Modelo Harmônico Multi-Frequência de Parques Eólicos do Tipo DFIG para Estudos de Emissão Harmônica e Estabilidade Ressonante

Authors

  • Giordanni S. Troncha Universidade Federal de Uberlândia (UFU) – Faculdade de Engenharia Elétrica, Uberlândia – MG, Brasil
  • Ivan N. Santos Universidade Federal de Uberlândia (UFU) – Faculdade de Engenharia Elétrica, Uberlândia – MG, Brasil

DOI:

https://doi.org/10.18618/REP.2022.4.0050

Keywords:

Atpdraw Distorções harmônicas, Estabilidade ressonante, Geração Eólica, Modelagem

Abstract

Nos últimos anos, a temática das interações harmônicas e inter-harmônicas, no âmbito de sistemas renováveis de geração, vem ganhando destaque a partir de considerações acerca da sua dinâmica de controle e chaveamento de conversores. Neste contexto, cresce-se a necessidade de análise da ocorrência de oscilações harmônicas, as quais podem variar desde baixas frequências a elevadas. Assim, modelos computacionais têm sido testados e colocados à prova, com o intuito de avaliar sua representatividade frente aos fenômenos desta natureza. O presente informe técnico tem por objetivo esclarecer de forma simples e direta as diferenças conceituais dos fenômenos de emissão harmônica, além de propor uma revisão bibliográfica detalhada dos principais métodos de modelagem de sistemas eólicos, com foco em estratégias no domínio do tempo. Para tanto, três distintos modelos de aerogeradores serão implementados no simulador Atpdraw. Os parâmetros e medições utilizados como base de comparação dos modelos implementados são reais e advindos de um parque eólicos situado no nordeste do Brasil. De posse dos resultados do estudo proposto é possível concluir que os modelos apresentados podem ser utilizados como ferramentas importantes para análise dos fenômenos de interações harmônicas, e se mostram mais atraentes que os equivalentes de Thévenin e Norton para a representatividade da rede equivalente. Neste parque tem se verificado problemas correlatos à queima de equipamentos e mal funcionamentos provocados por interações harmônicas.

Downloads

Download data is not yet available.

Author Biographies

Giordanni S. Troncha, Universidade Federal de Uberlândia (UFU) – Faculdade de Engenharia Elétrica, Uberlândia – MG, Brasil

é natural de Araguari-MG, possui graduação em engenharia elétrica pela Universidade Federal de Uberlândia – UFU (2016) e mestrado pela mesma instituição (2018). Atualmente é doutorando pela UFU e atua como Engenheiro de Regulação e Mercado no Grupo Equatorial. Possui experiência na área de engenharia elétrica com ênfase em sistemas de potência, com especialidade em tópicos como: qualidade da energia, eletrônica de potência, sistemas de controle aplicados à engenharia e fontes renováveis de energia elétrica. Bem como aspectos relacionados à Regulação e Mercado do setor elétrico.

Ivan N. Santos, Universidade Federal de Uberlândia (UFU) – Faculdade de Engenharia Elétrica, Uberlândia – MG, Brasil

é natural de Prata-MG, possui graduação (2005) em Engenharia Elétrica pela Universidade Federal de Uberlândia (UFU), mestrado (2007) e doutorado (2011) por esta mesma instituição. Realizou estágio pós-doutoral na Eindhoven University of Technology (TU/e), The Netherlands, em 2014. Atualmente atua como professor e pesquisador na UFU, onde coordena o Núcleo de Qualidade em Energia Elétrica (NQEE), participa de Projeto de P&D ANEEL e orienta estudantes de mestrado e doutorado. Suas áreas de interesse são: sistemas elétricos de potência, geração eólica e fotovoltaica, distorções harmônicas e qualidade da energia elétrica.

