Compensation of Oscillating Instantaneous Power in Modern Microgrids Based on the Conservative Power Theory
DOI:
https://doi.org/10.18618/REP.2020.3.0017Keywords:
Conservative Power Theory, Instantaneous Power Oscillations, Microgrid, Multifunctional Grid-Tied Inverters, Power QualityAbstract
Considering the application of multi-functional grid-tied inverters in modern microgrids, this paper proposes a novel control strategy derived from the Conservative Power Theory (CPT), which makes possible the compensation of instantaneous power oscillations. Such approach is based on the instantaneous power and instantaneous reactive energy terms defined by the CPT, allowing the extraction of oscillating power components directly in the abc frame. Simulation results are presented to demonstrate the applicability of the control strategy considering the scenario of a weak microgrid with linear, non-linear, and unbalanced loads, as well as comprising a three-phase multi-functional grid-tied inverter with LCL filter. The results show that active power dispatchability can be offered by the inverter, while concomitantly supporting the microgrid to operate at constant instantaneous power. Experimental results comprising a 3.6 kVA inverter prototype also validate the proposed decomposition of oscillating power terms, showing that they can be satisfactorily employed on compensation purposes.
Downloads
References
A. U. Krismanto, M. Nadarajah and O. Krause, "Influence of renewable energy based microgrid on low frequency oscillation of power systems," 2015IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, pp. 1-5, 2015.https://doi.org/10.1109/APPEEC.2015.7380982 DOI: https://doi.org/10.1109/APPEEC.2015.7380982
D. Castro, T. Soares and M. Matos, "Stochastic Energy and Reserve Market in a Microgrid Environment," 2019 IEEE Milan Power Tech, Milan, Italy, pp. 1-6, 2019.https://doi.org/10.1109/PTC.2019.8810826 DOI: https://doi.org/10.1109/PTC.2019.8810826
M. Di Somma, G. Graditi and P. Siano, "Optimal Bidding Strategy for a DER Aggregator in the Day-Ahead Market in the Presence of Demand Flexibility," in IEEE Trans.Ind.Electron., vol. 66, no. 2, pp. 1509-1519, Feb. 2019.https://doi.org/10.1109/TIE.2018.2829677 DOI: https://doi.org/10.1109/TIE.2018.2829677
T. Strasser etal., "A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems," in IEEE Trans. Ind.Electron., vol. 62, no. 4, pp. 2424-2438, April 2015.https://doi.org/10.1109/TIE.2014.2361486 DOI: https://doi.org/10.1109/TIE.2014.2361486
Xue et al., "On a Future for Smart Inverters with Integrated System Functions," 9thIEEE Int. Sym. Power Electron. Dist.Gen.Syst., Charlotte, pp. 1-8, 2018.https://doi.org/10.1109/PEDG.2018.8447750 DOI: https://doi.org/10.1109/PEDG.2018.8447750
T. Samad and A. M. Annaswamy, "Controls for Smart Grids: Architectures and Applications," Proceedings of the IEEE, vol. 105, no. 11, pp. 2244-2261, Nov. 2017.https://doi.org/10.1109/JPROC.2017.2707326 DOI: https://doi.org/10.1109/JPROC.2017.2707326
Z. Zeng, X. Li and W. Shao, "Multi-functional grid-connected inverter: upgrading distributed generator with ancillary services," IET Renew.Power Gen., vol. 12, no. 7, pp. 797-805, May2018.https://doi.org/10.1049/iet-rpg.2017.0609 DOI: https://doi.org/10.1049/iet-rpg.2017.0609
