Célula de Desacoplamento de Potência para Microinversores Fotovoltaicos
DOI:
https://doi.org/10.18618/REP.2020.2.0018Keywords:
Capacitor Ativo, Célula de Desalojamento de Potência, Ondulação de PotênciaAbstract
Este artigo apresenta uma célula ativa de desacoplamento de potência aplicada à mitigação da ondulação de tensão de um microinversor fotovoltaico de dois estágios. Essa célula é projetada para ser acoplada ao barramento CC principal do microinversor e desviar a ondulação de 120 Hz para um barramento secundário, configurando uma alternativa viável ao uso de capacitores eletrolíticos, usualmente empregados com esse propósito. O artigo traz uma revisão bibliográfica que aponta para as principais topologias e estratégias de controle normalmente utilizadas em células de desacoplamento de potência, detalha o equacionamento voltado ao seu dimensionamento e apresenta resultados experimentais considerando duas estratégias de controle distintas. Tais resultados comprovam a habilidade da célula de desacoplamento em mitigar a componente de 120 Hz da tensão do barramento CC, reduzindo-a de 7,2% para apenas 1,1%.
Downloads
References
R. F. Coelho, "Concepção, análise e implementação de uma micro rede interligada à rede elétrica para alimentação ininterrupta de cargas CC a partir de fontes renováveis”, Tese de Doutorado, Universidade Federal de Santa Catarina, 2013.
R. Teodorescu, M. Liserre, P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems, Wiley, 2010. https://doi.org/10.1002/9780470667057 DOI: https://doi.org/10.1002/9780470667057
S. Kouro, J. I. Leon, D. Vinnikov, L. G. Franquelo, "Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology", IEEE Industrial Electronics Magazine, vol. 9, n° 1, p. 47-61, Mar.2015. https://doi.org/10.1109/MIE.2014.2376976 DOI: https://doi.org/10.1109/MIE.2014.2376976
S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules", IEEE Transactions on Industry Applications, vol. 41, n° 5, p. 1292-1306, Set. 2005. https://doi.org/10.1109/TIA.2005.853371 DOI: https://doi.org/10.1109/TIA.2005.853371
D. Dong, M. S. Agamy, M. H.-Todorovic, X. Liu, L. Garces, R. Zhou, P. Cioffi, "A PV residential microinverter with grid-support function: Design, implementation, and field testing", IEEE Transactions on Industry Applications, vol. 54, n° 1, p. 469-481, Jan. 2018. https://doi.org/10.1109/TIA.2017.2752680 DOI: https://doi.org/10.1109/TIA.2017.2752680
L. Schmitz, T. P. Horn, D. C. Martins, R. F. Coelho, "Conversor cc-cc de alto ganho voltado para aplicações fotovoltaicas com módulos de filme fino", Eletrônica de Potência, v. 23, n.3, p. 339-348, Set. 2018. https://doi.org/10.18618/REP.2018.3.2789 DOI: https://doi.org/10.18618/REP.2018.3.2789
A. Hu, S. Harb, N. Kutkut, I. Batarseh, Z. J. Shen, "A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems", IEEE Transactions on Power Electronics, v. 28, n.6, p. 2711-2726, Jun.2013. https://doi.org/10.1109/TPEL.2012.2221482 DOI: https://doi.org/10.1109/TPEL.2012.2221482
Y. Levron, S. Canaday,R. W. Erickson, "Bus voltage control with zero distortion and high bandwidth for single-phase solar inverters", IEEE Transactions on Power Electronics, v. 31, n.1, p. 258-269, Jan.2016. https://doi.org/10.1109/TPEL.2015.2399431 DOI: https://doi.org/10.1109/TPEL.2015.2399431
T. A. Pereira, "Compensation of the double-line frequency voltage ripple on single-phase two-stage photovoltaic microinverter",Dissertação de Mestrado, Universidade Federal de Santa Catarina, 2018.
