A Flexible DSP-FPGA Based Platform for Experiments with Modular Multilevel Cascade Converters

Authors

  • Lucas Koleff Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Manoel Conde Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Pedro Hayashi Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Francesco Sacco Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Kelly Enomoto Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Eduardo Pellini Protection and Automation Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Wilson Komatsu Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil
  • Lourenço Matakas Junior Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

DOI:

https://doi.org/10.18618/REP.2020.2.0011

Keywords:

Control systems, DSP, FPGA, Modular multilevel cascade converters, Power electronics

Abstract

The growing use of Modular Multilevel Cascade Converter (MMCC) topologies in applications such as High Voltage Direct Current Transmission, Static Var Compensation, Alternating Current (AC) Drives and renewable energy systems, among others, turns their study relevant. However, as the number of Power Submodules in the MMCCs increases, the applied control strategies, data communication and digital hardware complexity increases as well. This paper proposes a flexible and scalable platform, that is adequate for implementing different MMCC topologies (single star, single delta or double star), communication schemes (star or ring) and control strategies (centralized or distributed). The Processing Board explores the availability of Field Programmable Gate Arrays, Digital Signal Processors and ARM microcontrollers. The Power and Measurement Submodules processing capability is provided by Complex Programmable Logic Devices and ARM microcontrollers. Description of the tasks implemented in the processing devices and experiments are presented for a test case, in which a double star topology with star communication and centralized processing strategy is tested using fixed switching frequency and equally displaced carriers.

Downloads

Download data is not yet available.

Author Biographies

Lucas Koleff, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.Sc. degree from the University of São Paulo (USP) and his D.D. M.Sc. degree from the Technical University of Darmstadt in 2015. He is currently working towards his Ph.D. degree at the USP.

Manoel Conde, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.S. degree from University of Campinas in 1986 and his MBA degree from the USP in 2002. He is currently working towards his M.Sc. degree at the USP.

Pedro Hayashi, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.Sc. and M.Sc. degrees from the USP in 2015 and 2019, respectively. He is currently looking forward to starting his Ph.D. course.

Francesco Sacco, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.Sc. degree from Pontifical Catholic University of São Paulo in 2008. He is currently working towards his M.Sc. degree at the USP.

Kelly Enomoto, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received her B.Sc., M.Sc. and Ph.D. degrees from the USP in 2012, 2015 and 2019, respectively.

Eduardo Pellini, Protection and Automation Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.Sc., M.Sc., and Ph.D. degrees from the USP in 2000, 2005 and 2010, respectively. He is currently an Assistant Professor at the USP.

Wilson Komatsu, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.S., M.S., and Ph.D. degrees from the USP in 1986, 1992 and 2000, respectively. He is currently an Associate Professor at the USP

Lourenço Matakas Junior, Power Electronics Laboratory of the Escola Politécnica da Universidade de São Paulo (USP), São Paulo – SP, Brazil

received his B.S., M.S., and Ph.D. degrees from the USP in 1984, 1989 and 1998, respectively. He is currently an Associate Professor at the USP.

References

R. Marquardt, "Modular Multilevel Converter: An universal concept for HVDC-Networks and extended DC-Bus-applications", in Proc. of the International Power Electronics Conference, vo l. 1,pp. 502-507, June 2010. https://doi.org/10.1109/IPEC.2010.5544594 DOI: https://doi.org/10.1109/IPEC.2010.5544594

H. Akagi, "Classification, Terminology and, Application of the Modular Multilevel Cascade Converter (MMCC)",IEEE Transactions on Power Electronics, vol. 26, n°11, pp. 3119-3130, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2143431 DOI: https://doi.org/10.1109/TPEL.2011.2143431

N. Gnanarathna, S. K. Chaudhary, A. M. Gole, R. Teodorescu, "Modular multi-level converter based HVDC system for grid connection of offshore wind power plant", in Proc. of the9th IET International Conference on AC and DC Power Transmission, vo l. 1, pp. 1-5,Oct. 2010. https://doi.org/10.1049/cp.2010.0984 DOI: https://doi.org/10.1049/cp.2010.0984

