The UFMG Microgrid Laboratory: a Testbed for Advanced Microgrids

Authors

  • João Marcus S. Callegari Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil
  • Wanderson F. de Souza Federal Institute of Minas Gerais, Ibirité – MG, Brazil
  • Danilo I. Brandao Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil
  • Thiago R. Oliveira Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil
  • Braz J. Cardoso Filho Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil

DOI:

https://doi.org/10.18618/REP.2023.2.0043

Keywords:

Advanced Microgrid, Ancillary services, Centralized Control, Distributed Energy Resource, Testbed

Abstract

This paper describes a test facility for the design and validation of advanced microgrids (MGs) to integrate high penetration of renewable energy and electric vehicles. The UFMG MG laboratory is a joint effort of UFMG, industry, and government. The UFMG MG laboratory is a physical simulation tool for the design, development, testing, and didactic purposes of advanced MG projects under islanded and grid-connected operating modes. Using commercial inverters, and flexible digital control cards, the testbed is modular and flexible in terms of control of inverters, communication technology, and MG architectures. The capabilities of such a testbed in the development of MG management systems are illustrated by means of experimental results considering an advanced MG performing grid-connected ancillary services, such as self-consumption and power factor regulation. The example also highlights the flexibility of the setup incorporating user-adjustable communication latency and user-defined communication failure.

 

Downloads

Download data is not yet available.

Author Biographies

João Marcus S. Callegari, Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil

received the B.Sc. degree in electrical engineering from the Federal University of Viçosa, Brazil, in 2019 and the M.Sc. degree in electrical engineering from the Federal Center of Technological Education of Minas Gerais, Brazil, in 2021. Currently, he is working toward the Ph.D. degree in electrical engineering at the Federal University of Minas Gerais, Brazil. His current research and technical interests include the design and control of grid-connected multifunctional inverters, the reliability of power electronicsbased systems, and ac microgrids. Mr. Callegari was the recipient of the President Bernardes Silver Medal in 2019 and the IEEE IAS CMD Student Thesis Contest 2022 (Non-PhD Category).

Wanderson F. de Souza, Federal Institute of Minas Gerais, Ibirité – MG, Brazil

received the B.Sc. degree in electronic and telecommunication engineering from the Catholic University of Minas Gerais, Brazil, in 2000 and the M.Sc. and Ph.D. degrees in electrical engineering from the Federal University of Minas Gerais (2005 and 2014). Dr. de Souza has experience in electrical engineering, with an emphasis on telecommunications systems, acting mainly on the following topics: ac microgrids, distributed generation, regulation of power systems, and digital control embedded in microcontrollers. He is a member of SOBRAEP.

Danilo I. Brandao, Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil

received the Ph.D. degree in electrical engineering from the University of Campinas, Brazil, in 2015. He was a visiting scholar at the Colorado School of Mines, USA, in 2009 and 2013, a visiting scholar at the University of Padova, Italy, in 2014, and a guest professor at the Norwegian University of Science and Technology, Norway, in 2018 and 2020. He is currently an assistant professor in the Graduate Program in Electrical Engineering at the Federal University of Minas Gerais, Belo Horizonte, Brazil. His main research interests are control of grid-tied converters and microgrids. He is a member of SOBRAEP.

Thiago R. Oliveira, Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil

received his Ph.D. in electrical engineering from the Federal University of Minas Gerais (UFMG) in 2016. He is currently an Assistant Professor at UFMG and a board member of the Power Electronics Research Group (GEP-UFMG) at the same university. His research interest concern the design of high-performance converters, Hybrid AC/DC microgrids, and UPS.

Braz J. Cardoso Filho, Universidade Federal de Minas Gerais, Graduate Program in Electrical Engineering, Belo Horizonte – MG, Brazil

received the Ph.D. degree in electrical engineering from the University of Wisconsin-Madison, Madison, WI, USA, in 1998. Since 1989, he has been a Faculty Member of the Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil, where he is currently a Full Professor, and the Founder and Head of the TESLA Power Engineering Laboratory. He has authored/coauthored about 200 technical papers on the topics of power electronics and electrical drives and holds eight patents. His research interests include utility applications of power electronics, renewable energy sources, semiconductor power devices, electrical machines and drives, and vehicle electrification.

