Seleção Da Tensão De Bloqueio Ótima De Igbts Para Inversores De Frequência Baseados Em Conversor Modular Multinível

Authors

  • Paulo Roberto Matias Junior Programa de Pós-graduação em Engenharia Elétrica, CEFET - MG, Belo Horizonte, MG, Brasil
  • Joao Victor Matos Farias Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
  • Allan Fagner Cupertino Departamento de Engenharia de Materiais, CEFET - MG, Belo Horizonte, MG, Brasil
  • Gabriel Alves Mendonça Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
  • Marcelo Martins Stopa Programa de Pós-graduação em Engenharia Elétrica, CEFET - MG, Belo Horizonte, MG, Brasil
  • Heverton Augusto Pereira Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Viçosa, MG, Brasil

DOI:

https://doi.org/10.18618/REP.2020.4.0033

Keywords:

Acionamentos elétricos

Abstract

O conversor modular multinível (CMM) é uma topologia inerentemente tolerante a falhas e uma opção interessante para acionamentos elétricos de média tensão, especialmente quando cargas quadráticas são empregadas. Para selecionar a melhor tensão de bloqueio de IGBTs, este trabalho apresenta uma metodologia de projeto e comparação de CMMs considerando a redundância necessária para atingir o requisito de confiabilidade. São comparados projetos utilizando IGBTs com tensão de bloqueio na faixa de 1,7 a 6,5 kV. A seleção é baseada em métricas de complexidade, volume, área de silício e eficiência do conversor. O uso da metodologia é exemplificado em um soprador industrial acionado por um motor de indução trifásico de 13,8 kV - 16 MW. Medições da velocidade de operação do acionamento e temperatura ambiente desse processo em uma indústria siderúrgica localizada no sudeste brasileiro são utilizadas na avaliação das perdas do conversor. Os resultados evidenciam que a classe de tensão ótima de IGBTs depende do tipo de redundância empregado. Além disso, apesar do aumento de complexidade e do número de componentes, os projetos baseados em IGBTs com menor tensão de bloqueio (1,7 e 3,3 kV) se mostram mais vantajosos devido a menores perdas, volume e área de silício.

Downloads

Download data is not yet available.

Author Biographies

Paulo Roberto Matias Junior, Programa de Pós-graduação em Engenharia Elétrica, CEFET - MG, Belo Horizonte, MG, Brasil

, possui graduação em Engenharia Elétrica (2018) pela Universidade Federal de Viçosa (UFV). Atualmente é mestrando pelo Programa de Pós-graduação em Engenharia Elétrica Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG). Seus principais interesses de pesquisa incluem conversores modulares multinível, acionamentos elétricos e confiabilidade de conversores de potência.

Joao Victor Matos Farias, Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

, possui graduação em Engenharia Elétrica (2018) pela Universidade Federal de Viçosa (UFV) e mestrado (2019) em Engenharia Elétrica pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG). Atualmente e doutorando pelo Programa de Pós-graduação em Engenharia Elétrica da Universidade Federal de Minas Gerais (UFMG). Seus principais interesses de pesquisa incluem conversores modulares multinível, sistemas de corrente contínua em alta tensão, compensadores síncronos estáticos, acionamentos elétricos e confiabilidade de conversores de potência.

Allan Fagner Cupertino, Departamento de Engenharia de Materiais, CEFET - MG, Belo Horizonte, MG, Brasil

, possui graduação em Engenharia Elétrica (2013) pela Universidade Federal de Viçosa (UFV), mestrado (2015) e doutorado (2019) em Engenharia Elétrica pela Universidade Federal de Minas Gerais (UFMG). Realizou doutorado sanduíche na Aalborg University, Dinamarca. Desde 2014 e professor no Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), atuando na área de maquinas elétricas e eletrônica de potência. Seus principais interesses de pesquisa incluem conversores modulares multinível e suas aplicações, energia solar fotovoltaica, sistemas de armazenamento de energia por baterias e confiabilidade de conversores eletrônicos.