References

"Infográficos de Geração -Agência Nacional de Energia Elétrica -ANEEL",2021[Online]. Disponível: https://www.aneel.gov.br/documents

"Global Energy Review 2021 -Analysis -IEA",2021[Online]. Disponível:https://www.ihttps://www.ihea.org/reports/global-energy-review-2021

M. Ghiasi, "Technical and economic evaluation of power quality performance using FACTS devices considering renewable micro-grids",Renew. Energy Focus, vol. 29, no. pp. 49-62, June, 2019, https://doi.org/10.1016/j.ref.2019.02.006

X. Wang, Y. W. Li, F. Blaabjerg and P. C. Loh, "Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters",IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7019-7037, Dec. 2015, https://doi.org/10.1109/TPEL.2014.2382565 DOI: https://doi.org/10.1109/TPEL.2014.2382565

R. Burch et al., "Impact of aggregate linear load modeling on harmonic analysis: a comparison of common practice and analytical models," IEEE Trans. Power Deliv., vol. 18, no. 2, pp. 625-630, Apr. 2003, https://doi.org/10.1109/TPWRD.2003.810492 DOI: https://doi.org/10.1109/TPWRD.2003.810492

Ł. H. Kocewiak, J. Hjerrild and C. L. Bak, "Wind turbine converter control interaction with complex wind farm systems",IET Renewable Power Generation, vol. 7, no. 4, pp. 380-389, July 2013. https://doi.org/10.1049/iet-rpg.2012.0209 DOI: https://doi.org/10.1049/iet-rpg.2012.0209

J. A. Martinez, R. Walling, B. A. Mork, J. Martin-Arnedo, and D. Durbak, "Parameter determination for modeling system transients-Part III: Transformers",IEEE Trans. Power Deliv.,vol. 20, no. 3, pp. 2051-2062, -2062, -July 2005 https://doi.org/10.1109/TPWRD.2005.848752 DOI: https://doi.org/10.1109/TPWRD.2005.848752

S. Yanchenko and J. Meyer, "Harmonic emission of household devices in presence of typical voltage distortions",IEEE Eindhoven PowerTech, pp. 1-6, june/july 2015. https://doi.org/10.1109/PTC.2015.7232518 DOI: https://doi.org/10.1109/PTC.2015.7232518

K. Yang, "On Harmonic Emission, Propagation and Aggregation in Wind Power Plants",Luleå tekniska universitet, Energy Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, July 2015.

X. Wang, F. Blaabjerg and W. Wu, "Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System",IEEE Transactionson Power Electronics, vol. 29, no. 12, pp. 6421-6432, December 2014 https://doi.org/10.1109/TPEL.2014.2306432 DOI: https://doi.org/10.1109/TPEL.2014.2306432

S. K. Rönnberg et al., "On waveform distortion in the frequency range of 2 kHz-150 kHz-Review and research challenges",Electr. Power Syst. Res., vol. 150, pp. 1-10,Sept2017. https://doi.org/10.1016/j.epsr.2017.04.032 DOI: https://doi.org/10.1016/j.epsr.2017.04.032

F. Zavoda et al., Power Quality and EMC Issues with Future Electricity Networks. 2018.

O. Lennerhag, G. Pinares, M. H. J. Bollen, G. Foskolos, and T. Gafurov, "Performance indicators for quantifying the ability of the grid to host renewable electricity production",CIRED -Open Access Proc. J., vol. 2017, Open Access Proc. J., vol. 2017, Open Access Proc. Jno. 1, pp. 792-795, 2017 https://doi.org/10.1049/oap-cired.2017.0178 DOI: https://doi.org/10.1049/oap-cired.2017.0178

M. Ghiasi, "Technical and economic evaluation of power quality performance using FACTS devices considering renewable micro-grids",Renew. Energy Focus, vol. 29,June2019, pp. 49-62 https://doi.org/10.1016/j.ref.2019.02.006 DOI: https://doi.org/10.1016/j.ref.2019.02.006

X. Lin et al., "Impact of Characteristic Harmonics on the Small-Signal Stability of LCC-HVDC Station",in 4th International Conference on HVDC (HVDC), 2020, pp. 705-711 https://doi.org/10.1109/HVDC50696.2020.9292813

