Método para Quantificação de Perdas em Semicondutores Aplicados a Conversores Estáticos Devido aos Elementos Parasitas da Placa de Circuito Impresso

Authors

  • Tális Piovesan Universidade Federal de Santa Maria, Santa Maria - RS, Brasil
  • Hamiltom Confortim Sartori Universidade Federal de Santa Maria, Santa Maria - RS, Brasil
  • Vitor Cristiano Bender Universidade Federal de Santa Maria, Santa Maria - RS, Brasil
  • José Renes Pinheiro Universidade Federal de Santa Maria, Santa Maria - RS, Brasil

DOI:

https://doi.org/10.18618/REP.2021.1.0040

Keywords:

Conversores Estáticos CC/CC, Eletrônica de Potência, Engenharia Assistida por Computador, Layout de PCB, Simulação SPICE

Abstract

O aumento da frequência de comutação vem sendo utilizada para aumentar a densidade volumétrica de potência em conversores estáticos. Assim, diversos trabalhos científicos tem apresentado estudos relacionados aos impactos dos elementos parasitas no layout de placa de circuito impresso (PCB) de conversores estáticos CC/CC, comparações entre as tecnologias de semicondutores, desenvolvimento de equações analíticas para a determinação das perdas nos elementos e a utilização de softwares de simulações na determinação de elementos parasitas de conversores estáticos comutados em altas frequências. Desta forma, o presente trabalho apresenta uma metodologia de quantificação de perdas elétricas em chaves semicondutoras de conversores estáticos devido aos elementos parasitas presentes na PCB. Através da utilização de técnicas de engenharia assistida por computador e simulações SPICE, a metodologia proposta tem como objetivos apresentar uma estimativa de perdas devido às ressonâncias causadas pelos elementos parasitas e auxiliar no processo da prototipação, voltada para a redução de perdas dos dispositivos semicondutores presentes na PCB de um conversor estático. Para a validação da metodologia implementou-se um conversor boost síncrono comutado em 350kHz e com potência nominal de 100W. Resultados teóricos, de simulações e experimentais são apresentados.

Downloads

Download data is not yet available.

Author Biographies

Tális Piovesan, Universidade Federal de Santa Maria, Santa Maria - RS, Brasil

nascido em 29/10/1991 em Nova Palma-RS, é engenheiro eletricista (2014), mestre (2017) e doutorando (2017) pela Universidade Federal de Santa Maria-RS. Atualmente é professor substituto no Departamento de Processamento de Energia da Universidade Federal de Santa Maria-RS. Suas áreas de interesse são: eletrônica de potência, otimização de conversores estáticos, conversores estáticos CC/CC, método de elementos finitos.

Hamiltom Confortim Sartori, Universidade Federal de Santa Maria, Santa Maria - RS, Brasil

Natural de Marau-RS. Possui graduação em Engenharia Elétrica (2007) na Universidade Federal de Santa Maria, mestrado (2009), doutorado (2013) e pós-doutorado (2016) em Engenharia Elétrica. Atualmente é professor Adjunto de Departamento de Processamento de Energia Elétrica da Universidade Federal de Santa Maria. Possui experiência na área de eletrônica de potência, atuando principalmente nas áreas de projetos otimizados de conversores estáticos, conversores de alto ganho, projetos de componentes magnéticos, semicondutores de potência (seleção, análise de perdas e projeto de sistema de transferência de calor), sensoriamento e compatibilidade eletromagnética (EMI).

Vitor Cristiano Bender, Universidade Federal de Santa Maria, Santa Maria - RS, Brasil

nasceu em Panambi, Brasil, em 1987. Recebeu os títulos de Engenheiro Eletricista pela Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, Brasil, em 2011, Mestre e Doutor em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil, em 2012 e 2015, respectivamente. Em 2014 realizou estágio doutoral na Universidad de Oviedo, Gijón, Espanha. De 2015 a 2017, foi professor da Universidade Federal do Pampa, Alegrete, Brasil. Desde 2018, é professor do Departamento de Eletrônica e Computação da UFSM, onde também é pesquisador no Grupo de Inteligência em Iluminação (GEDRE) e no Instituto de Redes Inteligentes (INRI) onde atua como Gerente Técnico do Laboratório de Engenharia Assistida por Computador. Dr. Bender é co-autor de mais de 10 artigos de periódicos e mais de 50 artigos de conferências e detém uma patente brasileira. Seus interesses atuais de pesquisa incluem sistemas de iluminação, circuitos eletrônicos para iluminação, diodos emissores de luz (LEDs), diodos orgânicos emissores de luz (OLEDs), modelos e projetos térmicos, transformadores de potência e projetos com engenharia assistida por computador.

