The UFMG Microgrid Laboratory: a Testbed for Advanced Microgrids
DOI:
https://doi.org/10.18618/REP.2023.2.0043Keywords:
Advanced Microgrid, Ancillary services, Centralized Control, Distributed Energy Resource, TestbedAbstract
This paper describes a test facility for the design and validation of advanced microgrids (MGs) to integrate high penetration of renewable energy and electric vehicles. The UFMG MG laboratory is a joint effort of UFMG, industry, and government. The UFMG MG laboratory is a physical simulation tool for the design, development, testing, and didactic purposes of advanced MG projects under islanded and grid-connected operating modes. Using commercial inverters, and flexible digital control cards, the testbed is modular and flexible in terms of control of inverters, communication technology, and MG architectures. The capabilities of such a testbed in the development of MG management systems are illustrated by means of experimental results considering an advanced MG performing grid-connected ancillary services, such as self-consumption and power factor regulation. The example also highlights the flexibility of the setup incorporating user-adjustable communication latency and user-defined communication failure.
Downloads
References
S. M. Ismael, S. H. Abdel Aleem, A. Y.Abdelaziz, A. F. Zobaa, “State-of-the-art ofhosting capacity in modern power systemswith distributed generation”,Renewable Energy,vol. 130, pp. 1002–1020, Jan. 2019, doi:https://doi.org/10.1016/j.renene.2018.07.008. DOI: https://doi.org/10.1016/j.renene.2018.07.008
D. Ton, J. Reilly, “Microgrid Controller Initiatives: AnOverview of R&D by the U.S. Department of Energy”,IEEE Power Energy Mag, vol. 15, no. 4, pp. 24–31,Jul.–Aug. 2017, doi:10.1109/MPE.2017.2691238. DOI: https://doi.org/10.1109/MPE.2017.2691238
UFMG, “Oásis – UFMG Sustentável”,in onlineaddress, 2023, URL:https://www.ufmg.br/sustentabilidade/projetos/oasis/.
M. Barnes, J. Kondoh, H. Asano, J. Oyarzabal,G. Ventakaramanan, R. Lasseter, N. Hatziargyriou,T. Green, “Real-World MicroGrids-An Overview”,in IEEE SoSE, pp. 1–8, 2007, doi:https://doi.org/10.1109/SYSOSE.2007.4304255. DOI: https://doi.org/10.1109/SYSOSE.2007.4304255
N. Hatziargyriou, H. Asano, R. Iravani, C. Marnay,“Microgrids”,IEEE Power Energy Magazine, vol. 5,no. 4, pp. 78–94, Jul.–Aug. 2007, doi:https://doi.org/10.1109/MPAE.2007.376583. DOI: https://doi.org/10.1109/MPAE.2007.376583
L. Meng, M. Savaghebi, F. Andrade, J. C. Vasquez,J. M. Guerrero, M. Graells, “Microgrid centralcontroller development and hierarchical controlimplementation in the intelligent microgrid lab ofAalborg University”,in APEC, pp. 2585–2592, 2015,doi:https://doi.org/10.1109/APEC.2015.7104716. DOI: https://doi.org/10.1109/APEC.2015.7104716
G. Turner, J. P. Kelley, C. L. Storm, D. A. Wetz, W.-J. Lee, “Design and Active Control of a MicrogridTestbed”,IEEE Trans Smart Grid, vol. 6, no. 1, pp.73–81, Jan. 2015, doi:https://doi.org/10.1109/TSG.2014.2340376. DOI: https://doi.org/10.1109/TSG.2014.2340376
A. J. Flueck, C. P. Nguyen, “Integrating Renewable andDistributed resources – IIT Perfect Power Smart GridPrototype”,in IEEE PES GM, pp. 1–4, 2010, doi:https://doi.org/10.1109/PES.2010.5589520. DOI: https://doi.org/10.1109/PES.2010.5589520
R. Panora, J. E. Gehret, M. M. Furse, R. H. Lasseter,“Real-World Performance of a CERTS Microgridin Manhattan”,IEEE Transactions on SustainableEnergy, vol. 5, no. 4, pp. 1356–1360, Oct. 2014, doi:https://doi.org/10.1109/TSTE.2014.2301953. DOI: https://doi.org/10.1109/TSTE.2014.2301953
N. Andreadou, I. Papaioannou, A. Marinopoulos,M. Barboni, “Smart Grid Laboratories Inventory2022”,Publications Office of the European Union,2022, doi:https://data.europa.eu/doi/10.2760/392963.