References

S. M. Ismael, S. H. Abdel Aleem, A. Y.Abdelaziz, A. F. Zobaa, “State-of-the-art ofhosting capacity in modern power systemswith distributed generation”,Renewable Energy,vol. 130, pp. 1002–1020, Jan. 2019, doi:https://doi.org/10.1016/j.renene.2018.07.008. DOI: https://doi.org/10.1016/j.renene.2018.07.008

D. Ton, J. Reilly, “Microgrid Controller Initiatives: AnOverview of R&D by the U.S. Department of Energy”,IEEE Power Energy Mag, vol. 15, no. 4, pp. 24–31,Jul.–Aug. 2017, doi:10.1109/MPE.2017.2691238. DOI: https://doi.org/10.1109/MPE.2017.2691238

UFMG, “Oásis – UFMG Sustentável”,in onlineaddress, 2023, URL:https://www.ufmg.br/sustentabilidade/projetos/oasis/.

M. Barnes, J. Kondoh, H. Asano, J. Oyarzabal,G. Ventakaramanan, R. Lasseter, N. Hatziargyriou,T. Green, “Real-World MicroGrids-An Overview”,in IEEE SoSE, pp. 1–8, 2007, doi:https://doi.org/10.1109/SYSOSE.2007.4304255. DOI: https://doi.org/10.1109/SYSOSE.2007.4304255

N. Hatziargyriou, H. Asano, R. Iravani, C. Marnay,“Microgrids”,IEEE Power Energy Magazine, vol. 5,no. 4, pp. 78–94, Jul.–Aug. 2007, doi:https://doi.org/10.1109/MPAE.2007.376583. DOI: https://doi.org/10.1109/MPAE.2007.376583

L. Meng, M. Savaghebi, F. Andrade, J. C. Vasquez,J. M. Guerrero, M. Graells, “Microgrid centralcontroller development and hierarchical controlimplementation in the intelligent microgrid lab ofAalborg University”,in APEC, pp. 2585–2592, 2015,doi:https://doi.org/10.1109/APEC.2015.7104716. DOI: https://doi.org/10.1109/APEC.2015.7104716

G. Turner, J. P. Kelley, C. L. Storm, D. A. Wetz, W.-J. Lee, “Design and Active Control of a MicrogridTestbed”,IEEE Trans Smart Grid, vol. 6, no. 1, pp.73–81, Jan. 2015, doi:https://doi.org/10.1109/TSG.2014.2340376. DOI: https://doi.org/10.1109/TSG.2014.2340376

A. J. Flueck, C. P. Nguyen, “Integrating Renewable andDistributed resources – IIT Perfect Power Smart GridPrototype”,in IEEE PES GM, pp. 1–4, 2010, doi:https://doi.org/10.1109/PES.2010.5589520. DOI: https://doi.org/10.1109/PES.2010.5589520

R. Panora, J. E. Gehret, M. M. Furse, R. H. Lasseter,“Real-World Performance of a CERTS Microgridin Manhattan”,IEEE Transactions on SustainableEnergy, vol. 5, no. 4, pp. 1356–1360, Oct. 2014, doi:https://doi.org/10.1109/TSTE.2014.2301953. DOI: https://doi.org/10.1109/TSTE.2014.2301953

N. Andreadou, I. Papaioannou, A. Marinopoulos,M. Barboni, “Smart Grid Laboratories Inventory2022”,Publications Office of the European Union,2022, doi:https://data.europa.eu/doi/10.2760/392963.

L. H. L. Rosa, N. Kagan, C. F. M. Almeida,J. Labronici, S. X. Duarte, R. F. Morais, M. R. Gouvea,D. Mollica, A. Dominice, L. Zamboni, G. H. Batista,J. P. Silva, L. A. Costa, M. A. P. Fredes, “A Laboratoryinfrastructure to support utilities in attaining powerquality and Smart Grid goals”,in ICHQP, pp. 312–317, 2016, doi:https://doi.org/10.1109/ICHQP.2016.7783348. DOI: https://doi.org/10.1109/ICHQP.2016.7783348

J. I. Y. Ota, J. A. Pomilio, “LabREI: Ambiente Experimental para Pesquisas Interdisciplinares e Formação de Recursos Humanos em Redes Inteligentes de Energia Elétrica”,in Anais do Simpósio Brasileiro de Sistemas Elétricos 2020, Aug. 2020,doi:https://doi.org/10.48011/sbse.v1i1.2384. DOI: https://doi.org/10.48011/sbse.v1i1.2384