C. Yoon, H. Bai, R. N. Beres, X. Wang, C. L. Bak and F. Blaabjerg, "Harmonic Stability Assessment for Multiparalleled, Grid-Connected Inverters",IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1388-1397, Oct. 2016 https://doi.org/10.1109/TSTE.2016.2551737 DOI: https://doi.org/10.1109/TSTE.2016.2551737

J. He, Y. W. Li, D. Bosnjak and B. Harris, "Investigation and Active Damping of Multiple Resonances in a Parallel-Inverter-Based Microgrid",IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 234-246, Jan. 2013. https://doi.org/10.1109/TPEL.2012.2195032 DOI: https://doi.org/10.1109/TPEL.2012.2195032

L. Sainz, M. Cheah-Mane, L. Monjo, J. Liang and O. Gomis-Bellmunt, "Positive-Net-Damping Stability Criterion in Grid-Connected VSC Systems",IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1499-1512, Dec. 2017. https://doi.org/10.1109/JESTPE.2017.2707533

C. Li, "Unstable Operation of Photovoltaic Inverter From Field Experiences",IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 1013-1015, April 2018. https://doi.org/10.1109/TPWRD.2017.2656020 DOI: https://doi.org/10.1109/TPWRD.2017.2656020

X. Lin et al., "Impact of Characteristic Harmonics on the Small-Signal Stability of LCC-HVDC Station",in4th International Conference on HVDC (HVDC), 2020, pp. 705-711. https://doi.org/10.1109/HVDC50696.2020.9292813 DOI: https://doi.org/10.1109/HVDC50696.2020.9292813

S. Song, Z. Wei, Y. Lin, B. Liu and H. Liu, "Impedance modeling and stability analysis of PV grid-connected inverter systems considering frequency coupling",CSEE Journal of Power and Energy Systems,vol. 6, no. 2, pp. 279-290, June 2020.

L. Sainz, M. Cheah-Mane, L. Monjo, J. Liang and O. Gomis-Bellmunt, "Positive-Net-Damping Stability Criterion in Grid-Connected VSC Systems",IEEE Journal of Emerging and Selected Topics in Power Journal of Emerging and Selected Topics in Power Journal oElectronics, vol. 5, no. 4, pp. 1499-1512, Dec. 2017. https://doi.org/10.1109/JESTPE.2017.2707533 DOI: https://doi.org/10.1109/JESTPE.2017.2707533

R. Torquato, A. Argüello and W. Freitas, "Practical Chart for Harmonic Resonance Assessment of DFIG-Based Wind Parks",IEEE Transactions on Power Delivery, vol. 35, no. 5, pp. 2233-2242, Oct. 2020. https://doi.org/10.1109/TPWRD.2020.2964631 DOI: https://doi.org/10.1109/TPWRD.2020.2964631

Y. Song and F. Blaabjerg, "Overview of DFIG-Based Wind Power System Resonances Under Weak Networks",IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4370-4394, June 2017. https://doi.org/10.1109/TPEL.2016.2601643 DOI: https://doi.org/10.1109/TPEL.2016.2601643

Z. Li, H. Hu, L. Tang, Y. Wang, T. Zang and Z. He, "Quantitative Severity Assessment and Sensitivity Analysis Under Uncertainty for Harmonic Resonance Amplification in Power Systems",IEEE Transactions on Power Delivery, vol. 35, no. 2, pp. 809-818, April 2020. https://doi.org/10.1109/TPWRD.2019.2928565 DOI: https://doi.org/10.1109/TPWRD.2019.2928565

X. Wang and F. Blaabjerg, "Harmonic Stability in Power Electronic-Based Power Systems: Concept, Modeling, and Analysis",IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2858-2870, May 2019. https://doi.org/10.1109/TSG.2018.2812712 DOI: https://doi.org/10.1109/TSG.2018.2812712

Marc Cheah-Mane, Luis Sainz, Eduardo Prieto-Araujo, Orio l Gomis-Bellmunt, "Impedance-based analysis of harmonic instabilities",HVDC-HVDC-HVDCconnectedOffshore Wind Power Plants, International Journal of ElectricalPower & Energy Systems, Volume 106, March 2019, Pages 420-431. https://doi.org/10.1016/j.ijepes.2018.10.031 DOI: https://doi.org/10.1016/j.ijepes.2018.10.031

IEC 61000-3-6:2008, "Electromagnetic compatibility (EMC) -Part 3-6: Limits -Assessment of emission limits for the connection of distorting installations to MV", HV and EHV power systems,edition 2.0, 2008.