Gabriel Alves Mendonça, Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

, possui graduação (2008) e mestrado (2012) em Engenharia Elétrica pela Universidade Federal de Minas Gerais (UFMG). Atualmente e doutorando pelo Programa de Pós-graduação em Engenharia Elétrica da Universidade Federal de Minas Gerais (UFMG). Seus principais interesses de pesquisa incluem sistemas elétricos de potência, eletrônica de potência, maquinas elétricas e acionamentos elétricos.

Marcelo Martins Stopa, Programa de Pós-graduação em Engenharia Elétrica, CEFET - MG, Belo Horizonte, MG, Brasil

, possui graduação (1994), mestrado (1997) e doutorado (2011) em Engenharia Elétrica pela Universidade Federal de Minas Gerais (UFMG). Desde 1997 e professor no Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), atuando na área de maquinas elétricas, acionamentos elétricos e eletrônica de potência. Seus principais interesses de pesquisa incluem maquinas elétricas, acionamentos elétricos, eletrônica de potência e conversores eletrônicos.

Heverton Augusto Pereira, Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Viçosa, MG, Brasil

, possui graduação em Engenharia Elétrica (2007) pela Universidade Federal de Viçosa (UFV), mestrado em Engenharia Elétrica (2009) pela Universidade de Campinas (UNICAMP) e doutorado em Engenharia Elétrica (2015) pela Universidade Federal de Minas Gerais (UFMG). Realizou doutorado sanduíche (2014) na Aalborg University, Dinamarca. Desde 2009 e professor na Universidade Federal de Viçosa. Seus principais interesses de pesquisa incluem conversores conectados à rede para sistemas de energia fotovoltaica e eólica e sistemas de transmissão de alta tensão baseados em MMC.

References

S. Kouro, J. Rodriguez, B. Wu, S. Bernet, M. Perez, “Powering the Future of Industry: High-PowerAdjustable Speed Drive Topologies",IEEE Ind App Mag, vol. 18, no. 4, pp. 26-39, July 2012.https://doi.org/10.1109/MIAS.2012.2192231 DOI: https://doi.org/10.1109/MIAS.2012.2192231

Y. S. Kumar, G. Poddar, "Control of Medium-Voltage Motor Drive for Wide Speed Range Using Modular Multilevel Converter", IEEE Trans Ind Electron, Vol. 64, no. 4, pp. 2742-2749, April 2017.https://doi.org/10.1109/TIE.2016.2631118 DOI: https://doi.org/10.1109/TIE.2016.2631118

A. Antonopoulos, L. ̈Angquist, S. Norrga, K. Ilves,L. Harnefors, H. Nee, "Modular Multilevel Converter Motor Drives With Constant Torque From Zero to Nominal Speed", IEEE Trans Ind Appl, vol. 50, no. 3,pp. 1982-1993, May 2014.https://doi.org/10.1109/TIA.2013.2286217 DOI: https://doi.org/10.1109/TIA.2013.2286217

M. Hagiwara, I. Hasegawa, H. Akagi, "Start-Up and Low-Speed Operation of an Electric Motor Driven by a Modular Multilevel Cascade Inverter", IEEE TransInd Appl, vol. 49, pp. 1556-1565, July 2013.https://doi.org/10.1109/TIA.2013.2256331 DOI: https://doi.org/10.1109/TIA.2013.2256331

H. Akagi, "Multilevel Converters: Fundamental Circuits and Systems", Proc of the IEEE, vol. 105,no. 11, pp. 2048-2065, Nov 2017.https://doi.org/10.1109/JPROC.2017.2682105 DOI: https://doi.org/10.1109/JPROC.2017.2682105

B. Wu, M. Narimani, High-Power Converters and AC Drives - Introduction, IEEE, 2017. https://doi.org/10.1002/9781119156079 DOI: https://doi.org/10.1002/9781119156079