M. S. Ortmann, V. Maryama, L. J. Camurça, L. C.Gili, D. L. Suarez-Solano, D. Dantas, G. Finamor, V. L.da Silva, L. Munaretto, A. Ruseler, A. G. Andreta, R. F.Coelho, M. L. Heldwein, “Architecture, components and operation of an experimental hybrid ac/dc smart microgrid”,in IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems(PEDG), pp. 1–8, 2017, doi:https://doi.org/10.1109/PEDG.2017.7972564. DOI: https://doi.org/10.1109/PEDG.2017.7972564

UFSM, “Instituto de Redes Inteligentes – INRI”,Online, 2023, URL:inriufsm.com.br/.

UFMA, “Lab. Microrredes”, Online, 2023,URL:portalpadrao.ufma.br/iee/labs/lab-microrredes.

UFU, “Laboratório de Redes Inteligentes – LRI”,Online, 2023, URL:lri.ufu.br/unidades/laboratorio-de-redes-inteligentes.

E. A. Vendrusculo, A. A. Ferreira, J. A. Pomilio,“Plataforma Didática Para Avaliação Rápida EExperimental De Estratégias De Controle Em Eletrônica De Potência”, Eletrônica de Potência, vol. 13, no. 2, pp. 99–108, May 2008,doi:http://dx.doi.org/10.18618/REP.2008.2.099108. DOI: https://doi.org/10.18618/REP.2008.2.099108

L. P. Sampaio, S. A. O. Silva, A. d. N. Vargas,“Desenvolvimento de uma plataforma computacionalgráfica dedicada ao ensino de sistemas fotovoltaicos usando um emulador eletrônico”, Eletrônica de Potência, vol. 22, no. 1, pp. 91–101,Mar. 2017, doi:http://dx.doi.org/10.18618/REP.2017.1.2656. DOI: https://doi.org/10.18618/REP.2017.1.2656

S. A. O. Silva, D. H. Wollz, L. P. Sampaio,“Development Of A Didactic Workbench Using Real-time Monitoring System For Teaching Of Photovoltaic Systems”, Eletrônica de Potência,vol. 23, no. 3, pp. 371–381, Sep. 2018, doi:http://dx.doi.org/10.18618/REP.2018.3.2793. DOI: https://doi.org/10.18618/REP.2018.3.2793

L. Koleff, L. Araújo, M. Zambon, W. Komatsu, E. L.Pellini, L. M. Junior, “A Flexible Didatic PlatformFor Thyristor-Based Circuito Topologies”, Eletrônica de Potência, vol. 25, no. 2, pp. 154–162, Jun. 2020, doi:http://dx.doi.org/10.18618/REP.2020.2.0012. DOI: https://doi.org/10.18618/REP.2020.2.0012

F. S. Garcia, A. A. Ferreira, J. A. Pomilio, “PlataformaDe Ensino De Eletrônica De Potência Versátil E DeBaixo Custo”, Eletrônica de Potência,vol. 13, no. 2, pp. 85–90, May 2008, doi:http://dx.doi.org/10.18618/REP.2008.2.085090. DOI: https://doi.org/10.18618/REP.2008.2.085090

E. Nasr-Azadani, P. Su, W. Zheng, J. Rajda,C. Cañizares, M. Kazerani, E. Veneman, S. Cress,M. Wittemund, M. R. Manjunath, N. Wrathall,M. Carter, “The Canadian Renewable Energy Laboratory: A testbed for microgrids”,IEEE Electrification Magazine, vol. 8, no. 1, pp. 49–60, Mar.2020, doi:https://doi.org/10.1109/MELE.2019.2962889. DOI: https://doi.org/10.1109/MELE.2019.2962889

A. Cagnano, E. De Tuglie, P. Mancarella, “Microgrids:Overview and guidelines for practical implementations and operation”,Applied Energy, vol. 258, p. 114039,Jan. 2020, doi:https://doi.org/10.1016/j.apenergy.2019.114039. DOI: https://doi.org/10.1016/j.apenergy.2019.114039

M. Saleh, Y. Esa, Y. Mhandi, W. Brandauer,A. Mohamed, “Design and implementation of CCNYDC microgrid testbed”,in IEEE IAS Annual Meeting,pp. 1–7, 2016, doi:https://doi.org/10.1109/IAS.2016.7731870. DOI: https://doi.org/10.1109/IAS.2016.7731870