V. Myagkov, L. Petersen, S. Burutxaga Laza, F. Iov, L. H. Kocewiak, "Parametric Variation for Detailed Model of External Grid in Offshore Wind Farms". Proceedings of the 13th International Workshop on Largescale Integration of Wind Power Into Power Systems As Well As on Transmission Networks for Offshore Wind Power Plants (wiw2014). Berlin, November 2014.

"Os submódulos versão 2020.12, aprovados pela REN ANEEL nº 903/2020, estão vigentes a partir de 1º de janeiro de 2021." Aug 28, 2022[Online}.Disponível:http://www.ons.org.br/paginas/sobre-o-ons/procedimentos-de-rede/vigentes

Carli, Miguel Pires de. "Identificação e Análise Das Inconsistências e Dos Critérios Conservadores Da Metodologia de Avaliação Do Desempenho Harmônico de Parques Eólicos No Brasil."Seminário Nacional de Produção e Transmissão de Energia Elétrica, 2019. Print.

J. Arrillaga, B.C. Smith, N.R. Watson, A. R. Wood, "Power System Harmonic Analysis". John Wiley & Sons, 1997. https://doi.org/10.1002/9781118878316 DOI: https://doi.org/10.1002/9781118878316

J. A. Martinez and B. A. Mork, "Transformer modeling for low-and mid-frequency transients -a review",IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1625-1632, April 2005 https://doi.org/10.1109/TPWRD.2004.833884 DOI: https://doi.org/10.1109/TPWRD.2004.833884

B. Gustavsen, J. A. Martinez and D. Durbak, "Parameter determination for modeling system transients-Part II: Insulated cables",IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 2045-2050, July 2005 https://doi.org/10.1109/TPWRD.2005.848774 DOI: https://doi.org/10.1109/TPWRD.2005.848774

J.R. Carson, Wave propagation in overhead wires with ground return, Bell Syst. Tech. J. 5 (1926) 539-554. https://doi.org/10.1002/j.1538-7305.1926.tb00122.x DOI: https://doi.org/10.1002/j.1538-7305.1926.tb00122.x

Hua Bai, C. Mi, Transients of Modern Power Electronics, Wiley, 2011. https://doi.org/10.1002/9781119971719 DOI: https://doi.org/10.1002/9781119971719

CIGRE TB568. "Transformer Energization in Power Systems: A Study Guide", WG C4.307, February 2014.

"Modeling and simulation of the propagation of harmonics in electric power networks. I. Concepts, models, and simulation techniques",IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 452-465, Jan. 1996 https://doi.org/10.1109/61.484130 DOI: https://doi.org/10.1109/61.484130

F. Bizzarri, A. Brambilla and F. Milano, "Simplified Model to Study the Induction Generator Effect of the Subsynchronous Resonance Phenomenon",IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 889-892, June 2018. https://doi.org/10.1109/TEC.2018.2799479 DOI: https://doi.org/10.1109/TEC.2018.2799479

E. S. Abdin and W. Xu, "Control design and dynamic performance analysis of a wind turbine-induction generator unit",IEEE Transactions on Energy Conversion, vo l.15, no. 1, pp. 91-96, March 2000 https://doi.org/10.1109/60.849122 DOI: https://doi.org/10.1109/60.849122

R. Pena, J. C. Clare, and G. M. Asher, "Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation", inProc. IEE Proc. Electr. Power Appl., vol. 143, no. 3, pp. 231-241, October 1996. https://doi.org/10.1049/ip-epa:19960288 DOI: https://doi.org/10.1049/ip-epa:19960288

M. Tazil, V. Kumar, R. C. Bansal, S. Kong, Z. Y. Dong, W. Freitas, and H. D. Mathur, "Three-phase doubly fed induction generators: An overview",IET Electric Power Appl., vol. 4, no. 2, pp. 75-89, March 2010 https://doi.org/10.1049/iet-epa.2009.0071 DOI: https://doi.org/10.1049/iet-epa.2009.0071

IEC TR 61400-21-3 ED1: Wind energy generation systems -Part 21-3: Wind turbine harmonic model and its application.