W. Choi, W. Lee, D. Han and B. Sarlioglu, "New Configuration of Multifunctional Grid-Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality," IEEE Trans. Ind.Appl, vol. 54, no. 6, pp. 6374-6382, Nov.-Dec. 2018.https://doi.org/10.1109/TIA.2018.2861737 DOI: https://doi.org/10.1109/TIA.2018.2861737
Y. Yang, F. Blaabjerg, H.Wang and M. G. Simões, "Power control flexibilities for grid-connected multi-functional photovoltaic inverters," IET Renew. Power Gen., vol. 10, no. 4, pp. 504-513, April2016.https://doi.org/10.1049/iet-rpg.2015.0133 DOI: https://doi.org/10.1049/iet-rpg.2015.0133
F. P. Marafão, D. I. Brandão, A. Costabeber and H. K. M. Paredes, "Multi-taskcontrol strategy for grid-tied inverters based on conservative power theory," IET Renew.Power Gen., vol. 9, no. 2, pp. 154-165, 2015.https://doi.org/10.1049/iet-rpg.2014.0065 DOI: https://doi.org/10.1049/iet-rpg.2014.0065
R. Bhoyar and S. Bharatkar, "Potential of MicroSources, Renewable Energy sources and Application of Microgrids in Rural areas of Maharashtra State India," Energy Procedia, vol. 14, pp. 2012-2018, 2012.https://doi.org/10.1016/j.egypro.2011.12.1202 DOI: https://doi.org/10.1016/j.egypro.2011.12.1202
X. Zhao-xia, Z. Mingke, H. Yu, J. M. Guerrero and J. C. Vasquez, "Coordinated Primary and Secondary Frequency Support Between Microgrid and Weak Grid,"IEEE Trans. Sust.Energy, vol. 10, no. 4, Oct. 2019.https://doi.org/10.1109/TSTE.2018.2869904 DOI: https://doi.org/10.1109/TSTE.2018.2869904
D. E. Olivareset al, "Trends in Microgrid Control," IEEE Trans. Smart Grid, vol. 5, pp. 1905IEEE Trans. Smart Grid, vol. 5, pp. 1905IEEE Trans. Smart Grid-1919, July 2014.
D. I. Brandao, P. Tenti, T. Caldognetto, and S. Buso, "Control of Utility Interfaces in Low-voltage Microgrids," Brazilian J. Power Electron. -SOBRAEP, vol. 20, no. 4, pp. 373-382, Nov. 2015.https://doi.org/10.18618/REP.2015.4.2556 DOI: https://doi.org/10.18618/REP.2015.4.2556
R. Palma-Behnkeet al, "A Microgrid Energy Management System Based on the Rolling Horizon Strategy," IEEE Trans. Smart Grid, vol. 4, no. 2, pp. IEEE Trans. Smart Grid, vol. 4, no. 2, pp. IEEE Trans. Smart Grid996-1006, 2013.[16]J. M. Carrascoet al, "Power Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey," IEEE Trans. Ind. Electron., vol. 53, pp. 1002-1016, June 2006.https://doi.org/10.1109/TSG.2012.2231440 DOI: https://doi.org/10.1109/TSG.2012.2231440
M. Amin, Q. Zhong, "Resynchronization of Distributed Generation Based on the Universal Droop Controller for Seamless Transfer Between Operation Modes," IEEE Trans. Ind. Electron., vol. 67, pp. 7574-7582, Sep. 2020.https://doi.org/10.1109/TIE.2019.2942556 DOI: https://doi.org/10.1109/TIE.2019.2942556
G.-H. Kim et al, "A Novel Three-phase Four-leg Inverter Based Load Unbalance Compensator for Stand-alone Microgrid," Elec. Power and Energy Syst., vol. 65, p. 70-75, Feb.2015.https://doi.org/10.1016/j.ijepes.2014.09.035 DOI: https://doi.org/10.1016/j.ijepes.2014.09.035
F. Z. Penget al, "Harmonic and Reactive Power Compensation Based on the Generalized Instantaneous Reactive Power Theory for Three-Phase Four-Wire Systems," IEEE Trans. Power Electron., vol. 13, Nov.1998.https://doi.org/10.1109/63.728344 DOI: https://doi.org/10.1109/63.728344
H. Akagi, Y. Kanazawa, A. Nabae, "Instantaneous Reactive Power Compensator Comprising Switching Devices Without Energy Storage Components," IEEE Trans. Ind. Appl., vol. IA-20, pp. 625-630, May 1984.https://doi.org/10.1109/TIA.1984.4504460 DOI: https://doi.org/10.1109/TIA.1984.4504460
