Federal da Bahia, Brasil, em 2010, e o grau de Mestre em Engenharia Elétrica pela Universidade Federal da Bahia, Brasil, em 2016. Atualmente é Doutorando pelo Laboratório de Eficiência Energética (LABEFEA). Seus temas de pesquisa incluem técnicas de controle em sistemas de geração distribuída, PLL, estimativa de impedância de rede e estudo de estabilidade.

Filipe A. da C. Bahia, LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil

possui graduação em Engenharia Elétrica (2013) pela Universidade Federal da Paraíba (UFPB) . É mestre (2015) e doutor (2019) em Engenharia Elétrica pela Universidade Federal de Campina Grande (UFCG). Atualmente, é professor adjunto do Departamento de Engenharia Elétrica e de Computação (DEEC) da Universidade Federal da Bahia (UFBA). Suas áreas de interesse englobam conversores estáticos de potência, sistemas de geração de energias renováveis, sistemas de armazenamento de energia, sistemas de acionamento de máquinas elétricas e estratégias de modulação por largura de pulso (PWM). É membro do IEEE e da SOBRAEP.

André P. N. Tahim, LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil

possui graduação em Engenharia Elétrica pela Universidade Federal da Bahia (2004). Obteve o título de mestre em Engenharia Elétrica e Doutor em Engenharia de Automação e Sistemas pela Universidade Federal de Santa Catarina (2009 e 2015). Desde 2015 é membro do corpo docente de Engenharia Elétrica da Universidade Federal da Bahia (Brasil). Seus interesses de pesquisa atuais incluem modelagem e controle de sistemas de conversão de energia, análise de sistemas dinâmicos, sistemas de distribuição dc e eletrônica de potência para fontes de energia renováveis.

José R. Pinheiro, GEPOC, Universidade Federal de Santa Maria (UFSM), Santa Maria – RS, Brasil

recebeu o grau de Eng Eletricista pela UFSM, e os graus de Mestre e Doutor em Engenharia Elétrica pela UFSC, em 1981, 1984, e 1994, respectivamente. É Prof. Titular (Voluntário) do DPEE da UFSM, onde atua desde 1985. Desde 2018, também atua como Prof. Titular Visitante no PPGEE da UFBA. Em 1987, foi um dos fundadores e líder do Grupo de Eletrônica de Potência e Controle (GEPOC). Entre 2006 e 2015 foi coord. do PPGEE da UFSM. Entre 2001 e 2002, realizou pós-doutorado no Center for Power Electronics Systems (CPES), Virginia Tech, EUA. Suas principais linhas de pesquisas e interesse incluem Projetos Otimizados de conversores estáticos, Sistemas Híbridos de conversão estática de energia, Conversão de Energia em Alta Frequência, Modelagem e Controle de Conversores Estáticos e Sistemas Distribuídos de Energia. É membro da SOBRAEP, da SBA, e das Sociedades PELS, IAS, IES e PES da IEEE.

Fabiano F. Costa, LABEFEA, Universidade Federal da Bahia (UFBA), Salvador – BA, Brasil

recebeu os títulos de graduação, mestrado e doutorado em Engenharia Elétrica pela Universidade de São Paulo, Universidade Federal da Paraíba e Universidade Federal de Campina Grande em 1997, 2001 e 2005 respectivamente. É Professor Associado no Departamento de Engenharia Elétrica da Universidade Federal da Bahia. Seus interesses de pesquisa são estabilidade e modelagem de conversores estáticos. É membro titular da Sociedade Brasileira de Eletrônica de Potência (SOBRAEP) e Membro Sênior do IEEE.

References

S. Kjaer, J. Pedersen, F. Blaabjerg, “A reviewof single-phase grid-connected inverters forphotovoltaic modules”,IEEE Transactions onIndustry Applications, vol. 41, n. 5, pp. 1292–1306,Set.–Out. 2005, doi:https://doi.org/10.1109/TIA.2005.853371. DOI: https://doi.org/10.1109/TIA.2005.853371

L. L. Brighenti, A. L. Batschauer, M. Mezaroba,“Inversores comutados pela rede associados aum autotransformador multipulsos para a geraçãofotovoltaica”, Eletrônica de Potência,vol. 21, n. 3, p. 200–211, Set. 2016, doi:https://doi.org/10.18618/REP.2016.3.2602. DOI: https://doi.org/10.18618/REP.2016.3.2602