José Renes Pinheiro, Universidade Federal de Santa Maria, Santa Maria - RS, Brasil

recebeu o grau de Eng Eletricista pela UFSM, e os graus de Mestre e Doutor em Engenharia Elétrica pela UFSC, em 1981, 1984, e 1994, respectivamente. Atualmente é Bolsista de Produtividade em Pesquisa do CNPq - Nível 1B, e Prof. Titular (Voluntario) do DPEE da UFSM, onde atua desde 1985. Desde 2018, também atua como Prof.Titular Visitante no PPGEE na UFBA. Em 1987, foi um dos fundadores e líder do Grupo de Eletrônica de Potência e Controle (GEPOC). Entre 2006 e 2015 foi coord. do Eletrôn. Potên., Fortaleza, v. 26, n. 1, p. 42-52, jan./mar. 2021 52 PPGEE (CAPES Nível 6) da UFSM. Em 1999 foi coord. de Programa Técnico e em 2013 Coord. Geral do COBEP. Coordenou o SEPOC, em 2000, 2005 e 2017. Entre 2001 e 2002, realizou Pós-doutorado no Center for Power Electronics Systems (CPES), Virginia Tech, USA. É autor e co-autor de mais de 300 artigos técnicos publicados em conferencias e periódicos nacionais e internacionais. Suas principais linhas de pesquisas e interesse incluem Projetos Otimizados de conversores estáticos, Sistemas Híbridos de conversão estática de energia, Conversão de Energia em Alta Frequência, Modelagem e Controle de Conversores Estáticos e Sistemas Distribuídos de Energia. É membro da SOBRAEP, da SBA, e das Sociedades PELS, IAS, IES e PES da IEEE. Em 2015 foi fundador IEEE Joint Chapter, e em 2016 do UFSM/IEEE Student Branch e do Instituto de Redes Inteligente INRI.

References

K. Wang, L. Wang, X. Yang, X. Zeng, W. Chen,H. Li, "A Multiloop Method for Minimization ofParasitic Inductance in GaN-Based High-FrequencyDC?DC Converter",IEEE Transactions on PowerElectronics, vol. 32, no. 6, pp. 4728-4740, June 2017,doi: https://doi.org/10.1109/TPEL.2016.2597183 DOI: https://doi.org/10.1109/TPEL.2016.2597183

K. Jin, L. Gu, J. Wang, "A 10-MHz ResonantConverter With a Synchronous Rectifier for Low-Voltage Applications",IEEE Transactions on PowerElectronics, vol. 34, no. 4, pp. 3339-3347, April 2019,doi: https://doi.org/10.1109/TPEL.2018.2850300 DOI: https://doi.org/10.1109/TPEL.2018.2850300

Z. Zhang, K. Xu, Z. Xu, J. Xu, X. Ren,Q. Chen, "GaN VHF Converters With Integrated Air-Core Transformers",IEEE Transactions on PowerElectronics, vol. 34, no. 4, pp. 3504-3515, April 2019,doi: https://doi.org/10.1109/TPEL.2018.2849063 DOI: https://doi.org/10.1109/TPEL.2018.2849063

J. Biela, U. Badstuebner, J. W. Kolar, "Impact ofPower Density Maximization on Efficiency of DC?DCConverter Systems",IEEE Transactions on PowerElectronics, vol. 24, no. 1, pp. 288-300, Jan 2009, doi: https://doi.org/10.1109/TPEL.2009.2006355 DOI: https://doi.org/10.1109/TPEL.2009.2006355

M. Liu, S. S. H. Hsu, "A Miniature 300-MHz ResonantDC?DC Converter With GaN and CMOS Integratedin IPD Technology",IEEE Transactions on PowerElectronics, vol. 33, no. 11, pp. 9656-9668, Nov 2018,doi: https://doi.org/10.1109/TPEL.2017.2788946 DOI: https://doi.org/10.1109/TPEL.2017.2788946

F. Roccaforte, P. Fiorenza, G. Greco, R. L. Nigro,F. Giannazzo, F. Iucolano, M. Saggio, "Emergingtrends in wide band gap semiconductors (SiC andGaN) technology for power devices",MicroelectronicEngineering, vol. 187-188, pp. 66 - 77, 2018, doi: https://doi.org/10.1016/j.mee.2017.11.021 DOI: https://doi.org/10.1016/j.mee.2017.11.021