Y. S. Kumar, G. Poddar, "Medium-Voltage Vector Control Induction Motor Drive at Zero Frequency Using Modular Multilevel Converter", IEEE Trans Ind Electron, vol. 65, no. 1, pp. 125-132, Jan 2018.https://doi.org/10.1109/TIE.2017.2721927 DOI: https://doi.org/10.1109/TIE.2017.2721927

J. E. Huber, J. W. Kolar, "Optimum Number of Cascaded Cells for High-Power Medium Voltage ACDC Converters", IEEE J of Emerging and Select Topics in Power Electron, vol. 5, pp. 213-232, March 2017.https://doi.org/10.1109/JESTPE.2016.2605702 DOI: https://doi.org/10.1109/JESTPE.2016.2605702

M. R. Islam, Y. Guo, J. Zhu, "A High-Frequency Link Multilevel Cascaded Medium-Voltage Converter for Direct Grid Integration of Renewable Energy Systems",IEEE Trans Power Electron, vol. 29, no. 8,pp. 4167-4182, Aug 2014.https://doi.org/10.1109/TPEL.2013.2290313 DOI: https://doi.org/10.1109/TPEL.2013.2290313

H. A. B. Siddique, A. R. Lakshminarasimhan, C. I.Odeh, R. W. De Doncker, "Comparison of modular multilevel and neutral-point-clamped converters for medium-voltage grid-connected applications”, in Int.Conf. on Renewable Energy Research and Appl., pp.297-304, Nov 2016.

A. Marzoughi, R. Burgos, D. Boroyevich, Y. Xue,"Design and Comparison of Cascaded H-Bridge, Modular Multilevel Converter, and 5-L Active Neutral Point Clamped Topologies for Motor Drive Applications", IEEE Trans Ind Appl, vol. 54, no. 2, pp.1404-1413, March 2018.https://doi.org/10.1109/TIA.2017.2767538 DOI: https://doi.org/10.1109/TIA.2017.2767538

F. Beltrame, H. C. Sartori, J. R. Pinheiro, "Energetic Efficiency Improvement in Photovoltaic Energy Systems Through a Design Methodology of Static Converter Control Autom Electr Syst, vol. 27, no. 1,pp. 82-92, February 2016. https://doi.org/10.1007/s40313-015-0215-1 DOI: https://doi.org/10.1007/s40313-015-0215-1

P. R. M. Junior, J. V. M. Farias, A. F. Cupertino, Júnior, J. V. M. Farias, A. F. Cupertino, ́G. A. Mendonça, M. M. Stopa, H. A. Pereira, “Selection of the Number of Levels of a Modular Multilevel Converter for an Electric Drive”, in 2019COBEP/SPEC, pp. 1-6, 2019.https://doi.org/10.1109/COBEP/SPEC44138.2019.9065903 DOI: https://doi.org/10.1109/COBEP/SPEC44138.2019.9065903

B. Gemmell, J. Dorn, D. Retzmann, D. Soerangr,"Prospects of multilevel VSC technologies for power transmission",in IEEE/PES Transmission and Distrib.Conf. and Expo., pp. 1-16, April 2008.https://doi.org/10.1109/TDC.2008.4517192 DOI: https://doi.org/10.1109/TDC.2008.4517192

L. Harnefors, A. Antonopoulos, S. Norrga,L. Angquist, H. Nee, "Dynamic Analysis of modular Multilevel Converters", IEEE Trans Ind Electron, Vol. 60, no. 7, pp. 2526-2537, July 2013.https://doi.org/10.1109/TIE.2012.2194974 DOI: https://doi.org/10.1109/TIE.2012.2194974

D. W. Novotny, T. Lipo,Vector Control and Dynamics of AC Drives, Clarendon Press, 1996.https://doi.org/10.1093/oso/9780198564393.001.0001 DOI: https://doi.org/10.1093/oso/9780198564393.001.0001

M. Hagiwara, H. Akagi, "Control and Experiment of Pulse width-Modulated Modular Multilevel Converters", IEEE Trans Power Electron, vol. 24,no. 7, pp. 1737-1746, July 2009.https://doi.org/10.1109/TPEL.2009.2014236 DOI: https://doi.org/10.1109/TPEL.2009.2014236

ABB Switzerland Ltd Semiconductors, Voltage ratings of high power semiconductors, 8 2013, application note 5SYA 2051.

