Fault Diagnosis of Rotary Machines Using Machine Learning
DOI:
https://doi.org/10.18618/REP.2022.3.0013Keywords:
Fault classification, Fault diagnosis, Machine learning, Vibration analysisAbstract
Classification of faults in rotary machines using machine learning is gaining attention in the field of science and engineering. In rotating machinery, misalignment is a common fault. This type of fault has been extensively studied in the literature using the vibration signals produced by rotary machines. This study proposes an approach based on machine learning techniques to diagnose misalignments in rotary machines under various conditions. A personalized diagnostic fault approach is proposed to detect misalignment faults. The approach includes three steps. First, the data acquisition model is developed to obtain signals (fault samples). The rotor vibration signals in stationary rotation conditions were obtained by two inductive proximity sensors with analog output, and the data were collected by a data acquisition device. Then, to generate the faulty training samples, each data acquisition signal is transformed to the frequency domain using Fast Fourier Transform (FFT). Finally, using the samples obtained through the feature selection techniques, machine learning algorithms Random Forest, Naïve Bayes and SVM were evaluated, resulting in classifications with different efficiencies. The results show that the SVM algorithm outperforms the Naïve Bayes and Random Forest algorithms when the same number of features is used. The proposed personalized diagnostic approach was applied to detect faults of rotating electrical machines misalignment with success.
Downloads
References
J. Z.Szabo, "Vibration diagnostic test for effect of unbalance",in 16th International Conference on Intelligent Engineering System,Lisbon, Portugal, pp.81-85,July2012. https://doi.org/10.1109/INES.2012.6249807 DOI: https://doi.org/10.1109/INES.2012.6249807
T. H.Patel,A. K.Darpe, "Vibration response of misaligned rotor",J. Sound Vibration,325(2009), pp.609-628,Aug2009. https://doi.org/10.1016/j.jsv.2009.03.024 DOI: https://doi.org/10.1016/j.jsv.2009.03.024
J. M.Bossio,G. R.Bossio,C. H.De Angelo, "Angular misalignment in induction motor with flexible coupling",in 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 1033-1038,Febr2009. https://doi.org/10.1109/IECON.2009.5414696 DOI: https://doi.org/10.1109/IECON.2009.5414696
M. Lal and R. Tiwari, "Multi-fault identification in simple rotor-bearing-coupling systems based on forced response measurements",Mech. Mach. Theory, vol. 51, pp. 87-109,May2012. https://doi.org/10.1016/j.mechmachtheory.2012.01.001 DOI: https://doi.org/10.1016/j.mechmachtheory.2012.01.001
J. K. Sinha and K. Elbhbah, "A future possibility of vibration-based condition monitoring of rotating machines",Mech. Syst. Signal Process., vol. 34, nº1-2, pp. 231-240,Jan2012. https://doi.org/10.1016/j.ymssp.2012.07.001 DOI: https://doi.org/10.1016/j.ymssp.2012.07.001
M. Monte, F. Verbelen, B. Vervisch, B. "The use of M. Monte, F. Verbelen, B. Vervisch, B. "The use of orbitals and full spectra to identify misalignment",Wicks A. (eds) Structural Health Monitoring, in Conference Proceedings of the Society for Conference Proceedings of the Society for Experimental Mechanics Series Experimental Mechanics Series. Springer, Springer, vol.5. pp.215-222, Feb2014. https://doi.org/10.1007/978-3-319-04570-2_24 DOI: https://doi.org/10.1007/978-3-319-04570-2_24
B. Luo, H. Wang, H. Liu, B. Li, F. Peng, "Early Fault Detection of Machine Tools Based on Deep Learning and Dynamic Identification",IEEE Transactions on Industrial Electronics, vol. 66, Issue 1, pp.509-518, Feb2019. https://doi.org/10.1109/TIE.2018.2807414 DOI: https://doi.org/10.1109/TIE.2018.2807414
G. Toh and J. Park, "Review of Vibration-Based Structural Health Monitoring Using Deep Learning",Applied Sciences,vol. 10, nº5: 1680, March 2020. https://doi.org/10.3390/app10051680 DOI: https://doi.org/10.3390/app10051680
Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, T. J. Romero-Troncoso, "An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions",IEEE Transactions on Industry Applications, vol. 54, nº3, pp.2215-2224,Feb2018. https://doi.org/10.1109/TIA.2018.2801863 DOI: https://doi.org/10.1109/TIA.2018.2801863