E. H. Watanabeet al, "Instantaneous p-q Power Theory for Control of Compensators in Micro-grids," in Proc. 2010 International School on Nonsinusoidal Currents and Compensation, Lagow, pp. 17-26, 2010.https://doi.org/10.1109/ISNCC.2010.5524475 DOI: https://doi.org/10.1109/ISNCC.2010.5524475
Y. Sun et al, "Microgrid Tie-line Power Fluctuation Mit igat ion with Virtual Energy Storage," The Journal of Engineering, vol. 2019, pp. 1001-1004, April 2019.https://doi.org/10.1049/joe.2018.8553 DOI: https://doi.org/10.1049/joe.2018.8553
Z. Miao, L. Fan, D. Osborn, S. Yuvarajan, "Control of DFIG-Based Wind Generation to Improve Interarea Oscillation Damping," IEEE Trans. Energy Conv., vol. 24, pp. 415-422, June 2009.https://doi.org/10.1109/TEC.2009.2015980 DOI: https://doi.org/10.1109/TEC.2009.2015980
L. Fan, Z. Miao, "An Explanation of Oscillations Due to Wind Power Plants Weak Grid Interconnection," IEEE Trans. Sust. Energy, vol. 9, pp. 488-490, January 2018.https://doi.org/10.1109/TSTE.2017.2713980 DOI: https://doi.org/10.1109/TSTE.2017.2713980
D. Gautam, V. Vittal, R. Ayyanar, T. Harbour, "Supplementary Control for Damping Power Oscillations Due to Increased Penetration of Doubly fed Induction Generators in Large Power Systems", in Proc. IEEE/PES Power Sys. Conf. Exp., PSCE 2011.https://doi.org/10.1109/PSCE.2011.5772501 DOI: https://doi.org/10.1109/PSCE.2011.5772501
J. P. Bonaldo, H. K. M. Paredes, J. A. Pomilio, "Control of Single-Phase Power Converters Connected to Low-Voltage Distorted Power Systems with Variable Compensation Objectives", IEEE Trans.Power Electron., vol. 31, pp. 2039-2052, March 2016.https://doi.org/10.1109/TPEL.2015.2440211 DOI: https://doi.org/10.1109/TPEL.2015.2440211
J. He, Y. W. Li, F. Blaabjerg, X. Wang, "Active Harmonic Filtering Using Current-controlled, Grid-connected DG Units with Closed-loop Power Control," IEEE Trans. Power Electron., vol. 29, pp. 642-653, February 2014.https://doi.org/10.1109/TPEL.2013.2255895 DOI: https://doi.org/10.1109/TPEL.2013.2255895
J. He, Y. W. Li, M. S. Munir, "A Flexible Harmonic Control Approach Through Voltage Controlled DG-grid Interfacing Converters," IEEE Trans. Ind. Electron., vol. 59, pp. 444-455, January 2012.https://doi.org/10.1109/TIE.2011.2141098 DOI: https://doi.org/10.1109/TIE.2011.2141098
F. Z. Peng, "Harmonic Sources and Filtering Approaches," IEEE Ind. Appl. Mag.,vol. 7, pp. 18-25, July 2001.https://doi.org/10.1109/2943.930987 DOI: https://doi.org/10.1109/2943.930987
P. Tenti, H. K. Morales-Paredes, P. Mattavelli, "Conservative Power Theory, a Framework to Approach Control and Accountability Issues in Smart Microgrids," IEEE Trans. Power Electron., vol. 26, pp. 664-673, March 2011.https://doi.org/10.1109/TPEL.2010.2093153 DOI: https://doi.org/10.1109/TPEL.2010.2093153
D. Dong et all, "Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions," IEEE Trans. Ind. Electron., vol. 62, no 1, pp. 310-321, Jan. 2015.https://doi.org/10.1109/TIE.2014.2334665 DOI: https://doi.org/10.1109/TIE.2014.2334665
H. K. Morales-Paredes, J. A. Olímpio Filho,A. M. S. Alonso, J. P. Bonaldo,F. P. Marafão, M. G. Simões. 3-Phase Multi-Functional Grid-Tied Inverter for Compensation of Oscillating Instantaneous Power. In: 15th Brazilian Power Electron.Conf.Confand 5th IEEE South.Power Electron.Conf, 2019, Santos. Proceedings of COBEP/SPEC 2019,p. 1-6, 2019.
