High-Voltage Gain DC-DC Converter For Photovoltaic Applications In DC Nanogrids

Authors

  • Yury Pontes Federal University of Ceará (UFC), Sobral –CE, Brazil
  • Carlos Elmano de Alencar e Silva Federal University of Ceará (UFC), Sobral –CE, Brazil
  • Edilson Mineiro Sá Junior Federal Institute of Education, Science and Technology (IFCE), Sobral –CE, Brazil

DOI:

https://doi.org/10.18618/REP.2020.4.0021

Keywords:

DC Nanogrids, Grid Connected Converters, High step-up dc-dc converter, High Voltage Gain, photovoltaic

Abstract

Photovoltaic (PV) systems used in DC Nanogrids present prominent advantages associated with low maintenance need and operation costs. Owing to the low output voltage of the PV module, highly efficient high-voltage gain DC-DC converters are required for connection with the DC nanogrid. This work presents a novel DC-DC converter topology with current source characteristic for PV applications and current injection in DC nanogrids. The introduced converter uses coupled inductors and switched capacitors to achieve high voltage gain with low component count and without using extreme duty ratios. Besides, the main switch is turned on with nearly zero current, thus contributing to minimized switching losses. The qualitative and quantitative analyzes of the circuit are presented in detail and a prototype rated at 200 W is developed and evaluated in the laboratory. Experimental results demonstrate efficient renewable energy conversion, where the maximum efficiency is 96.8%.

Downloads

Download data is not yet available.

Author Biographies

Yury Pontes, Federal University of Ceará (UFC), Sobral –CE, Brazil

, born in 07/05/1992 in Fortaleza-CE, is an electrical engineer (2016) from Federal University of Ceará and master (2019) from Federal University of Ceará. He is currently a professor at National Industrial Training Service (SENAI). His areas of interest are: power electronics, electronic control systems and renewable energy

Carlos Elmano de Alencar e Silva, Federal University of Ceará (UFC), Sobral –CE, Brazil

, Graduated (2004), master's (2007) and doctorate (2012) in Electrical Engineering from the Federal University of Ceará. He is currently professor of undergraduate and master's courses in electrical engineering and computer engineering at UFC - Sobral. Has experience in the area of Electrical Engineering, with an emphasis on power electronics, acting mainly on the following themes: threephase rectifiers, power factor correction and wind energy conversion systems.

Edilson Mineiro Sá Junior, Federal Institute of Education, Science and Technology (IFCE), Sobral –CE, Brazil

, graduated in engineering electrical Engineering at the Federal University of Ceará (1999), Master in Electrical Engineering from Federal University of Ceará (2004) and doctorate from the Federal University of Santa Catarina (2010). He is currently an effective professor of Federal Institute of Education, Science and Technology Campus Sobral and regular professor of the Postgraduate Program in Electrical and Computer Engineering at Federal University of Ceará, Sobral. His areas of interest are: electronic ballasts, microcontrollers, LEDs for illumination, circuits for factor correction power and photovoltaic systems. He is a member of the Association Brazilian Power Electronics – SOBRAEP.

References

A. Sannino, G. Postiglione, M. H. J. Bollen, and S. Member, "Pterygonema_alatum.pdf," vol. 39, no. 5, pp. 1499-1507, 2003. https://doi.org/10.1109/TIA.2003.816517 DOI: https://doi.org/10.1109/TIA.2003.816517

S. I. Ganesan, D. Pattabiraman, R. K. Govindarajan, M. Rajan, and C. Nagamani, "Control Scheme for a Bidirectional Converter in a Self-Sustaining Low-Voltage DC Nanogrid," IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6317-6326, 2015. https://doi.org/10.1109/TIE.2015.2424192 DOI: https://doi.org/10.1109/TIE.2015.2424192

D. Salomonsson and A. Sannino, "Load modelling for steady-state and transient analysis of low-voltage DC systems," IET Electr. Power Appl., vol. 1, no. 5, p. 690, 2007. https://doi.org/10.1049/iet-epa:20060418 DOI: https://doi.org/10.1049/iet-epa:20060418

A. T. Elsayed, A. A. Mohamed, and O. A. Mohammed, "DC microgrids and distribution systems: An overview," Electr. Power Syst. Res., vol. 119, pp. 407-417, 2015. https://doi.org/10.1016/j.epsr.2014.10.017 DOI: https://doi.org/10.1016/j.epsr.2014.10.017

D. Burmester, R. Rayudu, W. Seah, and D. Akinyele, "A review of nanogrid topologies and technologies," Renew. Sustain. Energy Rev., vol. 67, pp. 760-775, 2017. https://doi.org/10.1016/j.rser.2016.09.073 DOI: https://doi.org/10.1016/j.rser.2016.09.073

T. F. Wu, Y. K. Chen, G. R. Yu, and Y. C. Chang, "Design and development of dc-distributed system with grid connection for residential applications," 8th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2011-ECCE Asia, pp. 235-241, 2011.