L. H. L. Rosa, N. Kagan, C. F. M. Almeida,J. Labronici, S. X. Duarte, R. F. Morais, M. R. Gouvea,D. Mollica, A. Dominice, L. Zamboni, G. H. Batista,J. P. Silva, L. A. Costa, M. A. P. Fredes, “A Laboratoryinfrastructure to support utilities in attaining powerquality and Smart Grid goals”,in ICHQP, pp. 312–317, 2016, doi:https://doi.org/10.1109/ICHQP.2016.7783348. DOI: https://doi.org/10.1109/ICHQP.2016.7783348
J. I. Y. Ota, J. A. Pomilio, “LabREI: Ambiente Experimental para Pesquisas Interdisciplinares e Formação de Recursos Humanos em Redes Inteligentes de Energia Elétrica”,in Anais do Simpósio Brasileiro de Sistemas Elétricos 2020, Aug. 2020,doi:https://doi.org/10.48011/sbse.v1i1.2384. DOI: https://doi.org/10.48011/sbse.v1i1.2384
M. S. Ortmann, V. Maryama, L. J. Camurça, L. C.Gili, D. L. Suarez-Solano, D. Dantas, G. Finamor, V. L.da Silva, L. Munaretto, A. Ruseler, A. G. Andreta, R. F.Coelho, M. L. Heldwein, “Architecture, components and operation of an experimental hybrid ac/dc smart microgrid”,in IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems(PEDG), pp. 1–8, 2017, doi:https://doi.org/10.1109/PEDG.2017.7972564. DOI: https://doi.org/10.1109/PEDG.2017.7972564
UFSM, “Instituto de Redes Inteligentes – INRI”,Online, 2023, URL:inriufsm.com.br/.
UFMA, “Lab. Microrredes”, Online, 2023,URL:portalpadrao.ufma.br/iee/labs/lab-microrredes.
UFU, “Laboratório de Redes Inteligentes – LRI”,Online, 2023, URL:lri.ufu.br/unidades/laboratorio-de-redes-inteligentes.
E. A. Vendrusculo, A. A. Ferreira, J. A. Pomilio,“Plataforma Didática Para Avaliação Rápida EExperimental De Estratégias De Controle Em Eletrônica De Potência”, Eletrônica de Potência, vol. 13, no. 2, pp. 99–108, May 2008,doi:http://dx.doi.org/10.18618/REP.2008.2.099108. DOI: https://doi.org/10.18618/REP.2008.2.099108
L. P. Sampaio, S. A. O. Silva, A. d. N. Vargas,“Desenvolvimento de uma plataforma computacionalgráfica dedicada ao ensino de sistemas fotovoltaicos usando um emulador eletrônico”, Eletrônica de Potência, vol. 22, no. 1, pp. 91–101,Mar. 2017, doi:http://dx.doi.org/10.18618/REP.2017.1.2656. DOI: https://doi.org/10.18618/REP.2017.1.2656
S. A. O. Silva, D. H. Wollz, L. P. Sampaio,“Development Of A Didactic Workbench Using Real-time Monitoring System For Teaching Of Photovoltaic Systems”, Eletrônica de Potência,vol. 23, no. 3, pp. 371–381, Sep. 2018, doi:http://dx.doi.org/10.18618/REP.2018.3.2793. DOI: https://doi.org/10.18618/REP.2018.3.2793
L. Koleff, L. Araújo, M. Zambon, W. Komatsu, E. L.Pellini, L. M. Junior, “A Flexible Didatic PlatformFor Thyristor-Based Circuito Topologies”, Eletrônica de Potência, vol. 25, no. 2, pp. 154–162, Jun. 2020, doi:http://dx.doi.org/10.18618/REP.2020.2.0012. DOI: https://doi.org/10.18618/REP.2020.2.0012
F. S. Garcia, A. A. Ferreira, J. A. Pomilio, “PlataformaDe Ensino De Eletrônica De Potência Versátil E DeBaixo Custo”, Eletrônica de Potência,vol. 13, no. 2, pp. 85–90, May 2008, doi:http://dx.doi.org/10.18618/REP.2008.2.085090. DOI: https://doi.org/10.18618/REP.2008.2.085090
E. Nasr-Azadani, P. Su, W. Zheng, J. Rajda,C. Cañizares, M. Kazerani, E. Veneman, S. Cress,M. Wittemund, M. R. Manjunath, N. Wrathall,M. Carter, “The Canadian Renewable Energy Laboratory: A testbed for microgrids”,IEEE Electrification Magazine, vol. 8, no. 1, pp. 49–60, Mar.2020, doi:https://doi.org/10.1109/MELE.2019.2962889. DOI: https://doi.org/10.1109/MELE.2019.2962889