B. C. Rabelo, W. Hofmann, J. L. da Silva, R. G.de Oliveira, S. R. Silva, “Reactive power control indoubly-fed induction generators for wind turbines”,IEEETransactionsonIndustrialElectronics,vol. 56, n. 10, pp. 4154–4162, Out. 2009, doi:https://doi.org/10.1109/TIE.2009.2028355. DOI: https://doi.org/10.1109/TIE.2009.2028355

L. S. Xavier, A. F. Cupertino, H. A. Pereira, V. F.Mendes, “Power control strategy for grid-connectedinverters in stationary reference frame”,Eletrônica de Potência, vol. 27, n. 2, pp. 129–138, Jun.2022, doi:https://doi.org/10.18618/REP.2022.2.0048. DOI: https://doi.org/10.18618/REP.2022.2.0048

P. C. Bolsi, E. O. Prado, A. F. Precht, J. M.Lenz, H. C. Sartori, J. R. Pinheiro, “Metodologiade projeto para minimização de volume do filtroLCL de conversores conectados à rede considerandotempo de vida do capacitor”, Eletrônica de Potência, vol. 26, n. 4, pp. 399–408, Dez. 2022, doi:https://doi.org/10.18618/REP.2021.4.0028. DOI: https://doi.org/10.18618/REP.2021.4.0028

F. Blaabjerg, R. Teodorescu, M. Liserre, A. V. Timbus,“Overview of Control and Grid Synchronizationfor Distributed Power Generation Systems”,IEEETransactionsonIndustrialElectronics,vol. 53, n. 5, pp. 1398–1409, Out. 2006, doi:https://doi.org/10.1109/TIE.2006.881997. DOI: https://doi.org/10.1109/TIE.2006.881997

J. Wang, N. C. P. Chang, X. Feng, A. Monti,“Design of a Generalized Control Algorithm forParallel Inverters for Smooth Microgrid TransitionOperation”,IEEETransactionsonIndustrialElectronics, vol. 62, n. 8, pp. 4900–4914, Ago.2015, doi:https://doi.org/10.1109/TIE.2015.2404317. DOI: https://doi.org/10.1109/TIE.2015.2404317

J. Sun, “Small-Signal Methods for AC DistributedPower Systems–A Review”,IEEE Transactions onPower Electronics, vol. 24, n. 11, pp. 2545–2554, Nov.2009, doi:https://doi.org/10.1109/TPEL.2009.2029859. DOI: https://doi.org/10.1109/TPEL.2009.2029859

J. Sun, “Impedance-Based Stability Criterion for Grid-Connected Inverters”,IEEE Transactions on PowerElectronics, vol. 26, n. 11, pp. 3075–3078, Nov. 2011,doi:https://doi.org/10.1109/TPEL.2011.2136439. DOI: https://doi.org/10.1109/TPEL.2011.2136439

Y. Han, M. Yang, H. Li, P. Yang, L. Xu,E. A. A. Coelho, J. M. Guerrero, “Modelingand Stability Analysis of LCL-Type Grid-ConnectedInverters: A Comprehensive Overview”,IEEEAccess, vol. 7, pp. 114975–115001, Ago. 2019, doi:https://doi.org/10.1109/ACCESS.2019.2935806. DOI: https://doi.org/10.1109/ACCESS.2019.2935806

B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli,Z. Shen, “Small-Signal Stability Analysis ofThree-Phase AC Systems in the Presence ofConstant Power Loads Based on Measured d-qFrame Impedances”,IEEE Transactions on PowerElectronics, vol. 30, n. 10, pp. 5952–5963, Out. 2015,doi:https://doi.org/10.1109/TPEL.2014.2378731. DOI: https://doi.org/10.1109/TPEL.2014.2378731

B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli,Z. Shen, “Analysis of D-Q Small-Signal Impedanceof Grid-Tied Inverters”,IEEE Transactions on PowerElectronics, vol. 31, n. 1, pp. 675–687, Jan. 2016, doi:https://doi.org/10.1109/TPEL.2015.2398192. DOI: https://doi.org/10.1109/TPEL.2015.2398192

B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli,Z. Shen, “Inverse Nyquist Stability Criterion forGrid-Tied Inverters”,IEEE Transactions on PowerElectronics, vol. 32, n. 2, pp. 1548–1556, Fev. 2017,doi:https://doi.org/10.1109/TPEL.2016.2545871. DOI: https://doi.org/10.1109/TPEL.2016.2545871