H. Akagi, L. Maharjan, "A battery energy storage system based on a multilevel multilevel cascade PWM converter",Eletrônica de Potência, vol.14, n° 4, Nov. 2009. https://doi.org/10.18618/REP.2009.4.221231 DOI: https://doi.org/10.18618/REP.2009.4.221231

T. P. Corrêa, L. Almeida,F. J. Rodriguez, "Communication aspects in the distributed control architecture of a modular multilevel converter", in Proc. of the IEEE International Conference on Industrial Technology, vol. 1,pp. 640-645, Feb. 2018. https://doi.org/10.1109/ICIT.2018.8352253 DOI: https://doi.org/10.1109/ICIT.2018.8352253

L. Mathe, P. D. Burlacu, R. Teodorescu, "Control of a Modular Multilevel Converter with Reduced Internal Data Exchange", in IEEE Transactions on Industrial Industrial Ind Informatics, vol. 13, n°1, pp. 248-257, Feb. 2017. https://doi.org/10.1109/TII.2016.2598494 DOI: https://doi.org/10.1109/TII.2016.2598494

M. Vijeh,M. Rezanejad, E. Samadaei, K. Bertilsson, "A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View", in IEEE Transactions on Power Electronics, vol. 34, n°10, pp. 9479-9502, Oct. 2019. https://doi.org/10.1109/TPEL.2018.2890649 DOI: https://doi.org/10.1109/TPEL.2018.2890649

A. Dekka, B. Wu, R. L. Fuentes, M. Perez,N. R. Zargari, "Evolution of Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters", in IEEE Journal of Emerging and Selected IEEE Journal of Emerging and Selected IEEE Journal of Topics in Power Electronics, vol. 5, n°4, pp. 1631-1656, Dec. 2017. https://doi.org/10.1109/JESTPE.2017.2742938 DOI: https://doi.org/10.1109/JESTPE.2017.2742938

L. A. Silva, S. P. Pimentel, J. A. Pomilio, "Sistema de Filtragem Ativa com Inversor Multinível Assimétrico em Cascata de Dezenove Níveis e Controle de Tensão nos Barramentos CC", Eletrônica de Potência, vol. 11, n° 1, pp 17-24, Mar. 2006. https://doi.org/10.18618/REP.2006.1.017024 DOI: https://doi.org/10.18618/REP.2006.1.017024

G. Pozzebon, R. Q. Machado, S. Buso,G. Spiazzi, "A grid-connected multilevel converter for interfacing PV arrays and energy storage devices", in Proc. of the39th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 6158-6163, Nov. 2013. https://doi.org/10.1109/IECON.2013.6700148 DOI: https://doi.org/10.1109/IECON.2013.6700148

P. W. Hammond, "A new approach to enhance power quality for medium voltage AC drives", in IEEE Transactions on Industry Applications, vol. 33, n°1, pp. 202-208, Jan./Feb. 1997. https://doi.org/10.1109/28.567113 DOI: https://doi.org/10.1109/28.567113

C. L. Toh, L. E. Norum, "A Performance Analysis of Three Potential Control Network for Monitoring and Control in Power Electronics Converter", in Proc. of the IEEE International Conference on Industrial Technology, vol. 1, pp. 224-229,Mar. 2012. https://doi.org/10.1109/ICIT.2012.6209942 DOI: https://doi.org/10.1109/ICIT.2012.6209942

J. Lago, G. J. M. Sousa, M. L. Heldwein, "Digital Control/Modulation Platform for for Modular Multilevel Converter System", in Proc. of COBEP, vol. 1, pp. 271-277, Oct. 2013. https://doi.org/10.1109/COBEP.2013.6785127 DOI: https://doi.org/10.1109/COBEP.2013.6785127