D. Email, "Intelligent DC Microgrid Living Laboratories - A Sino-Danish Collaboration," pp. 365-370, 2015.

M. D. O. Vasconcelos, F. C. De Araújo, F. A. P. Aragão, K. C. A. De Souza, and E. M. Sá, "High static gain DC-DC converter CUK with current source characteristic for nanogrid application," 2017 IEEE 8th Int. Symp. Power Electron. Distrib. Gener. Syst. PEDG 2017, pp. 1-6, 2017. https://doi.org/10.1109/PEDG.2017.7972474 DOI: https://doi.org/10.1109/PEDG.2017.7972474

F. C. De Araújo, M. O. Vasconcelos, F. A. P. Aragão, K. C. A. De Souza, and E. M. Sá, "High-gain DC-DC converter with current source characteristics at the output for applications in photovoltaic systems and current injection in nanogrids," 2017 IEEE 8th Int. Symp. Power Electron. Distrib. Gener. Syst. PEDG 2017, pp. 2-7, 2017. https://doi.org/10.1109/PEDG.2017.7972485 DOI: https://doi.org/10.1109/PEDG.2017.7972485

S. Ahmadi, H. Bevrani, S. Shokoohi, and E. Hasanii, "An improved droop control for simultaneous voltage and frequency regulation in an AC microgrid using fuzzy logic," in 2015 23rd Iranian Conference on Electrical Engineering, 2015, vol. 10, pp. 1486-1491. https://doi.org/10.1109/IranianCEE.2015.7146455 DOI: https://doi.org/10.1109/IranianCEE.2015.7146455

A. A. Abdelsalam, H. A. Gabbar, and A. M. Sharaf, "Performance enhancement of hybrid AC/DC microgrid based D-FACTS," Int. J. Electr. Power Energy Syst., vol. 63, pp. 382-393, 2014. https://doi.org/10.1016/j.ijepes.2014.06.003 DOI: https://doi.org/10.1016/j.ijepes.2014.06.003

A. A. Memon and K. Kauhaniemi, "A critical review of AC Microgrid protection issues and available solutions," Electr. Power Syst. Res., vol. 129, pp. 23-31, 2015. https://doi.org/10.1016/j.epsr.2015.07.006 DOI: https://doi.org/10.1016/j.epsr.2015.07.006

M. Sechilariu, B. C. Wang, F. Locment, and A. Jouglet, "DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation," Energy Convers. Manag., vol. 82, pp. 1-10, 2014. https://doi.org/10.1016/j.enconman.2014.03.010 DOI: https://doi.org/10.1016/j.enconman.2014.03.010

W. W. Weaver, R. D. Robinett, G. G. Parker, and D. G. Wilson, "Distributed control and energy storage requirements of networked Dc microgrids," Control Eng. Pract., vol. 44, pp. 10-19, 2015. https://doi.org/10.1016/j.conengprac.2015.06.008 DOI: https://doi.org/10.1016/j.conengprac.2015.06.008

S. S. Nag, R. Adda, O. Ray, and S. K. Mishra, "Current-Fed Switched Inverter based hybrid topology for DC Nanogrid application," IECON Proc. (Industrial Electron. Conf., pp. 7146-7151, 2013. https://doi.org/10.1109/IECON.2013.6700320 DOI: https://doi.org/10.1109/IECON.2013.6700320

V. Sudev and S. Parvathy, "Switched boost inverter based Dc nanogrid with battery and bi-directional converter," 2014 Int. Conf. Circuits, Power Comput. Technol. [ICCPCT-2014], pp. 461-467, 2014. https://doi.org/10.1109/ICCPCT.2014.7054920 DOI: https://doi.org/10.1109/ICCPCT.2014.7054920

U. B. Mujumdar and D. R. Tutkane, "Parallel MPPT for PV based residential DC Nanogrid," in 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, vol. 54, no. 1, pp. 1350-1355. https://doi.org/10.1109/IIC.2015.7150958 DOI: https://doi.org/10.1109/IIC.2015.7150958

M. Lakshmi and S. Hemamalini, "Nonisolated high gain DC-DC converter for DC microgrids," IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1205-1212, 2018.

https://doi.org/10.1109/TIE.2017.2733463 DOI: https://doi.org/10.1109/TIE.2017.2733463

Q. Zhao, F. Tao, and F. C. Lee, "A front-end DC/DC converter for network server applications," PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., vol. 3, pp. 1535-1539, 2001.