A. Riccobono, M. Mirz, A. Monti, “NoninvasiveOnline Parametric Identification of Three-Phase ACPower Impedances to Assess the Stability of Grid-TiedPower Electronic Inverters in LV Networks”,IEEEJournal of Emerging and Selected Topics in PowerElectronics, vol. 6, n. 2, pp. 629–647, Jun. 2018, doi:https://doi.org/10.1109/JESTPE.2017.2783042. DOI: https://doi.org/10.1109/JESTPE.2017.2783042

T. Roinila, M. Vilkko, J. Sun, “Broadband methods foronline grid impedance measurement”,in IEEE EnergyConversion Congress and Exposition, pp. 3003–3010,Out. 2013, doi:https://doi.org/10.1109/ECCE.2013.6647093. DOI: https://doi.org/10.1109/ECCE.2013.6647093

T. Roinila, M. Vilkko, J. Sun, “Online GridImpedance Measurement Using Discrete-IntervalBinary Sequence Injection”,IEEE Journal of Emerging and Selected Topics in Power Electronics,vol. 2, n. 4, pp. 985–993, Dez. 2014, doi:https://doi.org/10.1109/JESTPE.2014.2357494. DOI: https://doi.org/10.1109/JESTPE.2014.2357494

H. Alenius, R. Luhtala, T. Roinila, “Combination ofOrthogonal Injections in Impedance Measurementsof Grid-Connected Systems”,IEEE Access,vol. 8, pp. 178085–178096, Set. 2020, doi:https://doi.org/10.1109/ACCESS.2020.3026727. DOI: https://doi.org/10.1109/ACCESS.2020.3026727

R. Luhtala, T. Messo, T. Roinila, “Adaptive Controlof Grid-Voltage Feedforward for Grid-ConnectedInverters based on Real-Time Identificationof Grid Impedance”,in International PowerElectronics Conference (IPEC-Niigata 2018– ECCE Asia), pp. 547–554, Out. 2018, doi:https://doi.org/10.23919/IPEC.2018.8507736. DOI: https://doi.org/10.23919/IPEC.2018.8507736

T. Roinila, T. Messo, E. Santi, “MIMO-IdentificationTechniques for Rapid Impedance-Based StabilityAssessment of Three-Phase Systems in DQDomain”,IEEE Transactions on Power Electronics,vol. 33, n. 5, pp. 4015–4022, Mai. 2018, doi:https://doi.org/10.1109/TPEL.2017.2714581. DOI: https://doi.org/10.1109/TPEL.2017.2714581

T. Messo, R. Luhtala, T. Roinila, D. Yang, X. Wang,F. Blaabjerg, “Real-time impedance-based stabilityassessment of grid converter interactions”,in IEEE18th Workshop on Control and Modeling for PowerElectronics (COMPEL), pp. 1–8, Ago. 2017, doi:https://doi.org/10.1109/COMPEL.2017.8013384. DOI: https://doi.org/10.1109/COMPEL.2017.8013384

H. M. Gomes, L. L. Carralero, J. H. Suárez, A. P.Tahim, J. P. Renes, F. F. Costa, “Estimativa deimpedância para suporte de estabilidade e qualidadede energia em inversores conectados à rede”,Eletrônica de Potência, vol. 27, n. 2, pp. 165–176, Jun.2022, doi:https://doi.org/10.18618/REP.20113.212221. DOI: https://doi.org/10.18618/REP.2022.2.0004

P. Rodriguez, J. Pou, J. Bergas, J. I. Candela,R. P. Burgos, D. Boroyevich, “Decoupled DoubleSynchronous Reference Frame PLL for PowerConverters Control”,IEEE Transactions on PowerElectronics, vol. 22, n. 2, pp. 584–592, Mar. 2007, doi:https://doi.org/10.1109/TPEL.2006.890000. DOI: https://doi.org/10.1109/TPEL.2006.890000

B. Liu, F. Zhuo, Y. Zhu, H. Yi, F. Wang, “A Three-Phase PLL Algorithm Based on Signal ReformingUnder Distorted Grid Conditions”,IEEE Transactionson Power Electronics, vol. 30, n. 9, pp. 5272–5283,Set. 2015, doi:https://doi.org/10.1109/TPEL.2014.2366104. DOI: https://doi.org/10.1109/TPEL.2014.2366104