J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás,J. Rebollo, "A Survey of Wide Bandgap PowerSemiconductor Devices",IEEE Transactions on PowerElectronics, vol. 29, no. 5, pp. 2155-2163, May 2014,doi: https://doi.org/10.1109/TPEL.2013.2268900 DOI: https://doi.org/10.1109/TPEL.2013.2268900

A. Lidow, J. Strydom, M. de Rooij, D. Reusch,GaNTransistors for Efficient Power Conversion, 2 ed.,Wiley, Stanford, 2015. https://doi.org/10.1002/9781118844779 DOI: https://doi.org/10.1002/9781118844779

Y. Shen, H. Wang, F. Blaabjerg, H. Zhao, T. Long,"Thermal Modeling and Design Optimizationof PCB Vias and Pads",IEEE Transactionson Power Electronics, pp. 1-1, 2019, doi: https://doi.org/10.1109/TPEL.2019.2915029 DOI: https://doi.org/10.1109/TPEL.2019.2915029

D. Reusch, J. Strydom, "Understanding the Effectof PCB Layout on Circuit Performance in a High-Frequency Gallium-Nitride-Based Point of LoadConverter",IEEE Transactions on Power Electronics,vol. 29, no. 4, pp. 2008-2015, April 2014, doi: https://doi.org/10.1109/TPEL.2013.2266103 DOI: https://doi.org/10.1109/TPEL.2013.2266103

A. Hariya, T. Koga, K. Matsuura, H. Yanagi,S. Tomioka, Y. Ishizuka, T. Ninomiya, "CircuitDesign Techniques for Reducing the Effects ofMagnetic Flux on GaN-HEMTs in 5-MHz 100-W High Power-Density LLC Resonant DC?DCConverters",IEEE Transactions on Power Electronics,vol. 32, no. 8, pp. 5953-5963, Aug 2017, doi: https://doi.org/10.1109/TPEL.2016.2616439 DOI: https://doi.org/10.1109/TPEL.2016.2616439

A. Letellier, M. R. Dubois, J. P. F. Trovão,H. Maher, "Calculation of Printed CircuitBoard Power-Loop Stray Inductance in GaN orHighdi/dtApplications",IEEE Transactions on PowerElectronics, vol. 34, no. 1, pp. 612-623, Jan 2019,doi: https://doi.org/10.1109/TPEL.2018.2826920 DOI: https://doi.org/10.1109/TPEL.2018.2826920

J. Qian,RF Models for Active IPEMs, Master ofscience in electrical engineering, Virginia PolytechnicInstitute and State University, 2003.

E. Gurpinar, F. Iannuzzo, Y. Yang, A. Castellazzi,F. Blaabjerg, "Design of Low-Inductance SwitchingPower Cell for GaN HEMT Based Inverter",IEEETransactionsonIndustryApplications,vol. 54, no. 2, pp. 1592-1601, March 2018, doi: https://doi.org/10.1109/TIA.2017.2777417 DOI: https://doi.org/10.1109/TIA.2017.2777417

E. M. Dede, P. Schmalenberg, T. Nomura, M. Ishigaki,"Design of Anisotropic Thermal Conductivity inMultilayer Printed Circuit Boards",IEEE Transactionson Components, Packaging and ManufacturingTechnology, vol. 5, no. 12, pp. 1763-1774, Dec 2015,doi: https://doi.org/10.1109/TCPMT.2015.2473103 DOI: https://doi.org/10.1109/TCPMT.2015.2473103

E. M. Dede, C. Wang, Y. Liu, P. Schmalenberg,F. Zhou, J. Shin, M. Ishigaki, "ElectrothermalCircuit Design With Heat Flow Control?SynchronousBuck Converter Case Study",IEEE Transactionson Components, Packaging and ManufacturingTechnology, vol. 8, no. 2, pp. 226-235, Feb 2018,doi: https://doi.org/10.1109/TCPMT.2017.2773266 DOI: https://doi.org/10.1109/TCPMT.2017.2773266

M. Andresen, M. Liserre, "Impact of activethermal management on power electronics design",Microelectronics Reliability, vol. 54, 08 2014,doi: https://doi.org/10.1016/j.microrel.2014.07.069 DOI: https://doi.org/10.1016/j.microrel.2014.07.069

M. Andresen, K. Ma, G. Buticchi, J. Falck,F. Blaabjerg, M. Liserre, "Junction TemperatureControl for More Reliable Power Electronics",IEEETransactions on Power Electronics, vol. 33, no. 1, pp.765-776, Jan 2018, doi: https://doi.org/10.1109/TPEL.2017.2665697 DOI: https://doi.org/10.1109/TPEL.2017.2665697