D. Dong, D. Boroyevich, R. Wang, and I. Cvetkovic, "A two-stage high power density single-phase ac-dc bi-directional PWM converter for renewable energy systems," 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010 - Proc., pp. 3862-3869, 2010. https://doi.org/10.1109/ECCE.2010.5617767 DOI: https://doi.org/10.1109/ECCE.2010.5617767

W. W. A. G. Silva, P. F. Donoso-Garcia, S. I. Seleme, T. R. Oliveira, C. H. G. Santos, and A. S. Bolzon, "Study of the application of bidirectional dual active bridge converters in dc nanogrid energy storage systems," 2013 Brazilian Power Electron. Conf. COBEP 2013 - Proc., pp. 609-614, 2013.

W. Li and X. He, "Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239-1250, 2011. https://doi.org/10.1109/TIE.2010.2049715 DOI: https://doi.org/10.1109/TIE.2010.2049715

M. Kasper, D. Bortis, and J. W. Kolar, "Classification and Comparative Evaluation of PV Panel-Integrated DC/DC Converter Concepts," IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2511-2526, 2014. https://doi.org/10.1109/TPEL.2013.2273399 DOI: https://doi.org/10.1109/TPEL.2013.2273399

C. Knaesel, L. Michels, A. L. Batschauer, C. Knaesel, L. Michels, and A. L. Batschauer, "FOTOVOLTAICOS High Voltage Gain Isolated INTEGRAÇÃO DC-DC Converter for Integration in Photovoltaic Modules," Eletrônica de Potência, pp. 482-493, 2019.

https://doi.org/10.18618/REP.2019.4.0042 DOI: https://doi.org/10.18618/REP.2019.4.0042

S. Saravanan and N. Ramesh Babu, "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Appl. Energy, vol. 190, pp. 64-72, 2017. https://doi.org/10.1016/j.apenergy.2016.12.094 DOI: https://doi.org/10.1016/j.apenergy.2016.12.094

M. Muhammad, M. Armstrong, and M. A. Elgendy, "Analysis and implementation of high-gain non-isolated DC-DC boost converter," IET Power Electron., vol. 10, no. 11, pp. 1241-1249, 2017. https://doi.org/10.1049/iet-pel.2016.0810 DOI: https://doi.org/10.1049/iet-pel.2016.0810

M. Kumar, M. Ashirvad, and Y. N. Babu, "An integrated Boost-Sepic-Ćuk DC-DC converter with high voltage ratio and reduced input current ripple," Energy Procedia, vol. 117, pp. 984-990, 2017. https://doi.org/10.1016/j.egypro.2017.05.219 DOI: https://doi.org/10.1016/j.egypro.2017.05.219

S. Salehi Dobakhshari, J. Milimonfared, M. Taheri, and H. Moradisizkoohi, "A Quasi-Resonant Current-Fed Converter with Minimum Switching Losses," IEEE Trans. Power Electron., vol. 32, no. 1, pp. 353-362, 2017. https://doi.org/10.1109/TPEL.2016.2528893 DOI: https://doi.org/10.1109/TPEL.2016.2528893

Y. P. Siwakoti, F. Blaabjerg, and P. C. Loh, "Ultra-step-up DC-DC converter with integrated autotransformer and coupled inductor," Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2016-May, no. 1, pp. 1872-1877, 2016. https://doi.org/10.1109/APEC.2016.7468123 DOI: https://doi.org/10.1109/APEC.2016.7468123

Y. P. Siwakoti and F. Blaabjerg, "Single Switch Nonisolated Ultra-Step-Up DC-DC Converter with an Integrated Coupled Inductor for High Boost Applications," IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8544-8558, 2017. https://doi.org/10.1109/TPEL.2016.2646382 DOI: https://doi.org/10.1109/TPEL.2016.2646382

A. M. S. S. Andrade, L. Schuch, and M. L. Da Silva Martins, "Analysis and design of high-efficiency hybrid high step-Up DC-DC converter for distributed PV generation systems," IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3860-3868, 2019. https://doi.org/10.1109/TIE.2018.2840496 DOI: https://doi.org/10.1109/TIE.2018.2840496

