Influência do Método de Sincronismo na Estabilidade de Conversores Trifásicos Conectados à Rede

Authors

  • André Nicolini Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil
  • Fernanda Carnielutti Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil
  • Jorge Massing Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil
  • Humberto Pinheiro Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil

DOI:

https://doi.org/10.18618/REP.2019.1.0003

Keywords:

Conversor trifásico, Critério generalizado de Nyquist, estabilidade, Linearização, PLL

Abstract

Este artigo realiza a análise da influência do sistema de sincronismo sobre a estabilidade de conversores trifásicos conectados à rede elétrica combinando equações de espaço de estado e funções de transferência matriciais. Fundamentado no método das impedâncias, divide-se o sistema de geração em dois elementos representados por funções de transferência matriciais em eixos síncronos dq. O primeiro representa a admitância equivalente do conversor, que é obtido ao considerá-lo conectado à uma rede ideal. Neste caso, são considerados as dinâmicas do phase-looked loop (PLL) e do controlador de corrente. O segundo representa a impedância equivalente da rede. O modelo não-linear obtido foi, então, linearizado por perturbações de pequenos sinais. A interconexão entre os dois elementos é realizada em matrizes função de transferência e representada na forma de digrama de blocos. A análise da estabilidade do sistema se dá pela utilização do critério generalizado de nyquist (GNC). Além disso, o método dos autovalores é utilizado no sistema completo em espaço de estados para elucidar a escolha dos ganhos do PLL. A fim de verificar a análise teórica, resultados de simulação são apresentados, mostrando uma boa correção com a análise matemática no domínio da frequência.

Downloads

Download data is not yet available.

Author Biographies

André Nicolini, Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil

nascido em 28/05/1989 em Venâncio Aires, RS, é engenheiro eletricista (2015) pela Universidade Federal de Santa Maria, onde também recebeu o título de mestre em 2017. Atualmente é doutorando do programa de pós-graduação da UFSM. Suas áreas de interesse são: eletrônica de potência, qualidade do processamento da energia elétrica, modulação para conversores estáticos, energias renováveis. É membro da SOBRAEP e da IEEE.

Fernanda Carnielutti, Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil

nasceu em Santa Maria, RS, Brasil, em 1987. Recebeu os títulos de Engenheira Eletricista (2010), Mestre (2012) e Doutora (2015) em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil. Trabalha no Grupo de Eletrônica de Potência e Controle (GEPOC) na UFSM desde 2005 e é professora na UFSM desde 2016. Seus interesses de pesquisa incluem modulação e controle de conversores multiníveis, controle aplicado à eletrônica de potência e eletrônica de potência para energias renováveis.

Jorge Massing, Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil

recebeu os títulos de Engenheiro Eletricista, Mestre e Doutor pela Universidade Federal de Santa Maria (UFSM), Santa Maria, Brasil, nos anos de 2006, 2008 e 2013, respectivamente. Ele atualmente é Professor Adjunto do Departamento de Eletromecânica e Sistemas de Potência da UFSM. Ele desenvolve pesquisa junto ao Grupo de Eletrônica de Potência e Controle (GEPOC). Suas áreas de interesse na pesquisa são: modelagem e controle de conversores estáticos, aplicação de técnicas de controle digital em eletrônica de potência, controle e estabilidade de conversores conectatos à rede para aplicação em energias renováveis e geração distribuída e plataformas de simulação de conversores em tempo real. Ele é membro da IEEE, participando das seguintes sociedades: IEEE Power Electornics Society (PELS), IEEE Power & Energy Society (PES), IEEE Industrial Electronics Society (IES) e IEEE Industry Applications Society (IAS).

Humberto Pinheiro, Universidade Federal de Santa Maria - UFSM, Santa Maria – RS, Brasil

é engenheiro eletricista pela Universidade Federal Santa Maria (UFSM), Santa Maria, Brasil, em 1983, mestre em engenharia pela Universidade Federal de Santa Catarina, Florianópolis, Brasil, em 1987 e graduado Ph.D. pela Concordia University, Montreal, Canadá, em 1999. De 1987 a 1999, ele foi engenheiro pesquisador de uma companhia brasileira de UPS e também foi professor na Pontifícia Universidade Católica do Rio Grande do Sul, onde lecionou a disciplina de eletrônica de potência. Desde 1991, ele está na UFSM. Suas áreas de interesse incluem modulação e controle de conversores estáticos e acionamentos para sistemas de conversão eólica. Dr. Humberto Pinheiro é membro das IEEE Industrial Electronics e Power Electronics Societies

References

F. Blaabjerg, R. Teodorescu, M. Liserre, A. V. Timbus, "Overview of Control and Grid Synchronization for Distributed Power Generation Systems", IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398-1409, Oct 2006.https://doi.org/10.1109/TIE.2006.881997 DOI: https://doi.org/10.1109/TIE.2006.881997