Y. Zhou, D. Jiang, P. Hu, J. Guo, Y. Liang, Z. Lin, "A Prototype of Modular Multilevel Converters" ,in IEEE Transactions on Power Electronics, vol. 29, n°7, pp. 3267-3278, July2014. https://doi.org/10.1109/TPEL.2013.2278338 DOI: https://doi.org/10.1109/TPEL.2013.2278338

G. S. da Silva, R. P. Vieira, C. Rech, "Observador por modos deslizantes aplicado no controle das tensões equivalentes dos polos em conversores multiníveis modulares", Eletrônica de Potência, vo l.22, n° 3, pp. 319-328, Sep.2017. https://doi.org/10.18618/REP.2017.3.2697 DOI: https://doi.org/10.18618/REP.2017.3.2697

H. Hatas, N. Genc, A. Mamizadeh, "FPGA Implementation of SPWM for Cascaded Multilevel Inverter by Using XSG", in Proc. of the4th International Conference on Power Electronics and their Applications, vol. 1, pp. 1-6, Sep. 2019. https://doi.org/10.1109/ICPEA1.2019.8911189 DOI: https://doi.org/10.1109/ICPEA1.2019.8911189

M. Parker, “Understanding Peak Floating-Point Performance Claims", 2017.[Online]. Disponível em:.

F. T. Ghetti, A. O. Almeida, P. M. de Almeida, P. G. Barbosa, "Simulação em tempo real de algoritmos de equalização das tensões CC de um conversor multinível modular", Eletrônica de Potência, vo l. 22, n°4, Dec. 2017. https://doi.org/10.18618/REP.2017.4.2701 DOI: https://doi.org/10.18618/REP.2017.4.2701

L. Koleff, M. Conde, P. Hayashi, F. Sacco, K. Enomoto,E. Pellini, W. Komatsu, L.Matakas Jr., "Development of a FPGA-Based Control System for Modular Multilevel Converter Applications", in Proc. of the 15th Brazilian Power Electronics and 5th IEEE Southern Power Electronics Conference, vol. 1, pp. 69-74, Dec. 2019. https://doi.org/10.1109/COBEP/SPEC44138.2019.9065740 DOI: https://doi.org/10.1109/COBEP/SPEC44138.2019.9065740

Texas Instruments, "TMS320x2833x,2823x DSC External Interface (XINTF) Reference Guide",2008. [Online].Disponível em: www.ti.com>www.ti.com.

Xilinx Inc., "Zynq-7000 SoC Data Sheet: Overview",2018.[Online]. Disponível em:.

Philips Semiconductors, "I2S Bus Specifications", 1996.[Online]. Disponível em: . https://doi.org/10.1016/S0958-2118(96)90014-2 DOI: https://doi.org/10.1016/S0958-2118(96)90014-2

D. G. Holmes, B. P. McGrath, "Opportunities for harmonic cancellation with carrier based PWM for two-level and multilevel cascaded inverters", in IEEE Transactions on Industry Applications, vol. 37, n° 2, pp. 574-582, Mar./Apr. 2001. https://doi.org/10.1109/28.913724 DOI: https://doi.org/10.1109/28.913724

K. Carvalho, W. Komatsu and L. Matakas Junior, "A Novel Fixed Switching Frequency Control Strategy for the Modular Multilevel Converter in the ABC Reference Frame", in Proc. of the13th IEEE International Conference on Industry Applications, vol. 1, pp. 12-16, Nov. 2018.

K. Eno moto. Proposal for modelling and control of MMCs with fixed switching frequency. Ph.D. Thesis, University of São Paulo, São Paulo, 2019.

Downloads

Published

2020-06-30

How to Cite

[1]
L. Koleff, “A Flexible DSP-FPGA Based Platform for Experiments with Modular Multilevel Cascade Converters”, Eletrônica de Potência, vol. 25, no. 2, pp. 185–197, Jun. 2020.

Issue

Section

Original Papers