S. Golestan, A. Akhavan, J. M. Guerrero, A. M.Abusorrah, M. J. Rawa, J. C. Vasquez, “In-LoopFilters and Prefilters in Phase-Locked Loop Systems:Equivalent or Different Solutions?”,IEEE IndustrialElectronics Magazine, vol. 16, n. 3, pp. 23–35, Set.2022, doi:https://doi.org/10.1109/MIE.2021.3121652. DOI: https://doi.org/10.1109/MIE.2021.3121652

H. Gong, D. Yang, X. Wang, “Impact Analysisand Mitigation of Synchronization Dynamics forDQ Impedance Measurement”,IEEE Transactions onPower Electronics, vol. 34, n. 9, pp. 8797–8807, Set.2019, doi:https://doi.org/10.1109/TPEL.2018.2886096. DOI: https://doi.org/10.1109/TPEL.2018.2886096

Z. Shen, M. Jaksic, B. Zhou, P. Mattavelli,D. Boroyevich, J. Verhulst, M. Belkhayat, “Analysis ofPhase Locked Loop (PLL) influence on DQ impedancemeasurement in three-phase AC systems”,in 28thAnnual IEEE Applied Power Electronics Conferenceand Exposition (APEC), pp. 939–945, Mai. 2013, doi:https://doi.org/10.1109/APEC.2013.6520326. DOI: https://doi.org/10.1109/APEC.2013.6520326

M. Céspedes, J. Sun, “Online grid impedanceidentification for adaptive control of grid-connectedinverters”,in IEEE Energy Conversion Congress andExposition (ECCE), pp. 914–921, Nov. 2012, doi:https://doi.org/10.1109/ECCE.2012.6342721. DOI: https://doi.org/10.1109/ECCE.2012.6342721

J. Jokipii, T. Messo, T. Suntio, “Simple methodfor measuring output impedance of a three-phaseinverter in dq-domain”,in International PowerElectronics Conference (IPEC-Hiroshima 2014 –ECCE ASIA), pp. 1466–1470, Ago. 2014, doi:https://doi.org/10.1109/IPEC.2014.6869778. DOI: https://doi.org/10.1109/IPEC.2014.6869778

T. Roinila, M. Vilkko, J. Sun, “Online grid impedancemeasurement using discrete-interval binary sequenceinjection”,in 14th IEEE Workshop on Control andModeling for Power Electronics (COMPEL), pp. 1–8,Out. 2013, doi:https://doi.org/10.1109/COMPEL.2013.6626407. DOI: https://doi.org/10.1109/COMPEL.2013.6626407

T. Roinila, T. Messo, T. Suntio, M. Vilkko,“Pseudo-random sequences in DQ-domain analysisof feedforward control in grid-connected inverters”,IFAC-PapersOnLine, vol. 48, n. 28, pp. 1301–1306,Dez. 2015, doi:https://doi.org/10.1016/j.ifacol.2015.12.311. DOI: https://doi.org/10.1016/j.ifacol.2015.12.311

R. Luhtala, T. Messo, T. Reinikka, J. Sihvo, T. Roinila,M. Vilkko, “Adaptive control of grid-connectedinverters based on real-time measurements of gridimpedance: DQ-domain approach”,in IEEE EnergyConversion Congress and Exposition (ECCE), pp. 69–75, Nov. 2017, doi:https://doi.org/10.1109/ECCE.2017.8095763. DOI: https://doi.org/10.1109/ECCE.2017.8095763

R. Luhtala, T. Roinila, T. Messo, “Implementation ofReal-Time Impedance-Based Stability Assessment ofGrid-Connected Systems Using MIMO-IdentificationTechniques”,IEEE Transactions on IndustryApplications, vol. 54, n. 5, pp. 5054–5063, Set.–Out.2018, doi:https://doi.org/10.1109/TIA.2018.2826998. DOI: https://doi.org/10.1109/TIA.2018.2826998

G. Francis,An algorithm and system for measuringimpedance in dq coordinates, Tese de Doutorado,Virginia Tech, Jan. 2010.

A. G. MacFarlane, I. Postlethwaite, “The generalizedNyquist stability criterion and multivariable root loci”,International Journal of Control, vol. 25, n. 1, pp. 81–127, Jun. 1977, doi:https://doi.org/10.1080/00207177708922217. DOI: https://doi.org/10.1080/00207177708922217

M. Belkhayat,Stability criteria for AC power systemswith regulated loads, Tese de Doutorado, PurdueUniversity, Dez. 1997. DOI: https://doi.org/10.4271/981265