Y. Wang, Y. Qiu, Q. Bian, Y. Guan, and D. Xu, "A Single Switch Quadratic Boost High Step Up DC-DC Converter," IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4387-4397, 2019. https://doi.org/10.1109/TIE.2018.2860550 DOI: https://doi.org/10.1109/TIE.2018.2860550

M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications," IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017. https://doi.org/10.1109/TPEL.2017.2652318 DOI: https://doi.org/10.1109/TPEL.2017.2652318

E. S. Hass, C. B. Nascimento, E. S. Hass, and C. B. Nascimento, "A SIMPLE SELF-CLAMPED HIGH STEP-UP DC-DC CONVERTER EMPLOYING COUPLED INDUCTOR A Simple Self-Clamped High Step-Up DC-Dc Converter Employing Coupled Inductor," Eletrônica de Potência, pp. 204-213, 2019. https://doi.org/10.18618/REP.2019.2.0009 DOI: https://doi.org/10.18618/REP.2019.2.0009

L. Schmitz, A. I. Pereira, R. G. A. Cacau, D. C. Martins, and R. F. Coelho, "CONVERSOR CC-CC DE ALTO GANHO BASEADO NO CONVERSOR ĆUK COM INDUTOR ACOPLADO E MULTIPLICADORES DE TENSÃO," Eletrônica de Potência, pp. 267-276, 2019. https://doi.org/10.18618/REP.2019.3.0020 DOI: https://doi.org/10.18618/REP.2019.3.0020

Qun Zhao, Fengfeng Tao, Yongxuan Hu, and F. C. Lee, "Active-clamp DC/DC converters using magnetic switches," APEC 2001. Sixt. Annu. IEEE Appl. Power Electron. Conf. Expo. (Cat. No.01CH37181), vol. 2, pp. 946-952, 2001.

Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. Power Electron., vol. 18, no. 1 I, pp. 65-73, 2003. https://doi.org/10.1109/TPEL.2002.807188 DOI: https://doi.org/10.1109/TPEL.2002.807188

D. M. Van De Sype, K. De Gussem, B. Renders, A. P. Van Den Bossche, and J. A. Melkebeek, "A single switch boost converter with a high conversion ratio," Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 3, pp. 1581-1587, 2005. https://doi.org/10.1109/EPE.2005.219508 DOI: https://doi.org/10.1109/EPE.2005.219508

X. Yue, D. Boroyevich, F. C. Lee, F. Chen, R. Burgos, and F. Zhuo, "Beat Frequency Oscillation Analysis for Power Electronic Converters in DC Nanogrid Based on Crossed Frequency Output Impedance Matrix Model," IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3052-3064, 2018. https://doi.org/10.1109/TPEL.2017.2710101 DOI: https://doi.org/10.1109/TPEL.2017.2710101

S. Sathyan, H. M. Suryawanshi, B. Singh, C. Chakraborty, V. Verma, and M. S. Ballal, "ZVS-ZCS High Voltage Gain Integrated Boost Converter for DC Microgrid," IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6898-6908, 2016. https://doi.org/10.1109/TIE.2016.2582460 DOI: https://doi.org/10.1109/TIE.2016.2582460

M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti, and F. Blaabjerg, "High-Efficiency High Step-Up DC-DC Converter with Dual Coupled Inductors for Grid-Connected Photovoltaic Systems," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5967-5982, 2018. https://doi.org/10.1109/TPEL.2017.2746750 DOI: https://doi.org/10.1109/TPEL.2017.2746750

S. Qin, K. A. Kim, and R. C. N. Pilawa-Podgurski, "Laboratory emulation of a photovoltaic module for controllable insolation and realistic dynamic performance," 2013 IEEE Power Energy Conf. Illinois, PECI 2013, pp. 23-29, 2013.

F. Chen, R. Burgos, and D. Boroyevich, "A Transformerless Single-Phase Utility Interface Converter to Attenuate Common-Mode Voltage for DC Microgrid," pp. 157-162, 2017. https://doi.org/10.1109/IFEEC.2017.7992435 DOI: https://doi.org/10.1109/IFEEC.2017.7992435

V. D. S. Member, V. John, and S. Member, "A Modified Common-Mode Filter with Enhanced Attenuation Performance in Single-Phase Grid-Tied Solar PV Inverters," pp. 5-10, 2020.

Downloads

Published

2020-12-31

How to Cite

[1]
Y. Pontes, C. Elmano de Alencar e Silva, and E. Mineiro Sá Junior, “High-Voltage Gain DC-DC Converter For Photovoltaic Applications In DC Nanogrids”, Eletrônica de Potência, vol. 25, no. 4, pp. 473–480, Dec. 2020.

Issue

Section

Original Papers