D. I. Brandão, J. A. Pomilio, F. P. Marafão, A. M.dos Santos Alonso, “Validação experimental de uma microrrede com controle centralizado e despachável”, Eletrônica de Potência, vol. 23, no. 3, pp.281–291, Sep. 2018, doi:http://dx.doi.org/10.18618/REP.2018.3.2779. DOI: https://doi.org/10.18618/REP.2018.3.2779

M. S. Padua, S. M. Deckmann, F. P. Marafao,“Frequency-Adjustable Positive Sequence Detectorfor Power Conditioning Applications”,in PESC, pp.1928–1934, 2005, doi:https://doi.org/10.1109/PESC.2005.1581895. DOI: https://doi.org/10.1109/PESC.2005.1581895

J.-C. Wu, C.-W. Chou, “Moving Average FilterBased Phase-Locked Loops: Performance Analysisand Design Guidelines”,IEEE Transactions on PowerElectronics, vol. 29, no. 6, pp. 2750–2763, Jun. 2014,doi:https://doi.org/10.1109/TPEL.2013.2273461. DOI: https://doi.org/10.1109/TPEL.2013.2273461

P. Mattavelli, S. Buso,Digital control in Power Elecronics, Morgan & Claypool, 2006.

J. M. S. Callegari, D. I. Brandao, E. Tedeschi,“Selective PQD Power Control Strategy for Single-Phase Grid-Following Inverters”,IEEE J Emerg Sel Topics Power Electron, pp. 1–1, 2023, doi:https://doi.org/10.1109/JESTPE.2023.3263796. DOI: https://doi.org/10.1109/JESTPE.2023.3263796

T. Caldognetto, P. Tenti, “Microgrids Operation Basedon Master–Slave Cooperative Control”,IEEE Journal of Emerging and Selected Topics in Power Electronics,vol. 2, no. 4, pp. 1081–1088, Dec. 2014, doi:https://doi.org/10.1109/JESTPE.2014.2345052. DOI: https://doi.org/10.1109/JESTPE.2014.2345052

“IEEE Standard for the Specification of MicrogridControllers”, IEEE Std 2030.7-2017, 2018, doi:https://doi.org/10.1109/IEEESTD.2018.8340204. DOI: https://doi.org/10.1109/IEEESTD.2018.8340204

J. M. Guerrero, J. C. Vasquez, J. Matas, L. G.de Vicuna, M. Castilla, “Hierarchical Control ofDroop-Controlled AC and DC Microgrids—AGeneral Approach Toward Standardization”, IEEE Transactions on Industrial Electronics,vol. 58, no. 1, pp. 158–172, Jan. 2011, doi:https://doi.org/10.1109/TIE.2010.2066534. DOI: https://doi.org/10.1109/TIE.2010.2066534

D. I. Brandao, T. Caldognetto, F. P. Marafão, M. G.Simões, J. A. Pomilio, P. Tenti, “Centralized Controlof Distributed Single-Phase Inverters Arbitrarily Connected to Three-Phase Four-Wire Microgrids”,IEEE Transactions on Smart Grid, vol. 8, no. 1, pp.437–446, Jan. 2017, doi:https://doi.org/10.1109/TSG.2016.2586744. DOI: https://doi.org/10.1109/TSG.2016.2586744

A. A. Salunkhe, P. P. Kamble, R. Jadhav, “Design and implementation of CAN bus protocol for monitoring vehicle parameters”,in IEEE RTEICT, pp. 301–304,2016, doi:https://doi.org/10.1109/RTEICT.2016.7807831. DOI: https://doi.org/10.1109/RTEICT.2016.7807831

R. Luthander, J. Widén, D. Nilsson, J. Palm,“Photovoltaic self-consumption in buildings: Areview”,Applied Energy, vol. 142, pp. 80–94, Mar.2015, doi:https://doi.org/10.1016/j.apenergy.2014.12.028 DOI: https://doi.org/10.1016/j.apenergy.2014.12.028

Downloads

Published

2023-06-02

How to Cite

[1]
J. M. S. Callegari, W. F. de Souza, D. I. Brandao, T. R. Oliveira, and B. J. Cardoso Filho, “The UFMG Microgrid Laboratory: a Testbed for Advanced Microgrids”, Eletrônica de Potência, vol. 28, no. 2, pp. 163–173, Jun. 2023.

Issue

Section

Original Papers