K. Sharifabadi, L. Harnefors, H. Nee, S. Norrga,R. Teodorescu, Main-Circuit Design, pp. 60-132,2016. DOI: https://doi.org/10.1002/9781118851555.ch2

M. R. Islam, Y. Guo, J. Zhu, Power Converter Topologies for Grid-Integrated, pp. 51-107, 2014.https://doi.org/10.1007/978-3-662-44529-7_3 DOI: https://doi.org/10.1007/978-3-662-44529-7_3

J. Z. Md. Rabiul Islam, Youguang Guo, Power Converters for Medium Voltage Networks, Springer-Verlag Berlin Heidelberg, 2014.

K. Ilves, S. Norrga, L. Harnefors, H. Nee, "On Energy Storage Requirements in Modular Multilevel Converters", IEEE Trans Power Electron, vol. 29,no. 1, pp. 77-88, Jan 2014.https://doi.org/10.1109/TPEL.2013.2254129 DOI: https://doi.org/10.1109/TPEL.2013.2254129

A. Marzoughi, R. Burgos, D. Boroyevich,"Investigating Impact of Emerging Medium-VoltageSiC MOSFETs on Medium-Voltage High-Power Industrial Motor Drives", IEEE J of Emerging and Select Topics in Power Electron, vol. 7, no. 2, pp.1371-1387, June 2019. https://doi.org/10.1109/JESTPE.2018.2844376 DOI: https://doi.org/10.1109/JESTPE.2018.2844376

Qingrui Tu, Zheng Xu, H. Huang, Jing Zhang,"Parameter design principle of the arm inductor in modular multilevel converter based HVDC",in 2010Int. Conf. on Power Syst. Technology, pp. 1-6, 2010.https://doi.org/10.1109/POWERCON.2010.5666416 DOI: https://doi.org/10.1109/POWERCON.2010.5666416

K. Sharifabadi, L. Harnefors, H. Nee, S. Norrga,R. Teodorescu, Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems - Dynamics and Control. 133-213, 2016.https://doi.org/10.1002/9781118851555 DOI: https://doi.org/10.1002/9781118851555.ch3

Y. Li, E. A. Jones, F. Wang, "Circulating Current Suppressing Controls Impact on Arm Inductance Selection for Modular Multilevel Converter",IEEEJ of Emerging and Select Topics in Power Electron, Vol. 5, no. 1, pp. 182-188, Mar 2017.https://doi.org/10.1109/JESTPE.2016.2617865 DOI: https://doi.org/10.1109/JESTPE.2016.2617865

H. Wang, K. Ma, F. Blaabjerg, "Design for reliability of power electronic systems”, in IECON 2012, pp. 33-44, 2012.https://doi.org/10.1109/IECON.2012.6388833 DOI: https://doi.org/10.1109/IECON.2012.6388833

J. V. M. Farias,A. F. Cupertino,V. de Nazareth Ferreira, H. A. Pereira, S. I. Seleme,"Redundancy design for modular multilevel converter based STATCO Ms",Microelectronics Rel, vol. 100-101, p. 113471, 2019, 30th European Symp. on Rel. of Electron. Devices, Failure Physics and Analysis.https://doi.org/10.1016/j.microrel.2019.113471

P. Tu, S. Yang, P. Wang, "Reliability and Cost based Redundancy Design for Modular MultilevelConverter",IEEE Trans Ind Electron, pp. 1-1, 2018. https://doi.org/10.1109/TIE.2018.2793263 DOI: https://doi.org/10.1109/TIE.2018.2793263