H. Wang, F. Blaabjerg, "Reliability of capacitors for DC-link applications in power electronic converters -An overview", IEEE Transactions on Industry Applications, v. 50, n.5, p. 3569-3578, Set.2014. https://doi.org/10.1109/TIA.2014.2308357 DOI: https://doi.org/10.1109/TIA.2014.2308357
M. Keshani, E. Adib,H. Farzanehfard, "Micro-inverter based on single-ended primary-inductance converter topology with an active clamp power decoupling", IET Power Electronics, v. 11, n.1, p. 73-81,Fev.2018. https://doi.org/10.1049/iet-pel.2016.0988 DOI: https://doi.org/10.1049/iet-pel.2016.0988
C. Y. Liao, W. S. Lin, Y. M. Chen,C. Y. Chou, "A PV micro-inverter with PV current decoupling strategy", IEEE Transactions on Power Electronics, vo. 32, n.8, p. 6544-6557, Ago.2017. https://doi.org/10.1109/TPEL.2016.2616371 DOI: https://doi.org/10.1109/TPEL.2016.2616371
D. Wang, M. Preindl, F. Peng, J. Ye, A. Emadi, "DC-bus design with hybrid capacitor bank in single-phase PV inverters", in Proc. of. IEEE IECON, Pequim, in Proc. of. IEEE IECON, Pequim, in Proc. of. IEEE IECON China, p. 2425-2430, Dec. 2017. https://doi.org/10.1109/IECON.2017.8216408 DOI: https://doi.org/10.1109/IECON.2017.8216408
H. Wang, C. Li, G. Zhu, Y. Liu, H. Wang, "Model-based design and optimization of hybrid DC-link capacitors banks", IEEE Transactions on Power Electronics, v. 35, n.5, p. 8910-8925, Set. 2020. https://doi.org/10.1109/TPEL.2020.2971830 DOI: https://doi.org/10.1109/TPEL.2020.2971830
B. Gu, J. Dominic, J. Zhang, L. Zhang, B. Chen, J.-S. Lai, "Control of electrolyte-free microinverter with improved MPPT performance and grid current quality", in Proc. of IEEE APEC, Fort Worth, U.S., p. 1788-1792,Mar.2014. https://doi.org/10.1109/APEC.2014.6803548 DOI: https://doi.org/10.1109/APEC.2014.6803548
I. Serban, "Power decoupling method for single-phase H-bridge with no additional power electronics", IEEE Transactions on Industrial Electronics, v. 62, n.8, p. 4805-4813, Ago.2015. https://doi.org/10.1109/TIE.2015.2399274 DOI: https://doi.org/10.1109/TIE.2015.2399274
Y. Tang, W. Yao, P. Loh,F. Blaabjerg, "Highly reliable transformer less photovoltaic inverters with leakage current and pulsating power elimination", IEEE Transaction on Industrial Electronics, v. 63, n.2, p. 1016-1026, Fev. 2015. https://doi.org/10.1109/TIE.2015.2477802 DOI: https://doi.org/10.1109/TIE.2015.2477802
A. S. Morsy, P. N. Enjeti, "Comparison of active power decoupling methods for high-power-density single-phase inverters using wide-bandgap FETs for Google Little Box Challenge", IEEE Journal of Emerging and Selected Topics in Power Electronics, v. 4, n.3, p. 790-798, Set. 2016. https://doi.org/10.1109/JESTPE.2016.2573262 DOI: https://doi.org/10.1109/JESTPE.2016.2573262
Z. Qin, Y. Tang, P. C. Loh, F. Blaabjerg, "Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kilowatt-scale single-phase inverters", IEEE Journal of Emerging and Selected Topics in Power Electronics, v. 4, n.1, p. 15-25, Mar.2016. https://doi.org/10.1109/JESTPE.2015.2490199 DOI: https://doi.org/10.1109/JESTPE.2015.2490199
Y. Sun, Y. Liu, M. Su, W. Xiong, J. Yang, "Review of active power decoupling topologies in single-phase systems", IEEE Transactions on Power Electronics, v. 31, n.7, p. 4778-4794, Jul.2016.
M. A. Vitorino, L. F. S. Alves, R. Wang,M. B. R.Correa, "Low-frequency power decoupling in single-phase applications: a comprehensive overview", IEEE Transactions on Power Electronics, v. 32, n.4, p. 2892-2912, Abr.2017. https://doi.org/10.1109/TPEL.2016.2579740 DOI: https://doi.org/10.1109/TPEL.2016.2579740
H. Zhang, X. Li, B. Ge, R. S. Balog, "Capacitance, dc voltage utilization, and current stress: Comparison of double-line frequency ripple power decoupling for single-phase systems", IEEE Industrial Electronics Magazine, v. 11, n.3, p. 37-49, Set. 2017. https://doi.org/10.1109/MIE.2016.2627013 DOI: https://doi.org/10.1109/MIE.2016.2627013
S. Xu, L. Chang, R. Shao, "Evolution of single-phase power converter topologies underlining power decoupling", Chinese Journal Electrical Engineering, v. 2, n.1, p. 24-39, Jun.2016. https://doi.org/10.23919/CJEE.2016.7933113 DOI: https://doi.org/10.23919/CJEE.2016.7933113
M. Saito, N. Matsui, "Modeling and control strategy for a single-phase PWM rectifier using a single-phase instantaneous active/reactive power theory", in Proc. of IEEE INTELEC, Yokohama, Japão, p. 573-578,Oct.2003.