A. Cagnano, E. De Tuglie, P. Mancarella, “Microgrids:Overview and guidelines for practical implementations and operation”,Applied Energy, vol. 258, p. 114039,Jan. 2020, doi:https://doi.org/10.1016/j.apenergy.2019.114039. DOI: https://doi.org/10.1016/j.apenergy.2019.114039
M. Saleh, Y. Esa, Y. Mhandi, W. Brandauer,A. Mohamed, “Design and implementation of CCNYDC microgrid testbed”,in IEEE IAS Annual Meeting,pp. 1–7, 2016, doi:https://doi.org/10.1109/IAS.2016.7731870. DOI: https://doi.org/10.1109/IAS.2016.7731870
D. I. Brandão, J. A. Pomilio, F. P. Marafão, A. M.dos Santos Alonso, “Validação experimental de uma microrrede com controle centralizado e despachável”, Eletrônica de Potência, vol. 23, no. 3, pp.281–291, Sep. 2018, doi:http://dx.doi.org/10.18618/REP.2018.3.2779. DOI: https://doi.org/10.18618/REP.2018.3.2779
M. S. Padua, S. M. Deckmann, F. P. Marafao,“Frequency-Adjustable Positive Sequence Detectorfor Power Conditioning Applications”,in PESC, pp.1928–1934, 2005, doi:https://doi.org/10.1109/PESC.2005.1581895. DOI: https://doi.org/10.1109/PESC.2005.1581895
J.-C. Wu, C.-W. Chou, “Moving Average FilterBased Phase-Locked Loops: Performance Analysisand Design Guidelines”,IEEE Transactions on PowerElectronics, vol. 29, no. 6, pp. 2750–2763, Jun. 2014,doi:https://doi.org/10.1109/TPEL.2013.2273461. DOI: https://doi.org/10.1109/TPEL.2013.2273461
P. Mattavelli, S. Buso,Digital control in Power Elecronics, Morgan & Claypool, 2006.
J. M. S. Callegari, D. I. Brandao, E. Tedeschi,“Selective PQD Power Control Strategy for Single-Phase Grid-Following Inverters”,IEEE J Emerg Sel Topics Power Electron, pp. 1–1, 2023, doi:https://doi.org/10.1109/JESTPE.2023.3263796. DOI: https://doi.org/10.1109/JESTPE.2023.3263796
T. Caldognetto, P. Tenti, “Microgrids Operation Basedon Master–Slave Cooperative Control”,IEEE Journal of Emerging and Selected Topics in Power Electronics,vol. 2, no. 4, pp. 1081–1088, Dec. 2014, doi:https://doi.org/10.1109/JESTPE.2014.2345052. DOI: https://doi.org/10.1109/JESTPE.2014.2345052
“IEEE Standard for the Specification of MicrogridControllers”, IEEE Std 2030.7-2017, 2018, doi:https://doi.org/10.1109/IEEESTD.2018.8340204. DOI: https://doi.org/10.1109/IEEESTD.2018.8340204
J. M. Guerrero, J. C. Vasquez, J. Matas, L. G.de Vicuna, M. Castilla, “Hierarchical Control ofDroop-Controlled AC and DC Microgrids—AGeneral Approach Toward Standardization”, IEEE Transactions on Industrial Electronics,vol. 58, no. 1, pp. 158–172, Jan. 2011, doi:https://doi.org/10.1109/TIE.2010.2066534. DOI: https://doi.org/10.1109/TIE.2010.2066534
D. I. Brandao, T. Caldognetto, F. P. Marafão, M. G.Simões, J. A. Pomilio, P. Tenti, “Centralized Controlof Distributed Single-Phase Inverters Arbitrarily Connected to Three-Phase Four-Wire Microgrids”,IEEE Transactions on Smart Grid, vol. 8, no. 1, pp.437–446, Jan. 2017, doi:https://doi.org/10.1109/TSG.2016.2586744. DOI: https://doi.org/10.1109/TSG.2016.2586744
A. A. Salunkhe, P. P. Kamble, R. Jadhav, “Design and implementation of CAN bus protocol for monitoring vehicle parameters”,in IEEE RTEICT, pp. 301–304,2016, doi:https://doi.org/10.1109/RTEICT.2016.7807831. DOI: https://doi.org/10.1109/RTEICT.2016.7807831
R. Luthander, J. Widén, D. Nilsson, J. Palm,“Photovoltaic self-consumption in buildings: Areview”,Applied Energy, vol. 142, pp. 80–94, Mar.2015, doi:https://doi.org/10.1016/j.apenergy.2014.12.028 DOI: https://doi.org/10.1016/j.apenergy.2014.12.028
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.