J. Z. Zhou, H. Ding, S. Fan, Y. Zhang and A. M. Gole, "Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter",IEEE Transactions on Power Delivery, vol. 29, no. 5, pp. 2287-2296, Oct. 2014. https://doi.org/10.1109/TPWRD.2014.2330518 DOI: https://doi.org/10.1109/TPWRD.2014.2330518

K. J. ̊ Astr ̊ om and B. Wittenmark. "Computer-Control Systems: Theory and Design",Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1997.

T. Basar, editor. Control Theory: Twenty-five Seminal Papers (1932-1981). IEEE Press, New York, 2001.

N. Sarma, P. M. Tuohy, J. M. Apsley, S. Djurović, Y. Wang "DFIG Stator Flux Oriented Control Scheme Execution for Test Facilities Utilising Commercial Converters," IET Renewable Power Generation (RPG) Journal, Volume 12, Issue 12, Pages 1366-1374, October 2018. https://doi.org/10.1049/iet-rpg.2018.5195 DOI: https://doi.org/10.1049/iet-rpg.2018.5195

N. Amiri, S. Ebrahimi, and J. Jatskevich, "Efficient simulation of wind generation systems using voltage-behind-reactance model of doubly-fed induction generators and average-value model o f switching converters," in IEEE 1st Ukr. Conf. Electr. Comput. Eng. IEEE., pp. 605-610, 2017, https://doi.org/10.1109/UKRCON.2017.8100313 DOI: https://doi.org/10.1109/UKRCON.2017.8100313

Yazhou Lei, A. Mullane, G. Lightbody and R. Yacamini, "Modeling of the wind turbine with a doubly fed induction generator for grid integration studies",IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 257-264, March 2006. https://doi.org/10.1109/TEC.2005.847958 DOI: https://doi.org/10.1109/TEC.2005.847958

A. Shahab, "Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems",Master of Science Thesis, University of Manitoba, Copyright 2013.

J. A. Pomilio and S. M. Deckmann, "Caracterização e compensação de harmônicos e reativos de cargas não-lineares residenciais e comerciais",Eletrônica de Potência, vol. 11,no. 1, pp. 9-16, março de 2006. https://doi.org/10.18618/REP.2006.1.009016 DOI: https://doi.org/10.18618/REP.2006.1.009016

T. Reinaldo, A. Jorge, A. Fabiano, S. Raphael, I. Syed, and K. T. F. R, "Mitigação Do Conteúdo Harmônico Em Aerogeradores Usando Um Pfp Elevador De Chave Única", Eletrônica de Potência, vol. 12, no. 3, pp. 269-276, novembro de 2007. https://doi.org/10.18618/REP.2007.3.269276 DOI: https://doi.org/10.18618/REP.2007.3.269276

A. B. Moreira, T. A. S. Barros, V. S. C. Teixeira, and E. R. Filho, "Aplicação De Controle De Potências Para a Geração Eólica E Filtragem De Corrente Harmônica Com Gerador De Indução Duplamente Alimentado Application of the Power Control for Wind Power Generation and Current Harmonic Filter With Dfig", Eletrônica de Potência, pp. 102-112, novembro de 2016. https://doi.org/10.18618/REP.2017.1.2658 DOI: https://doi.org/10.18618/REP.2017.1.2658

Published

2022-10-16

How to Cite

[1]
G. S. Troncha and I. N. Santos, “Modelo Harmônico Multi-Frequência de Parques Eólicos do Tipo DFIG para Estudos de Emissão Harmônica e Estabilidade Ressonante”, Eletrônica de Potência, vol. 27, no. 4, pp. 291–303, Oct. 2022.

Issue

Section

Special Section - Next generation of grid-connected converters