R. Wang, F. Wang, D. Boroyevich,R. Burgos, R. Lai, P. Ning,K. Rajashekara, "A high power density single-phase PWM rectifier with active ripple energy storage", IEEE Transactions on Power Electronics, v. 26, n.5,p. 1430-1443, Maio2011. https://doi.org/10.1109/TPEL.2010.2090670 DOI: https://doi.org/10.1109/TPEL.2010.2090670
C. Y. Wu, C. H. Chen, J. W. Cao, M. T. Liu, "Power control and pulsation decoupling in a single-phase grid-connected voltage-source inverter", in Proc. of IEEE TENCON, Sydney, Austrália, p TENCON, Sydney, Austrália, p TENCON. 475-479, Apr.2013.
A. Kyritsis, N. Papanicolaou,E. Tatakis, "A novel parallel active filter for current pulsation smoothing on single stage grid-connected ac-pv modules", in Proc. of IEEE EPE., Aalborg, Dinamarca, p. 1-10, 2007.https://doi.org/10.1109/EPE.2007.4417545 DOI: https://doi.org/10.1109/EPE.2007.4417545
I. Serban, C. Marinescu, "Active power decoupling circuit for a single-phase battery energy storage system dedicated to autonomous microgrids," in Proc. of IEEE ISIE, Bari, Itália, p. 2717-2722,July2010. https://doi.org/10.1109/ISIE.2010.5637040 DOI: https://doi.org/10.1109/ISIE.2010.5637040
W. Cai, B. Liu, S. Duan, L. Jiang, "An active low-frequency ripple control method based on the virtual capacitor concept for BIPV systems", IEEE Transactions on Power Electronics, v. 29, n.4,p. 1733-1745, Abr.2014. https://doi.org/10.1109/TPEL.2013.2271247 DOI: https://doi.org/10.1109/TPEL.2013.2271247
X. Cao, Q.-C. Zhong, W.-L. Ming, "Ripple eliminator to smooth DC-bus voltage and reduce the total capacitance required", IEEE Transactions on Industrial Electronics, v. 62, n.4, p. 2224-2235,Abr.2015. https://doi.org/10.1109/TIE.2014.2353016 DOI: https://doi.org/10.1109/TIE.2014.2353016
S. Qin, Y. Lei, C. Barth, W.-C. Liu, R. C. N. Pilawa-Podgurski, "Ahigh efficiency high energy density buffer architecture for power pulsation decoupling in grid-interfaced converters," in Proc. of IEEE ECCE, Montreal, Canadá, p. 149-157,Sept.2015. https://doi.org/10.1109/ECCE.2015.7309682 DOI: https://doi.org/10.1109/ECCE.2015.7309682
P. T. Krein, R. S. Balog, M. Mirjafari, "Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port", IEEE Transactions on Power Electronics, v. 27, n.11, p. 4690-4698, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2186640 DOI: https://doi.org/10.1109/TPEL.2012.2186640
S. Harb, M. Mirjafari, R. S. Balog, "Ripple-port module-integrated inverter for grid-connected PV applications", IEEE Transactions on Industry Applications, v. 49, n.6, p. 2692-2698, Nov. 2013. https://doi.org/10.1109/TIA.2013.2263783 DOI: https://doi.org/10.1109/TIA.2013.2263783
R. J. Wai, C. Y. Lin, "Active low-frequency ripple control for clean energy power conditioning mechanism", IEEE Transactions on Industrial Electronics, v. 57, n.11, p. 3780-3792, Nov. 2010. https://doi.org/10.1109/TIE.2010.2040569 DOI: https://doi.org/10.1109/TIE.2010.2040569
H. Wang, H.-H. Chung, W. Liu, "Use of a series voltage compensator for reduction of the dc-link capacitance in a capacitor-supported system", IEEE Transactions on Power Electronics, v. 29, n,3, p. 1163-1175, Mar.2014. https://doi.org/10.1109/TPEL.2013.2262057 DOI: https://doi.org/10.1109/TPEL.2013.2262057
W. Liu, K. Wang, H.-H. Chung, S.-H. Chuang, "Modeling and design of series voltage compensator for reduction of dc-link capacitance in grid-tie solar inverter", IEEE Transactions on Power Electronics, v. 30, n.5, p. 2534-2548, Maio 2015. https://doi.org/10.1109/TPEL.2014.2336856 DOI: https://doi.org/10.1109/TPEL.2014.2336856
R. W. Erickson,D. Maksimovic, Fundamentals of Power Electronics, Springer US, 2001 https://doi.org/10.1007/b100747 DOI: https://doi.org/10.1007/b100747
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.