A. Pinheiro, I. M. Brandão, C. Da Costa, "Vibration Analysis in Turbomachines Using Machine Learning Techniques",European Journal of Engineering European Journal of Engineering Research and Science Research and Science, vol. 4, nº2, pp. 12-16,Feb2019. https://doi.org/10.24018/ejers.2019.4.2.1128 DOI: https://doi.org/10.24018/ejers.2019.4.2.1128
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao, "Deep learning and its applications to machine health monitoring",Mech. Syst. Signal Process, vol. 115, pp. 213-237,January 2019. https://doi.org/10.1016/j.ymssp.2018.05.050 DOI: https://doi.org/10.1016/j.ymssp.2018.05.050
J. Feng, L. Yaguo, L. Jing, Z. Xin, L. Na, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data",Mechanical Systems and Signal Processing, vol. 72, pp. 303-315, May 2016. https://doi.org/10.1016/j.ymssp.2015.10.025 DOI: https://doi.org/10.1016/j.ymssp.2015.10.025
P. K. Kankar, S. C. Sharma, S. P. Harsha, "Fault diagnosis of ball bearings using machine learning methods",Expert Systems with Applications, vol.38, nº3, pp.1876-1886,March2011. https://doi.org/10.1016/j.eswa.2010.07.119 DOI: https://doi.org/10.1016/j.eswa.2010.07.119
J. R. Huerta-Rosales, D. Granados-Lieberman, A. Garcia-Perez, D. Camarena-Martinez, J. P. Amezquita-Sanchez. "Short-Circuited Turn Fault Diagnosis in Transformers by using Vibration Signals, Statistical Time Features, and Support Vector Machines on FPGA",Sensor.,vol.21, nº11: 3598,May2021. https://doi.org/10.3390/s21113598 DOI: https://doi.org/10.3390/s21113598
G. K. Yamamoto, C. Da Costa, J. S. S. Sousa, "A smart experimental setup for vibration measurement and imbalance fault detection in rotating machinery",Case Studies in Mechanical Systems and Signal Processing, vol. 4, pp 8-18,Dec2016. https://doi.org/10.1016/j.csmssp.2016.07.001 DOI: https://doi.org/10.1016/j.csmssp.2016.07.001
C. Da Costa, R.S. Gama, C. E. Nascimento, I. M. Brandão, E. C. Medeiros, M. H. Mathias, "Orbit Analysis for Imbalance Fault Detection in Rotating Machinery",Journal of Electrical and Electronics Engineering (IOSR-JEEE)-JEEE)-, vol.13, Issue 1, pp 43-53, March 2018
.[17] IBM,"Whatissupervisedlearning?IBMCloudLearnHub,SupervisedLearning".Learning".(2020)[Online]. Available: https://www.ibm.com/cloud/learn/supervised-learning#toc-what-is-su-d3nKa9tk
Y. LeCun, Y. Bengio, and G. Hinton, "Review -Deep learning"learning",Nature, vol.521,pp.436-444, May 2015.444, May 2015. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
C. G. Mattera, J. Quevedo, T. Escobet, H. R. Shaker, and M. Jradi, "Fault Detection and Diagnostics in Ventilation Units Using Linear Regression Virtual Sensors",in 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT),Rabat, Morocco, pp. 1-6, Jan2019. https://doi.org/10.1109/ISAECT.2018.8618755 DOI: https://doi.org/10.1109/ISAECT.2018.8618755
Q. Yang, D. Guo, W. Yao, J. Cai, and C. Mei, "Support Vector Machines based Rotor Fault Diagnosis with Improved Particle Swarm optimization",in Chinese Automation Congress (CAC), Hangzhou, China, pp. 4321-4324, Feb2019. https://doi.org/10.1109/CAC48633.2019.8996884 DOI: https://doi.org/10.1109/CAC48633.2019.8996884
N. N. Iman, and T. Ahmad, "Improving Intrusion Detection System by Estimating Parameters of Random Forest in Boruta",inInternational Conference on Smart Technology and Applications (ICoSTA),Surabaya, Indonesia, pp. 1-6, April2020. https://doi.org/10.1109/ICoSTA48221.2020.1570609975 DOI: https://doi.org/10.1109/ICoSTA48221.2020.1570609975
X. Shi, J. Liang, L. Ye, and B. Hu, "A method of fault diagnosis based on PCA and Bayes classification",in8th World Congress on Intelligent Control and Automation,Jinan, pp. 5628-5631, July 2010.
X. Xing, J. Luo, Z. Jia, Y. Li, and Q. Han, "Automated Fault Detection for Web Services using Naïve Bayes Approach",in IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)Software Engineering and Service Science (ICSESS)Software Engineering and Service Science (ICSESS,Beijing, China, pp. 336-339,March2019 https://doi.org/10.1109/ICSESS47205.2019.9040756 DOI: https://doi.org/10.1109/ICSESS47205.2019.9040756
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.