I. Postlethwaite, “A generalized inverse Nyquiststability criterion”,International Journal of Control,vol. 26, n. 3, pp. 325–340, Mar. 1977, doi:https://doi.org/10.1080/00207177708922313. DOI: https://doi.org/10.1080/00207177708922313

M. Schweizer, J. W. Kolar, “Shifting input filterresonances – An intelligent converter behavior formaintaining system stability”,in International PowerElectronics Conference – ECCE ASIA, pp. 906–913,Ago. 2010, doi:https://doi.org/10.1109/IPEC.2010.5543358. DOI: https://doi.org/10.1109/IPEC.2010.5543358

J. Xu, B. Zhang, Q. Qian, X. Meng, S. Xie,“Robust control and design based on impedance-based stability criterion for improving stability andharmonics rejection of inverters in weak grid”,in IEEE Applied Power Electronics Conference andExposition (APEC), pp. 3619–3624, Mai. 2017, doi:https://doi.org/10.1109/APEC.2017.7931218. DOI: https://doi.org/10.1109/APEC.2017.7931218

E. Ebrahimzadeh, F. Blaabjerg, X. Wang, C. L. Bak,“Harmonic Stability and Resonance Analysis in LargePMSG-Based Wind Power Plants”,IEEE Transactionson Sustainable Energy, vol. 9, n. 1, pp. 12–23, Jan.2018, doi:https://doi.org/10.1109/TSTE.2017.2712098. DOI: https://doi.org/10.1109/TSTE.2017.2712098

J. Xu, S. Xie, B. Zhang, Q. Qian, “RobustGrid Current Control With Impedance-Phase Shapingfor LCL-Filtered Inverters in Weak and DistortedGrid”,IEEE Transactions on Power Electronics,vol. 33, n. 12, pp. 10240–10250, Dez. 2018, doi:https://doi.org/10.1109/TPEL.2018.2808604. DOI: https://doi.org/10.1109/TPEL.2018.2808604

L. Zhou, Y. Chen, A. Luo, J. M. Guerrero, X. Zhou,Z. Chen, W. Wu, “Robust two degrees-of-freedomsingle-current control strategy for LCL-type grid-connected DG system under grid-frequency fluctuationand grid-impedance variation”,IET Power Electronics,vol. 9, n. 14, pp. 2682–2691, Nov. 2016, doi:https://doi.org/10.1049/iet-pel.2016.0120. DOI: https://doi.org/10.1049/iet-pel.2016.0120

X. Lin, Y. Wen, R. Yu, J. Yu, H. Wen, “ImprovedWeak Grids Synchronization Unit for PassivityEnhancement of Grid-Connected Inverter”,IEEEJournal of Emerging and Selected Topics in PowerElectronics, vol. 10, n. 6, pp. 7084–7097, Dez. 2022,doi:https://doi.org/10.1109/JESTPE.2022.3168655. DOI: https://doi.org/10.1109/JESTPE.2022.3168655

K. Wang, X. Yuan, H. Wang, S. Li, X. Wu, “Mitigationof subsynchronous resonance for grid-connectedinverters in series-compensated weak power gridsthrough observed q-axis grid voltage feedback”,IEEETransactionsonIndustrialElectronics,vol. 69, n. 10, pp. 10236–10248, Mai. 2022, doi:https://doi.org/10.1109/TIE.2022.3159948. DOI: https://doi.org/10.1109/TIE.2022.3159948

X. Wu, X. Li, X. Yuan, Y. Geng, “Grid harmonicssuppression scheme for LCL-type grid-connectedinverters based on output admittance revision”,IEEETransactionsonSustainableEnergy,vol. 6, n. 2, pp. 411–421, Abr. 2015, doi:https://doi.org/10.1109/TSTE.2014.2384509. DOI: https://doi.org/10.1109/TSTE.2014.2384509

Published

2023-03-31

How to Cite

[1]
D. O. Cardoso, H. M. T. C. Gomes, F. A. da C. Bahia, A. P. N. Tahim, J. R. Pinheiro, and F. F. Costa, “Impacto do PLL para Estimação de Impedância de Rede e Avaliação de Estabilidade no Domínio DQ em Sistemas com Inversores Conectados”, Eletrônica de Potência, vol. 28, no. 2, pp. 107–118, Mar. 2023.

Issue

Section

Original Papers