S.-K. Chung, "A phase tracking system for three phase utility interface inverters", IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431-438, May2000.https://doi.org/10.1109/63.844502 DOI: https://doi.org/10.1109/63.844502

B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, Z. Shen, "Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters", IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 675-687, Jan 2016.https://doi.org/10.1109/TPEL.2015.2398192 DOI: https://doi.org/10.1109/TPEL.2015.2398192

C. Zhang, X. Cai, A. Rygg, M. Molinas, "Sequence Domain SISO Equivalent Models of a Grid-tied Voltage Source Converter System for Small-Signa Stability Analysis", IEEE Transactions on Energy Conversion, vol. PP, no. 99, pp. 1-1, 2017.https://doi.org/10.1109/TEC.2017.2766217 DOI: https://doi.org/10.1109/TEC.2017.2766217

J. Sun, "Small-Signal Methods for AC Distributed Power Systems 2013;A Review", IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2545-2554,Nov 2009.https://doi.org/10.1109/TPEL.2009.2029859 DOI: https://doi.org/10.1109/TPEL.2009.2029859

J. Sun, "Impedance-Based Stability Criterion for Grid-Connected Inverters", IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075-3078, Nov 2011.https://doi.org/10.1109/TPEL.2011.2136439 DOI: https://doi.org/10.1109/TPEL.2011.2136439

M. Céspedes, J. Sun, "Modeling and mitigation of harmonic resonance between wind turbines and the grid", in 2011 IEEE Energy Conversion Congress and Exposition, pp. 2109-2116, Sept 2011.https://doi.org/10.1109/ECCE.2011.6064047 DOI: https://doi.org/10.1109/ECCE.2011.6064047

C. Zhang, X. Wang, F. Blaabjerg, "Analysis ofphase-locked loop influence on the stability of single-phase grid-connected inverter",in 2015 IEEE 6thInternational Symposium on Power Electronics forDistributed Generation Systems (PEDG), pp. 1-8,June 2015.https://doi.org/10.1109/PEDG.2015.7223089 DOI: https://doi.org/10.1109/PEDG.2015.7223089

J. Wang, J. Yao, H. Hu, Y. Xing, X. He, K. Sun, “Impedance-based stability analysis of single-phase inverter connected to weak grid with voltage feed-forward control”, in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2182-2186, March 2016.https://doi.org/10.1109/APEC.2016.7468169 DOI: https://doi.org/10.1109/APEC.2016.7468169

X. Zhang, X. Danni, F. Zhichao, G. Wang, D. Xu, "An Improved Feedforward Control Method Considering PLL Dynamics to Improve Weak Grid Stability of Grid-Connected Inverters", IEEE Transactions on Industry Applications, pp. 1-1, 2018.https://doi.org/10.1109/TIA.2018.2811718 DOI: https://doi.org/10.1109/TIA.2018.2811718

Y. Yang, X. Du, G. Wang, X. Zou, P. Sun, H. M. Tai,Y. Ji, "A q-axis voltage feedforward control method to improve the stability of VSI in a weak grid",inIECON2017-43rdAnnual Conference of the IEEE Industrial Electronics Society, pp. 7897-7902, Oct 2017.https://doi.org/10.1109/IECON.2017.8217384 DOI: https://doi.org/10.1109/IECON.2017.8217384

X. Wang, L. Harnefors, F. Blaabjerg, "Unified Impedance Model of Grid-Connected Voltage-Source Converters", IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1775-1787, Feb 2018.https://doi.org/10.1109/TPEL.2017.2684906 DOI: https://doi.org/10.1109/TPEL.2017.2684906

K. Ogata, Modern Control Engineering, 4th ed., Prentice Hall PTR, Upper Saddle River, NJ, USA,2001.

X. Feng, J. Liu, F. C. Lee, "Impedance specifications for stable DC distributed power systems", IEEE Transactions on Power Electronics, vol. 17, no. 2, pp.157-162, Mar 2002.https://doi.org/10.1109/63.988825 DOI: https://doi.org/10.1109/63.988825

M. Amin, M. Molinas, "Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods", IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 5014-5030, Sept 2017.https://doi.org/10.1109/TIAS.2017.2712692 DOI: https://doi.org/10.1109/TIA.2017.2712692

T. Roinila, T. Messo, E. Santi, "MIMO-Identification Techniques for Rapid Impedance-Based Stability Assessment of Three-Phase Systems in DQ Domain", IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4015-4022, May 2018.https://doi.org/10.1109/TPEL.2017.2714581 DOI: https://doi.org/10.1109/TPEL.2017.2714581

J. M. Maciejowski, Multivariable Feedback Design, Addison-Wesley, 1989

Published

2019-03-31

How to Cite

[1]
A. Nicolini, F. Carnielutti, J. Massing, and H. Pinheiro, “Influência do Método de Sincronismo na Estabilidade de Conversores Trifásicos Conectados à Rede”, Eletrônica de Potência, vol. 24, no. 1, pp. 8–17, Mar. 2019.

Issue

Section

Original Papers