T. Wu, Z. Wang, B. Ozpineci, M. Chinthavali,S. Campbell, "Automated Heatsink Optimizationfor Air-Cooled Power Semiconductor Modules",IEEETransactionsonPowerElectronics,vol. 34, no. 6, pp. 5027-5031, June 2019, doi: https://doi.org/10.1109/TPEL.2018.2881454 DOI: https://doi.org/10.1109/TPEL.2018.2881454

R. Remsburg,Advanced thermal design of electronicequipment, 1st edition ed., Springer, New York, 1998. https://doi.org/10.1007/978-1-4419-8509-5_1 DOI: https://doi.org/10.1007/978-1-4419-8509-5_1

A. Lidow, M. de Rooij,eGaN FET ElectricalCharacteristics- White paper:WP007, United States,jan 2012, acesso em 02 de maio de 2019.

G. S. Inc.,Design with GaN Enhancement modeHEMT - GN001 Application Guide, United States, jan2018, acesso em 02 de maio de 2019.

G. S. Inc.,PCB Thermal Design Guide for GaNEnhancement Mode Power Transistors - GN005Application Note, United States, jan 2016, acesso em02 de maio de 2019.

A. Berzoy, A. Mohamed, O. Mohammed, "OptimizingPower Converter PCB Magnetic Design for LowerEMI Levels", p. 10, 11 2014.

R. W. Erickson,EMI and Layout Fundamentals forSwitched-Mode Circuits, jan 2018, acesso em 02 demaio de 2019.

T. Instruments,AN-2155 Layout Tips for EMIReduction in DC / DC Converters, United States, jan2013, acesso em 02 de maio de 2019.

T. Hegarty,Reduce buck-converter EMI and voltagestress by minimizing inductive parasitics, Dallas,Texas, jan 2016, acesso em 02 de maio de 2019.

ROHM,PCB Layout Techniques of Buck Converter,United States, jan 2017, acesso em 02 de maio de 2019.

G. Deboy, O. Haeberlen, M. Treu, "Perspective ofloss mechanisms for silicon and wide band-gap powerdevices",CPSS Transactions on Power Electronics andApplications, vol. 2, no. 2, pp. 89-100, 2017, doi: https://doi.org/10.24295/CPSSTPEA.2017.00010 DOI: https://doi.org/10.24295/CPSSTPEA.2017.00010

C. M. Paton,Inductance modeling and extraction inEMC applications, Master of science in electricalengineering, MISSOURI UNIVERSITY OFSCIENCE AND TECHNOLOGY, 2009.

D. Reusch,Optimizing PCB Layout, United States, jan2014, acesso em 02 de maio de 2019.

T. N. S. Biswas, D. Reusch, M. de Rooij,APPLICATION NOTE AN023: Accurately MeasuringHigh Speed GaN Transistors, United States, jan 2017.

M. Amyotte, E. S. Glitz, C. G. Perez, M. Ordonez,"GaN Power Switches: A Comprehensive Approachto Power Loss Estimation",in 2018 IEEEEnergy Conversion Congress and Exposition(ECCE), pp. 1926-1931, Sep. 2018, doi: https://doi.org/10.1109/ECCE.2018.8557635 DOI: https://doi.org/10.1109/ECCE.2018.8557635

H. W. Johnson, M. Graham,High-Speed Digitaldesign: A handbook of black magic, Prentice Hall,New Jersey, 1993.

G. S. Inc.,Measurement Techniques for High-SpeedGaN E-HEMTs - GN003 Application Note, UnitedStates, jan 2018, acesso em 02 de maio de 2019.

David Reusch and Johan Strydom, "ImprovingPerformance of High Speed GaN TransistorsOperating in Parallel for High Current Applications",Acesso em 02 maio de 2019, 2013.

E. P. C. CORPORATION,EPC2001 - EnhancementMode Power Transistor, United States, jan 2013,acesso em 02 de maio de 2019.

E. P. C. CORPORATION,EPC2016 - EnhancementMode Power Transistor, United States, jan 2013,acesso em 02 de maio de 2019.

Published

2021-03-31

How to Cite

[1]
T. Piovesan, H. C. Sartori, V. C. Bender, and J. R. Pinheiro, “Método para Quantificação de Perdas em Semicondutores Aplicados a Conversores Estáticos Devido aos Elementos Parasitas da Placa de Circuito Impresso”, Eletrônica de Potência, vol. 26, no. 1, pp. 42–52, Mar. 2021.

Issue

Section

Original Papers