J. Guo, X. Wang, J. Liang, H. Pang, J. Gonçalves,"Reliability Modeling and Evaluation of MMCs Under Different Redundancy Schemes",IEEE Trans Power Del, vol. 33, no. 5, pp. 2087-2096, Oct 2018.https://doi.org/10.1109/TPWRD.2017.2715664 DOI: https://doi.org/10.1109/TPWRD.2017.2715664

Y. Chen, X. Yu, Y. Li, "A Failure Mechanism Cumulative Model for Reliability Evaluation of a k-Out-of-n System With Load Sharing Effect",IEEE Access, vol. 7, pp. 2210-2222, July 2019.https://doi.org/10.1109/ACCESS.2018.2852730 DOI: https://doi.org/10.1109/ACCESS.2018.2852730

J. Pedra, F. Corcoles, "Estimation of induction motor double-cage model parameters from manufacturer data", IEEE Trans Energy Convers, vol. 19, no. 2, pp.310-317, June 2004.https://doi.org/10.1109/TEC.2003.822314 DOI: https://doi.org/10.1109/TEC.2003.822314

M. R. Islam, Y. Guo, J. Zhu, "A Multilevel Medium-Voltage Inverter for Step-Up-Transformer-Less Grid Connection of Photovoltaic Power Plants", IEEE J of Photovoltaics, vol. 4, May 2014.https://doi.org/10.1109/JPHOTOV.2014.2310295 DOI: https://doi.org/10.1109/JPHOTOV.2014.2310295

J. V. M. Farias, A. F. Cupertino, H. A. Pereira, S. I. S.Junior, R. Teodorescu, "On the Redundancy Strategiesof Modular Multilevel Converters",IEEE Trans on Power Del, vol. 33, April 2018.https://doi.org/10.1109/TPWRD.2017.2713394 DOI: https://doi.org/10.1109/TPWRD.2017.2713394

J. W. Kolar, J. Biela, S. Waffler, T. Friedli,U. Badstuebner, "Performance trends and limitationsof power electronic systems”, in 2010 6th Int. Conf. On Integr. Power Electron. Syst., pp. 1-20, 2010.

J. V. M. Farias,Reliability-Oriented Redundancy Design for Modular Multilevel Cascaded Converter-based STATCOMs, Dissertação de Mestrado, CEFET- ̃ao de Mestrado, CEFET- ̃MG, Brasil, 2019. DOI: https://doi.org/10.1016/j.microrel.2019.113471

H. Wang,M. Liserre,F. Blaabjerg,P. de Place Rimmen, J. B. Jacobsen, T. Kvisgaard,J. Landkildehus, "Transitioning to Physics-of-Failureas a Reliability Driver in Power Electronics",IEEEJ of Emerging and Select Topics in Power Electron, Vol. 2, no. 1, pp. 97-114, March 2014.https://doi.org/10.1109/JESTPE.2013.2290282 DOI: https://doi.org/10.1109/JESTPE.2013.2290282

J. Falck, C. Felgemacher, A. Rojko, M. Liserre,P. Zacharias, "Reliability of Power Electronic Systems: An Industry Perspective",IEEE Ind Electron Magazine, vol. 12, no. 2, pp. 24-35, June 2018.https://doi.org/10.1109/MIE.2018.2825481 DOI: https://doi.org/10.1109/MIE.2018.2825481

Published

2020-12-31

How to Cite

[1]
P. Roberto Matias Junior, J. V. Matos Farias, A. Fagner Cupertino, G. Alves Mendonça, M. Martins Stopa, and H. Augusto Pereira, “Seleção Da Tensão De Bloqueio Ótima De Igbts Para Inversores De Frequência Baseados Em Conversor Modular Multinível”, Eletrônica de Potência, vol. 25, no. 4, pp. 405–414, Dec. 2020.

Issue

Section

Original Papers