P. Tenti, P. Mattavelli and H. K. Morales, "Conservative Power Theory, Sequence Components and Accountability in Smart Grids," Prz. Elektrotech, vol. 6, pp. 30-37, 2010.https://doi.org/10.1109/ISNCC.2010.5524473 DOI: https://doi.org/10.1109/ISNCC.2010.5524473
F. P. Marafão, D. I. Brandão, F. A. S. Gonçalves, and H. K. Morales Paredes, "Decoupled Reference Generator for Shunt Active Filters Using the Conservative Power Theory," J. Control Autom. Electr. Syst, pp. 522-534, August 2013.https://doi.org/10.1007/s40313-013-0043-0 DOI: https://doi.org/10.1007/s40313-013-0043-0
D. I. Brandão, H. K. Morales-Paredes, A. Costabeber, F. P. Marafão, "Flexible Active Compensation Based on Load Conformity Factors Applied to Nonon Load Conformity Factors Applied to non Load Conf sinusoidal and Asymmetrical Voltage Conditions", IET Power Electron., vol. pp. 1-9, February 2015. https://doi.org/10.1049/iet-pel.2015.0086 DOI: https://doi.org/10.1049/iet-pel.2015.0086
H. Akagi, E. H. Watanabe and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, New Jersey, 2007.https://doi.org/10.1049/iet-pel.2015.0086 DOI: https://doi.org/10.1002/0470118938
A. V. Oppenheimer and R. W. Schafer, "Discrete-Time signal processing". Prentice Hall International Inc. 1989.
Yi Tang, P.C. Loh, Peng Wang, F.H. Choo, F. Gao. "Generalized Design of High-Performance Shunt Active Power Filter with Output LCL Filt er", IEEE Trans. Ind. Electron., vol.59, March 2012.https://doi.org/10.1109/TIE.2011.2167117 DOI: https://doi.org/10.1109/TIE.2011.2167117
M. G. Villalva, J. R. Gazoli, E. R. Filho, "Modeling and Control of a Three-phase Isolated Grid-connected Converter fed by a Photovoltaic Array," in Proc. Brazilian Power Electron.Conf, Dec. 2009. Eletrôn. Potên., Fortaleza, v. 25, n. 3, p. 261-271, jul./set. 2020271 Eletrôn. Potên., Fortaleza, v. 25, n. 3, p. 261-271, jul./set. 2020271
S. Buso, P. Mattavelli, "Digital Control in Power Electronics", First edition, Morgan & Claypoo, United States of America, 2006.https://doi.org/10.1007/978-3-031-02495-5 DOI: https://doi.org/10.1007/978-3-031-02495-5
R. Teodorescu, F. Blaabjerg, M. Liserre, P. C. Loh, "Proportional-Resonant Controllers and Filters for Grid-connected Voltage-source Converters," Electric Power Appl., IEE Proceedings, vol. 153, no.5, pp.750-762, September 2006.https://doi.org/10.1049/ip-epa:20060008 DOI: https://doi.org/10.1049/ip-epa:20060008
ANEEL, "Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional -PRODIST: Módulo 8 -Qualidade de Energia", Jan. 2018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Eletrônica de Potência
This work is licensed under a Creative Commons Attribution 4.0 International License.